Fast just-in-time-learning recursive multi-output LSSVR for quality prediction and control of multivariable dynamic systems

Aiming at quality prediction and control of blast furnace (BF) ironmaking process characterized by complicated nonlinear time-varying dynamics, this paper proposes a just-in-time-learning (JITL) recursive multi-output least squares support vector regression (JITL-R-M-LSSVR) algorithm with fast nonli...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of artificial intelligence Vol. 100; p. 104168
Main Authors: Zhou, Ping, Chen, Weiqi, Yi, Chengming, Jiang, Zhaohui, Yang, Tao, Chai, Tianyou
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.04.2021
Subjects:
ISSN:0952-1976, 1873-6769
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Aiming at quality prediction and control of blast furnace (BF) ironmaking process characterized by complicated nonlinear time-varying dynamics, this paper proposes a just-in-time-learning (JITL) recursive multi-output least squares support vector regression (JITL-R-M-LSSVR) algorithm with fast nonlinear local learning capability for multivariable dynamic systems. The proposed fast JITL-R-M-LSSVR effectively combines the online local learning of JITL with the multi-output LSSVR (M-LSSVR) based on multi-task transfer learning, and focuses on how to ensure the rapid verification of the local model during online learning of M-LSSVR, and how to perform model pruning while recursively updating the model parameters to improve the calculation efficiency. To this end, the proposed algorithm uses a derived multi-output incremental learning algorithm to recursively update model parameters online in a gentle way, which has better modeling stability and smoothness than the traditional way that discards old models. At the same time, when the model is pruned, a novel multi-output reverse decremental learning algorithm is proposed to adaptively delete the modeling data, so as to effectively control the sample size and reduces the calculation cost. In particular, the model verification of the proposed algorithm only needs to construct the M-LSSVR modeling matrix and the matrix inverse operation once, and the matrix after deleting each modeling sample can be easily obtained by reverse decremental learning of the original modeling matrix, which can achieve fast and efficient model verification. Finally, the effectiveness and practicability of the proposed method are verified by applying it to prediction modeling and predictive control of the molten iron quality in BF ironmaking process. •A fast just-in-time-learning recursive multi-output LSSVR algorithm is proposed.•Fast nonlinear local M-LSSVR modeling of MIMO dynamic systems is achieved online.•Efficient pruning of M-LSSVR is performed by multi-output decremental learning.•Local M-LSSVR model is recursively updated by multi-output incremental learning.•Model verification only computes the modeling matrix and its inverse operation once.
AbstractList Aiming at quality prediction and control of blast furnace (BF) ironmaking process characterized by complicated nonlinear time-varying dynamics, this paper proposes a just-in-time-learning (JITL) recursive multi-output least squares support vector regression (JITL-R-M-LSSVR) algorithm with fast nonlinear local learning capability for multivariable dynamic systems. The proposed fast JITL-R-M-LSSVR effectively combines the online local learning of JITL with the multi-output LSSVR (M-LSSVR) based on multi-task transfer learning, and focuses on how to ensure the rapid verification of the local model during online learning of M-LSSVR, and how to perform model pruning while recursively updating the model parameters to improve the calculation efficiency. To this end, the proposed algorithm uses a derived multi-output incremental learning algorithm to recursively update model parameters online in a gentle way, which has better modeling stability and smoothness than the traditional way that discards old models. At the same time, when the model is pruned, a novel multi-output reverse decremental learning algorithm is proposed to adaptively delete the modeling data, so as to effectively control the sample size and reduces the calculation cost. In particular, the model verification of the proposed algorithm only needs to construct the M-LSSVR modeling matrix and the matrix inverse operation once, and the matrix after deleting each modeling sample can be easily obtained by reverse decremental learning of the original modeling matrix, which can achieve fast and efficient model verification. Finally, the effectiveness and practicability of the proposed method are verified by applying it to prediction modeling and predictive control of the molten iron quality in BF ironmaking process. •A fast just-in-time-learning recursive multi-output LSSVR algorithm is proposed.•Fast nonlinear local M-LSSVR modeling of MIMO dynamic systems is achieved online.•Efficient pruning of M-LSSVR is performed by multi-output decremental learning.•Local M-LSSVR model is recursively updated by multi-output incremental learning.•Model verification only computes the modeling matrix and its inverse operation once.
ArticleNumber 104168
Author Chen, Weiqi
Yi, Chengming
Zhou, Ping
Yang, Tao
Chai, Tianyou
Jiang, Zhaohui
Author_xml – sequence: 1
  givenname: Ping
  surname: Zhou
  fullname: Zhou, Ping
  email: zhouping@mail.neu.edu.cn
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, PR China
– sequence: 2
  givenname: Weiqi
  surname: Chen
  fullname: Chen, Weiqi
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, PR China
– sequence: 3
  givenname: Chengming
  surname: Yi
  fullname: Yi, Chengming
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, PR China
– sequence: 4
  givenname: Zhaohui
  surname: Jiang
  fullname: Jiang, Zhaohui
  organization: School of Automation, Central South University, Changsha, 410083, PR China
– sequence: 5
  givenname: Tao
  surname: Yang
  fullname: Yang, Tao
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, PR China
– sequence: 6
  givenname: Tianyou
  surname: Chai
  fullname: Chai, Tianyou
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, PR China
BookMark eNqFkNFq2zAUhsVoYUnbVxh6AWWSlcg27GKjLG0hUGjX3ooT-bicYEueJAfMXr4O2W52U87FDwe-H_5vyS588MjYFyVXSirz9bBC_wbDALQqZKHm51qZ6hNbqKrUwpSmvmALWW8KoerSfGbLlA5SSl2tzYL92ULK_DCmLMiLTD2KDiF68m88ohtjoiPyfuwyiTDmYcx89_z8-sTbEPnvETrKEx8iNuQyBc_BN9wFn2PoeGjP4BEiwb5D3kweenI8TSljn67ZZQtdwpu_ecVetj9_3d6L3ePdw-2PnXBaFVnMaySaGveVaVq5ma9ooNVYaV1rV26wLAHR7fd1BWptVO1k3VYbbdYoGyNBXzFz7nUxpBSxtUOkHuJklbQnhfZg_ym0J4X2rHAGv_0HOspw2pkjUPcx_v2M4zzuSBhtcoTezbJmtdk2gT6qeAfMkpb2
CitedBy_id crossref_primary_10_1016_j_jprocont_2023_01_010
crossref_primary_10_1109_TIM_2024_3353852
crossref_primary_10_1016_j_cie_2023_109278
crossref_primary_10_3390_sym16080977
crossref_primary_10_1016_j_engappai_2021_104341
crossref_primary_10_20965_jaciii_2024_p0284
crossref_primary_10_1016_j_chemolab_2023_104778
crossref_primary_10_1016_j_conengprac_2024_105940
crossref_primary_10_1016_j_engappai_2023_105849
crossref_primary_10_1016_j_anucene_2021_108544
crossref_primary_10_1016_j_engappai_2022_105547
crossref_primary_10_1016_j_conengprac_2022_105328
crossref_primary_10_1109_TSM_2022_3202610
crossref_primary_10_1007_s40831_024_00785_7
crossref_primary_10_1016_j_knosys_2025_113497
crossref_primary_10_1016_j_compchemeng_2025_109002
crossref_primary_10_1109_TIM_2022_3185325
crossref_primary_10_1016_j_jprocont_2023_103032
crossref_primary_10_1016_j_egyr_2023_05_093
crossref_primary_10_1631_FITEE_2200366
crossref_primary_10_1016_j_chemolab_2024_105083
crossref_primary_10_1002_cjce_25169
Cites_doi 10.3724/SP.J.1004.2013.00602
10.1016/S0952-1976(02)00024-6
10.1016/j.engappai.2005.05.006
10.1016/j.jprocont.2007.04.004
10.1021/ie0608713
10.1109/TIE.2017.2772141
10.1109/TCST.2016.2631124
10.1016/S0952-1976(00)00062-2
10.1016/j.jprocont.2009.04.002
10.1016/j.jprocont.2016.04.009
10.1016/j.jprocont.2020.05.012
10.1002/aic.11791
10.1016/j.compchemeng.2010.01.005
10.1109/TNNLS.2017.2749412
10.1109/CICN.2016.97
10.1016/j.automatica.2009.06.028
10.1016/j.jprocont.2013.03.008
10.1016/j.ces.2004.04.020
10.1016/j.conengprac.2020.104474
10.1016/j.conengprac.2019.104120
10.1016/j.jprocont.2018.04.008
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2021.104168
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2021_104168
S0952197621000154
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-4160e69eb86df050502daf3e83393c75e77aeecbb98a14619c09f85364e0d60a3
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000633002300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 07:07:18 EST 2025
Tue Nov 18 21:51:39 EST 2025
Fri Feb 23 02:45:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Incremental learning
Blast furnace ironmaking process
Just-in-time-learning (JITL)
Multi-output LSSVR (M-LSSVR)
Model verification
Local learning nonlinear modeling
Nonlinear predictive control
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-4160e69eb86df050502daf3e83393c75e77aeecbb98a14619c09f85364e0d60a3
ParticipantIDs crossref_primary_10_1016_j_engappai_2021_104168
crossref_citationtrail_10_1016_j_engappai_2021_104168
elsevier_sciencedirect_doi_10_1016_j_engappai_2021_104168
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhou, Song, Wang, Chai (b29) 2017; 25
Zhang, R.W., Tian, X.M., Wang, P., 2016. Adaptive generalized predictive control based on just-in-time learning in latent space. In: 2016 8th International Conference on Computational Intelligence and Communication Networks. CICN. pp. 471–475.
Fujiwara, Kano, Hasebe, Takinami (b8) 2009; 55
Ghaemi, Sun, Kolmanovsky (b10) 2009; 45
Dong, Krzyzak, Suen (b7) 2002; 15
Song (b21) 2016
Yin, Li, Liu (b25) 2020; 88
Zhou, Guo, Wang, Chai (b28) 2018; 29
Gamero, Colomer, Meléndez, Warren (b9) 2006; 19
An, Shen, Wu, She (b2) 2019
Pan, Li, Cai (b20) 2007; 46
Marutiram, Radhikrishnan (b19) 1991
Zeng, Gao, Su (b26) 2010; 34
Bontempi (b3) 1999
Guo, Bai, Huang (b11) 2020; 92
Jiang, Yin, Kaynak (b12) 2020
An, Chen, Wu, He, She (b1) 2020
Kalmukale, Chiu, Wang (b13) 2007; 17
Li, Hua, Yang, Guan (b16) 2020
Zhou, Zhang, Yang (b30) 2019
Su, Hermanto, Braatz, Chiu (b22) 2016; 43
Yi, Zhou, Chai (b24) 2020; 37
Kansha, Chiu (b14) 2009; 19
Bontempi, Birattari (b4) 2005; 3
Li, Hua, Yang, Guan (b15) 2018; 65
Cheng, Chiu (b6) 2004; 59
Chen (b5) 2001; 14
Wang, Yang, Sun, Zhang, Li (b23) 2018; 68
Liu, Chen (b17) 2013; 23
Liu, Jin, Gao (b18) 2013; 39
Chen (10.1016/j.engappai.2021.104168_b5) 2001; 14
Bontempi (10.1016/j.engappai.2021.104168_b3) 1999
Li (10.1016/j.engappai.2021.104168_b16) 2020
Pan (10.1016/j.engappai.2021.104168_b20) 2007; 46
Zhou (10.1016/j.engappai.2021.104168_b28) 2018; 29
An (10.1016/j.engappai.2021.104168_b2) 2019
Marutiram (10.1016/j.engappai.2021.104168_b19) 1991
Fujiwara (10.1016/j.engappai.2021.104168_b8) 2009; 55
10.1016/j.engappai.2021.104168_b27
Jiang (10.1016/j.engappai.2021.104168_b12) 2020
Yi (10.1016/j.engappai.2021.104168_b24) 2020; 37
Bontempi (10.1016/j.engappai.2021.104168_b4) 2005; 3
Dong (10.1016/j.engappai.2021.104168_b7) 2002; 15
Kansha (10.1016/j.engappai.2021.104168_b14) 2009; 19
Wang (10.1016/j.engappai.2021.104168_b23) 2018; 68
Li (10.1016/j.engappai.2021.104168_b15) 2018; 65
Song (10.1016/j.engappai.2021.104168_b21) 2016
Cheng (10.1016/j.engappai.2021.104168_b6) 2004; 59
Zhou (10.1016/j.engappai.2021.104168_b30) 2019
Guo (10.1016/j.engappai.2021.104168_b11) 2020; 92
Yin (10.1016/j.engappai.2021.104168_b25) 2020; 88
Liu (10.1016/j.engappai.2021.104168_b18) 2013; 39
Su (10.1016/j.engappai.2021.104168_b22) 2016; 43
Liu (10.1016/j.engappai.2021.104168_b17) 2013; 23
Kalmukale (10.1016/j.engappai.2021.104168_b13) 2007; 17
Ghaemi (10.1016/j.engappai.2021.104168_b10) 2009; 45
An (10.1016/j.engappai.2021.104168_b1) 2020
Zeng (10.1016/j.engappai.2021.104168_b26) 2010; 34
Zhou (10.1016/j.engappai.2021.104168_b29) 2017; 25
Gamero (10.1016/j.engappai.2021.104168_b9) 2006; 19
References_xml – year: 2019
  ident: b30
  article-title: Hybrid model based intelligent optimization of ironmaking process
  publication-title: IEEE Trans. Ind. Electron.
– volume: 34
  start-page: 1854
  year: 2010
  end-page: 1862
  ident: b26
  article-title: Data-driven predictive control for blast furnace ironmaking process
  publication-title: Comput. Chem. Eng.
– volume: 65
  start-page: 4933
  year: 2018
  end-page: 4942
  ident: b15
  article-title: Bayesian block structure sparse based T–S fuzzy modeling for dynamic prediction of hot metal silicon content in the blast furnace
  publication-title: IEEE Trans. Ind. Electron.
– volume: 25
  start-page: 1761
  year: 2017
  end-page: 1774
  ident: b29
  article-title: Data-driven nonlinear subspace modeling for prediction and control of molten iron quality indices in blast furnace ironmaking
  publication-title: IEEE Trans. Control Syst. Technol.
– year: 2020
  ident: b12
  article-title: Optimized design of parity relation based residual generator for fault detection: data-driven approaches
  publication-title: IEEE Trans. Ind. Inf.
– year: 2016
  ident: b21
  article-title: Subspace Modeling and Predictive Control of Multivariate Molten Iron Quality Indices in Blast Furnace Ironmaking Processes
– volume: 15
  start-page: 151
  year: 2002
  end-page: 159
  ident: b7
  article-title: Local learning framework for handwritten character recognition
  publication-title: Eng. Appl. Artif. Intell.
– reference: Zhang, R.W., Tian, X.M., Wang, P., 2016. Adaptive generalized predictive control based on just-in-time learning in latent space. In: 2016 8th International Conference on Computational Intelligence and Communication Networks. CICN. pp. 471–475.
– volume: 59
  start-page: 2801
  year: 2004
  end-page: 2810
  ident: b6
  article-title: A new data-based methodology for nonlinear process modeling
  publication-title: Chem. Eng. Sci.
– volume: 39
  start-page: 602
  year: 2013
  end-page: 609
  ident: b18
  article-title: Online identification of time-varying processes using just-in-time recursive kernel learning approach
  publication-title: Acta Automat. Sinica
– year: 2020
  ident: b16
  article-title: A novel MIMO T-S fuzzy modeling for prediction of blast furnace molten iron quality with missing outputs
  publication-title: IEEE Trans. Fuzzy Syst.
– year: 2019
  ident: b2
  article-title: A multi-time-scale fusion prediction model for the gas utilization rate in a blast furnace
  publication-title: Control Eng. Pract.
– year: 1999
  ident: b3
  article-title: Local Learning Techniques for Modeling, Prediction and Control
– start-page: 488
  year: 1991
  end-page: 491
  ident: b19
  article-title: Predictive control of blast furnaces
  publication-title: Proceedings of TENCON ’91.1991 IEEE Region 10 International Conference on EC3-Energy, Computer, Communication and Control Systems
– volume: 17
  start-page: 757
  year: 2007
  end-page: 769
  ident: b13
  article-title: Partitioned model-based IMC design using JITL modeling technique
  publication-title: J. Process Control
– volume: 68
  start-page: 86
  year: 2018
  end-page: 95
  ident: b23
  article-title: Effective variable selection and moving window HMM-based approach for iron-making process monitoring
  publication-title: J. Process Control
– volume: 37
  start-page: 295
  year: 2020
  end-page: 306
  ident: b24
  article-title: Data-driven just-in-time learning based adaptive predictive control for blast furnace ironmaking
  publication-title: Control Theory Appl.
– volume: 45
  start-page: 2412
  year: 2009
  end-page: 2418
  ident: b10
  article-title: An integrated perturbation analysis and sequential quadratic programming approach for model predictive control
  publication-title: Automatica
– year: 2020
  ident: b1
  article-title: Two-layer fault diagnosis method for blast furnace based on evidence-conflict reduction on multiple time scales
  publication-title: Control Eng. Pract.
– volume: 19
  start-page: 103
  year: 2006
  end-page: 111
  ident: b9
  article-title: Predicting aerodynamic instabilities in a blast furnace
  publication-title: Eng. Appl. Artif. Intell.
– volume: 23
  start-page: 793
  year: 2013
  end-page: 804
  ident: b17
  article-title: Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes
  publication-title: J. Process Control
– volume: 29
  start-page: 4007
  year: 2018
  end-page: 4021
  ident: b28
  article-title: Data-driven robust M-LS-SVR-based NARX modeling for estimation and control of molten iron quality indices in blast furnace ironmaking
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 14
  start-page: 77
  year: 2001
  end-page: 85
  ident: b5
  article-title: A predictive system for blast furnaces by integrating a neural network with qualitative analysis
  publication-title: Eng. Appl. Artif. Intell.
– volume: 46
  start-page: 472
  year: 2007
  end-page: 480
  ident: b20
  article-title: Lazy learning-based online identification and adaptive PID control: a case study for CSTR process
  publication-title: Ind. Eng. Chem. Res.
– volume: 3
  start-page: 56
  year: 2005
  end-page: 73
  ident: b4
  article-title: From linearization to lazy learning: a survey of divide-and-conquer techniques for nonlinear control
  publication-title: Int. J. Comput. Cogn.
– volume: 19
  start-page: 1067
  year: 2009
  end-page: 1072
  ident: b14
  article-title: Adaptive generalized predictive control based on JITL technique
  publication-title: J. Process Control
– volume: 55
  start-page: 1754
  year: 2009
  end-page: 1765
  ident: b8
  article-title: Soft-sensor development using correlation-based just-in-time modeling
  publication-title: AICHE J.
– volume: 92
  start-page: 90
  year: 2020
  end-page: 97
  ident: b11
  article-title: Output-relevant variational autoencoder for just-in-time soft sensor modeling with missing data
  publication-title: J. Process Control
– volume: 88
  year: 2020
  ident: b25
  article-title: Lazy reinforcement learning for real-time generation control of parallel cyber–physical–social energy systems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 43
  start-page: 1
  year: 2016
  end-page: 9
  ident: b22
  article-title: Just-in-time-learning based extended prediction self-adaptive control for batch processes
  publication-title: J. Process Control
– year: 2016
  ident: 10.1016/j.engappai.2021.104168_b21
– start-page: 488
  year: 1991
  ident: 10.1016/j.engappai.2021.104168_b19
  article-title: Predictive control of blast furnaces
– year: 2020
  ident: 10.1016/j.engappai.2021.104168_b12
  article-title: Optimized design of parity relation based residual generator for fault detection: data-driven approaches
  publication-title: IEEE Trans. Ind. Inf.
– volume: 39
  start-page: 602
  issue: 5
  year: 2013
  ident: 10.1016/j.engappai.2021.104168_b18
  article-title: Online identification of time-varying processes using just-in-time recursive kernel learning approach
  publication-title: Acta Automat. Sinica
  doi: 10.3724/SP.J.1004.2013.00602
– volume: 15
  start-page: 151
  issue: 2
  year: 2002
  ident: 10.1016/j.engappai.2021.104168_b7
  article-title: Local learning framework for handwritten character recognition
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/S0952-1976(02)00024-6
– year: 2020
  ident: 10.1016/j.engappai.2021.104168_b16
  article-title: A novel MIMO T-S fuzzy modeling for prediction of blast furnace molten iron quality with missing outputs
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 19
  start-page: 103
  issue: 1
  year: 2006
  ident: 10.1016/j.engappai.2021.104168_b9
  article-title: Predicting aerodynamic instabilities in a blast furnace
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2005.05.006
– volume: 17
  start-page: 757
  issue: 10
  year: 2007
  ident: 10.1016/j.engappai.2021.104168_b13
  article-title: Partitioned model-based IMC design using JITL modeling technique
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2007.04.004
– volume: 46
  start-page: 472
  issue: 2
  year: 2007
  ident: 10.1016/j.engappai.2021.104168_b20
  article-title: Lazy learning-based online identification and adaptive PID control: a case study for CSTR process
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0608713
– volume: 65
  start-page: 4933
  issue: 6
  year: 2018
  ident: 10.1016/j.engappai.2021.104168_b15
  article-title: Bayesian block structure sparse based T–S fuzzy modeling for dynamic prediction of hot metal silicon content in the blast furnace
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2772141
– year: 2019
  ident: 10.1016/j.engappai.2021.104168_b30
  article-title: Hybrid model based intelligent optimization of ironmaking process
  publication-title: IEEE Trans. Ind. Electron.
– volume: 25
  start-page: 1761
  issue: 5
  year: 2017
  ident: 10.1016/j.engappai.2021.104168_b29
  article-title: Data-driven nonlinear subspace modeling for prediction and control of molten iron quality indices in blast furnace ironmaking
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2016.2631124
– volume: 14
  start-page: 77
  issue: 1
  year: 2001
  ident: 10.1016/j.engappai.2021.104168_b5
  article-title: A predictive system for blast furnaces by integrating a neural network with qualitative analysis
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/S0952-1976(00)00062-2
– volume: 19
  start-page: 1067
  issue: 7
  year: 2009
  ident: 10.1016/j.engappai.2021.104168_b14
  article-title: Adaptive generalized predictive control based on JITL technique
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2009.04.002
– volume: 43
  start-page: 1
  year: 2016
  ident: 10.1016/j.engappai.2021.104168_b22
  article-title: Just-in-time-learning based extended prediction self-adaptive control for batch processes
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2016.04.009
– volume: 92
  start-page: 90
  year: 2020
  ident: 10.1016/j.engappai.2021.104168_b11
  article-title: Output-relevant variational autoencoder for just-in-time soft sensor modeling with missing data
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2020.05.012
– volume: 55
  start-page: 1754
  issue: 7
  year: 2009
  ident: 10.1016/j.engappai.2021.104168_b8
  article-title: Soft-sensor development using correlation-based just-in-time modeling
  publication-title: AICHE J.
  doi: 10.1002/aic.11791
– year: 1999
  ident: 10.1016/j.engappai.2021.104168_b3
– volume: 34
  start-page: 1854
  issue: 11
  year: 2010
  ident: 10.1016/j.engappai.2021.104168_b26
  article-title: Data-driven predictive control for blast furnace ironmaking process
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2010.01.005
– volume: 29
  start-page: 4007
  issue: 9
  year: 2018
  ident: 10.1016/j.engappai.2021.104168_b28
  article-title: Data-driven robust M-LS-SVR-based NARX modeling for estimation and control of molten iron quality indices in blast furnace ironmaking
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2749412
– ident: 10.1016/j.engappai.2021.104168_b27
  doi: 10.1109/CICN.2016.97
– volume: 45
  start-page: 2412
  issue: 10
  year: 2009
  ident: 10.1016/j.engappai.2021.104168_b10
  article-title: An integrated perturbation analysis and sequential quadratic programming approach for model predictive control
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.06.028
– volume: 23
  start-page: 793
  issue: 6
  year: 2013
  ident: 10.1016/j.engappai.2021.104168_b17
  article-title: Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2013.03.008
– volume: 59
  start-page: 2801
  issue: 13
  year: 2004
  ident: 10.1016/j.engappai.2021.104168_b6
  article-title: A new data-based methodology for nonlinear process modeling
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2004.04.020
– volume: 37
  start-page: 295
  issue: 2
  year: 2020
  ident: 10.1016/j.engappai.2021.104168_b24
  article-title: Data-driven just-in-time learning based adaptive predictive control for blast furnace ironmaking
  publication-title: Control Theory Appl.
– year: 2020
  ident: 10.1016/j.engappai.2021.104168_b1
  article-title: Two-layer fault diagnosis method for blast furnace based on evidence-conflict reduction on multiple time scales
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2020.104474
– year: 2019
  ident: 10.1016/j.engappai.2021.104168_b2
  article-title: A multi-time-scale fusion prediction model for the gas utilization rate in a blast furnace
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2019.104120
– volume: 3
  start-page: 56
  issue: 1
  year: 2005
  ident: 10.1016/j.engappai.2021.104168_b4
  article-title: From linearization to lazy learning: a survey of divide-and-conquer techniques for nonlinear control
  publication-title: Int. J. Comput. Cogn.
– volume: 68
  start-page: 86
  year: 2018
  ident: 10.1016/j.engappai.2021.104168_b23
  article-title: Effective variable selection and moving window HMM-based approach for iron-making process monitoring
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2018.04.008
– volume: 88
  issue: 1
  year: 2020
  ident: 10.1016/j.engappai.2021.104168_b25
  article-title: Lazy reinforcement learning for real-time generation control of parallel cyber–physical–social energy systems
  publication-title: Eng. Appl. Artif. Intell.
SSID ssj0003846
Score 2.4145021
Snippet Aiming at quality prediction and control of blast furnace (BF) ironmaking process characterized by complicated nonlinear time-varying dynamics, this paper...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104168
SubjectTerms Blast furnace ironmaking process
Incremental learning
Just-in-time-learning (JITL)
Local learning nonlinear modeling
Model verification
Multi-output LSSVR (M-LSSVR)
Nonlinear predictive control
Title Fast just-in-time-learning recursive multi-output LSSVR for quality prediction and control of multivariable dynamic systems
URI https://dx.doi.org/10.1016/j.engappai.2021.104168
Volume 100
WOSCitedRecordID wos000633002300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxoEL34iNDfnArXJJ4zSJjxPaNKZpQmxAxSVyEoelKknXJNUQ_xd_356_khQqxg5cosiqnbjvF7_n5_feD6E3Keexx-TRoBty4nkTh4R-7JE4lQxwoJMCqhKFT4Ozs3A6ZR8Gg182F2Y1D4oivL5mi_8qamgDYcvU2TuIux0UGuAehA5XEDtc_0nwR7yqh7OmqkleEEkdT-bW_bGUznUVr67iCEnZ1IumHp6en3_-qOINdYrlD1k5IM0NibjKe9Px7PIsXnZcwQZbp1xpPntTD7pac_N3hQ6H_VNyFXiwVBFKii-kVxK0c2KXjbJurVpV4Qd6ffwi8qu8XapyHTEgim_fe789yY0T_OslLy-bvO_ZcMe9gBjronTJmGl-mHa1dpzeegubybGm5flDFWivxGwErwCz5PlIPmLUdVivvf2bTmwjFW0Q3Cyy40RynEiPcw9tu8GEgULYPnh_OD1pbQAa6hQxO4NebvrmN9psFvVMnYvH6KHZo-ADja0naCCKp-iR2a9gow0qaLKUILbtGfop0Yc3og-36MN99GGFPgzowwZ9uEMfBvRhgz5cZngNfdigDxv0PUefjg4v3h0Tw-9BEjp2awLzdoTPRBz6aSYZFR035RkVIaWMJsFEBAEXIoljFnJJP88Sh2VgXvqecFLf4fQF2irKQrxE2FNljliSxR6sN7IoZkI9h4kALPokoHQHTezfGyWm-L3kYJlHfxfwDnrb9lvo8i-39mBWepExYrVxGgEwb-m7e-envUIPui9nD23Vy0bso_vJqs6r5WuDyhuRa8do
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+just-in-time-learning+recursive+multi-output+LSSVR+for+quality+prediction+and+control+of+multivariable+dynamic+systems&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Zhou%2C+Ping&rft.au=Chen%2C+Weiqi&rft.au=Yi%2C+Chengming&rft.au=Jiang%2C+Zhaohui&rft.date=2021-04-01&rft.issn=0952-1976&rft.volume=100&rft.spage=104168&rft_id=info:doi/10.1016%2Fj.engappai.2021.104168&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2021_104168
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon