Noise reduction in the spectral domain of hyperspectral images using denoising autoencoder methods

Denoising of spectra has been a great challenge in hyperspectral image analysis. Near-infrared hyperspectral images of milk powder, rice flour and soybean flour were acquired and denoising in the spectral domain were studied. Noise free spectra and noises were simulated based on sample pixel-wise sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemometrics and intelligent laboratory systems Jg. 203; S. 104063
Hauptverfasser: Zhang, Chu, Zhou, Lei, Zhao, Yiying, Zhu, Susu, Liu, Fei, He, Yong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 15.08.2020
Schlagworte:
ISSN:0169-7439, 1873-3239
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Denoising of spectra has been a great challenge in hyperspectral image analysis. Near-infrared hyperspectral images of milk powder, rice flour and soybean flour were acquired and denoising in the spectral domain were studied. Noise free spectra and noises were simulated based on sample pixel-wise spectra. The noisy spectra with signal to noise ratio (SNR) around 45 ​dB (similar to real pixel-wise spectra) were simulated. The simulated noisy spectra were preprocessed by traditional methods as moving average smoothing (MAS), Savitzky-Golay smoothing (SGS), wavelet transform (WT) and empirical mode decomposition (EMD). The basic denoising autoencoder (DAE-1) and the stacked DAE (DAE-2) were studied for denoising. The noisy spectra with SNR around 35 ​dB and 55 ​dB were further simulated to explore the effectiveness of DAE based methods. DAE-1 and DAE-2 performed better than the other methods, with higher SNR, lower mean squared error (MSE) and mean absolute error (MAE). The developed DAE methods were applied to real-world pixel-wise spectra with good performances. The overall results proved the feasibility of using DAE based methods for noise reduction in the spectral domain of hyperspectral images, and the DAE based methods have great potential to be extended to spectral denoising of other vibrational spectroscopy techniques. •Denoising autoencoder based methods were used for pixel-wise spectra denoising.•Noise-free spectra and noises were simulated by real-world pixel-wise spectra.•Four different conventional spectral denoising methods were used for comparison.•Real-world pixel-wise spectra denoising was conducted using the developed methods.
AbstractList Denoising of spectra has been a great challenge in hyperspectral image analysis. Near-infrared hyperspectral images of milk powder, rice flour and soybean flour were acquired and denoising in the spectral domain were studied. Noise free spectra and noises were simulated based on sample pixel-wise spectra. The noisy spectra with signal to noise ratio (SNR) around 45 ​dB (similar to real pixel-wise spectra) were simulated. The simulated noisy spectra were preprocessed by traditional methods as moving average smoothing (MAS), Savitzky-Golay smoothing (SGS), wavelet transform (WT) and empirical mode decomposition (EMD). The basic denoising autoencoder (DAE-1) and the stacked DAE (DAE-2) were studied for denoising. The noisy spectra with SNR around 35 ​dB and 55 ​dB were further simulated to explore the effectiveness of DAE based methods. DAE-1 and DAE-2 performed better than the other methods, with higher SNR, lower mean squared error (MSE) and mean absolute error (MAE). The developed DAE methods were applied to real-world pixel-wise spectra with good performances. The overall results proved the feasibility of using DAE based methods for noise reduction in the spectral domain of hyperspectral images, and the DAE based methods have great potential to be extended to spectral denoising of other vibrational spectroscopy techniques. •Denoising autoencoder based methods were used for pixel-wise spectra denoising.•Noise-free spectra and noises were simulated by real-world pixel-wise spectra.•Four different conventional spectral denoising methods were used for comparison.•Real-world pixel-wise spectra denoising was conducted using the developed methods.
ArticleNumber 104063
Author Liu, Fei
He, Yong
Zhang, Chu
Zhu, Susu
Zhao, Yiying
Zhou, Lei
Author_xml – sequence: 1
  givenname: Chu
  surname: Zhang
  fullname: Zhang, Chu
  organization: College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
– sequence: 2
  givenname: Lei
  surname: Zhou
  fullname: Zhou, Lei
  organization: College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
– sequence: 3
  givenname: Yiying
  surname: Zhao
  fullname: Zhao, Yiying
  organization: College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
– sequence: 4
  givenname: Susu
  surname: Zhu
  fullname: Zhu, Susu
  organization: College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
– sequence: 5
  givenname: Fei
  surname: Liu
  fullname: Liu, Fei
  organization: College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
– sequence: 6
  givenname: Yong
  surname: He
  fullname: He, Yong
  email: yhe@zju.edu.cn
  organization: College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
BookMark eNqFkM1OwzAQhC1UJNrCKyC_QIqdzU8tcQBVUJAquMDZcuxN4yqJKztF6tvjqMCBS0_rHXlGO9-MTHrXIyG3nC0448XdbqEb7FyrqkXK0lHMWAEXZMqXJSSQgpiQafwokjIDcUVmIezYuGd8Sqo3ZwNSj-agB-t6ans6NEjDHvXgVUuN61TUXE2b4x79n247tcVAD8H2W2qwjzHjSx0Gh712Bj3tcGicCdfkslZtwJufOSefz08fq5dk875-XT1uEg08HRIwdY5FCroGAQp1lSq9ZIgiz6ESUHEBAkUqsCyAl0VZq4wZYEVe5lWdMwFzcn_K1d6F4LGW2g5qLBUPtq3kTI685E7-8pIjL3niFe3FP_vex5L-eN74cDJiLPdl0cugbWSAxvoISxpnz0V8A0rnjSQ
CitedBy_id crossref_primary_10_3390_act13110440
crossref_primary_10_3390_rs15010251
crossref_primary_10_1080_00032719_2023_2178449
crossref_primary_10_1007_s11600_024_01339_x
crossref_primary_10_1016_j_jfca_2025_107865
crossref_primary_10_1016_j_biosystemseng_2022_03_003
crossref_primary_10_1080_01431161_2025_2527372
crossref_primary_10_1016_j_engappai_2024_108669
crossref_primary_10_1016_j_trac_2024_117578
crossref_primary_10_3390_rs13214247
crossref_primary_10_1016_j_trac_2020_116045
crossref_primary_10_3390_electronics11234021
crossref_primary_10_1109_TGRS_2022_3217892
crossref_primary_10_1016_j_ecoinf_2022_101829
crossref_primary_10_1002_advs_202508506
crossref_primary_10_1155_2024_8925458
crossref_primary_10_3390_pr11010090
crossref_primary_10_3390_s24144635
crossref_primary_10_1016_j_compag_2024_109882
crossref_primary_10_3390_rs13163241
crossref_primary_10_1017_wsc_2023_36
crossref_primary_10_1080_10643389_2025_2557306
crossref_primary_10_1016_j_ecoinf_2021_101360
crossref_primary_10_1016_j_asr_2025_09_028
crossref_primary_10_1016_j_compag_2022_106934
crossref_primary_10_1080_10408398_2025_2474183
crossref_primary_10_1063_5_0291154
crossref_primary_10_1002_cpe_7048
crossref_primary_10_1016_j_envres_2024_119823
crossref_primary_10_1080_10408398_2022_2066062
crossref_primary_10_3389_fpls_2024_1442225
crossref_primary_10_1016_j_cosrev_2023_100584
crossref_primary_10_1016_j_tifs_2021_04_008
crossref_primary_10_1021_acs_chemrev_4c00815
crossref_primary_10_1002_ansa_202000162
crossref_primary_10_1016_j_infrared_2020_103550
crossref_primary_10_1016_j_chemolab_2023_104913
crossref_primary_10_3389_fpls_2022_837020
crossref_primary_10_1016_j_foodres_2024_115307
crossref_primary_10_3390_en17153666
crossref_primary_10_3390_rs15205013
crossref_primary_10_1111_1750_3841_15715
crossref_primary_10_3390_electronics10111269
crossref_primary_10_1016_j_postharvbio_2024_112918
crossref_primary_10_1016_j_plaphe_2025_100104
crossref_primary_10_1109_TGRS_2021_3134564
crossref_primary_10_1016_j_jfca_2024_106904
crossref_primary_10_1002_cem_3445
crossref_primary_10_1016_j_engappai_2023_107690
crossref_primary_10_1007_s00216_024_05676_0
crossref_primary_10_1038_s41598_023_28404_7
crossref_primary_10_1515_ijfe_2025_0072
crossref_primary_10_3390_rs13122273
crossref_primary_10_1016_j_eswa_2023_122113
crossref_primary_10_3390_agriculture14112054
Cites_doi 10.1080/05704928.2013.838678
10.1016/j.jpba.2014.04.012
10.1016/j.postharvbio.2013.04.017
10.1049/htl.2015.0007
10.1111/1541-4337.12492
10.3390/app8020212
10.1016/j.ymssp.2017.11.024
10.1080/05704928.2012.705800
10.1016/j.jfoodeng.2016.07.015
10.3390/mti2030047
10.1186/s13007-019-0476-y
10.1109/LGRS.2017.2743738
10.1016/j.foodchem.2016.04.044
10.3390/s19194065
10.1109/ACCESS.2019.2917267
10.1039/C7AY02115A
10.1016/j.biosystemseng.2017.04.006
10.1109/TGRS.2018.2865197
10.1146/annurev-food-032818-121155
10.3390/s131013289
10.1016/j.biosystemseng.2007.11.007
10.1186/s13007-015-0072-8
10.1016/j.jfoodeng.2013.06.005
10.1021/acs.analchem.6b02969
10.1186/s13007-017-0233-z
10.1021/ci980210j
10.1093/biomet/81.3.425
10.1016/j.trac.2018.08.013
10.1016/j.infrared.2015.12.008
10.1016/j.aca.2016.12.010
10.1038/s41598-018-20270-y
10.1063/1.4822961
10.1021/ac960638m
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.chemolab.2020.104063
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3239
ExternalDocumentID 10_1016_j_chemolab_2020_104063
S016974391930718X
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABAOU
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSW
SSZ
T5K
UNMZH
YK3
~02
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
SCB
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c312t-3df5e623cf393aecb2ac80ee9553b93b1939e929e7631767fa40d306575bf5093
ISICitedReferencesCount 68
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552126900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-7439
IngestDate Sat Nov 29 07:25:04 EST 2025
Tue Nov 18 22:08:40 EST 2025
Fri Feb 23 02:47:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Denoising autoencoder
Empirical mode decomposition
Wavelet transform
Hyperspectral image
Spectra simulation
Noise reduction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-3df5e623cf393aecb2ac80ee9553b93b1939e929e7631767fa40d306575bf5093
ParticipantIDs crossref_citationtrail_10_1016_j_chemolab_2020_104063
crossref_primary_10_1016_j_chemolab_2020_104063
elsevier_sciencedirect_doi_10_1016_j_chemolab_2020_104063
PublicationCentury 2000
PublicationDate 2020-08-15
PublicationDateYYYYMMDD 2020-08-15
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemometrics and intelligent laboratory systems
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rungpichayapichet, Nagle, Yuwanbun, Khuwijitjaru, Mahayothee, Mueller (bib11) 2017; 159
Khan, Yairi (bib21) 2018; 107
Yuan, Zhang, Li, Shen, Zhang (bib28) 2019; 57
Lu, Tsao, Matsuda, Hori (bib31) 2013
Donoho, Johnstone (bib36) 1994; 81
Lowe, Harrison, French (bib4) 2017; 13
Humplik, Lazar, Husickova, Spichal (bib5) 2015; 11
Bansal, Sharma, Singh (bib22) 2019; 559
Qiu, Chen, Zhao, Zhu, He, Zhang (bib25) 2018; 8
Lu, Fei (bib6) 2014; 19
Sacre, De Bleye, Chavez, Netchacovitch, Hubert, Ziemons (bib9) 2014; 101
Ma, Sun, Pu, Cheng, Wei (bib1) 2019; 10
Ishii, Komiyama, Shinozaki, Horiuchi, Kuroiwa (bib30) 2013
Ambrose, Kandpal, Kim, Lee, Cho (bib12) 2016; 75
Zhou, Zhang, Liu, Qiu, He (bib24) 2019; 18
Zhang, Liu, He (bib17) 2018; 8
Williams, Kucheryavskiy (bib20) 2016; 209
Lahmiri (bib38) 2015; 3
Bakator, Radosav (bib23) 2018; 2
Vincent, Larochelle, Bengio, Manzagol (bib29) 2008
Press, Teukolsky (bib32) 1990; 4
Calin, Parasca, Savastru, Manea (bib7) 2014; 49
Kandpal, Lee, Kim, Mo, Cho (bib10) 2013; 13
Cai, Harrington (bib34) 1998; 38
Li, He (bib35) 2008; 99
Feng, Zhu, Zhou, Zhao, Bao, Zhang (bib16) 2019; 7
Diezma, Lleo, Roger, Herrero-Langreo, Lunadei, Ruiz-Altisent (bib19) 2013; 85
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib37) 2014; 15
Dale, Thewis, Boudry, Rotar, Dardenne, Baeten (bib2) 2013; 48
Zhu, Zhou, Zhang, Bao, Wu, Chu (bib39) 2019; 19
Cheng, Jin, Xu, Zheng (bib13) 2017; 9
Xie, Li (bib27) 2017; 14
Acquarelli, van Laarhoven, Gerretzen, Tran, Buydens, Marchiori (bib26) 2017; 954
Yang, Sun, Cheng (bib14) 2017; 192
Mazivila, Olivieri (bib8) 2018; 108
Lara, Lleo, Diezma-Iglesias, Roger, Ruiz-Altisent (bib18) 2013; 119
Kandpal, Tewari, Gopinathan, Boulas, Cho (bib15) 2016; 88
Barclay, Bonner, Hamilton (bib33) 1997; 69
Feng, Zhu, Liu, He, Bao, Zhang (bib3) 2019; 15
Donoho (10.1016/j.chemolab.2020.104063_bib36) 1994; 81
Mazivila (10.1016/j.chemolab.2020.104063_bib8) 2018; 108
Li (10.1016/j.chemolab.2020.104063_bib35) 2008; 99
Bansal (10.1016/j.chemolab.2020.104063_bib22) 2019; 559
Humplik (10.1016/j.chemolab.2020.104063_bib5) 2015; 11
Diezma (10.1016/j.chemolab.2020.104063_bib19) 2013; 85
Cheng (10.1016/j.chemolab.2020.104063_bib13) 2017; 9
Kandpal (10.1016/j.chemolab.2020.104063_bib15) 2016; 88
Feng (10.1016/j.chemolab.2020.104063_bib3) 2019; 15
Xie (10.1016/j.chemolab.2020.104063_bib27) 2017; 14
Bakator (10.1016/j.chemolab.2020.104063_bib23) 2018; 2
Lara (10.1016/j.chemolab.2020.104063_bib18) 2013; 119
Kandpal (10.1016/j.chemolab.2020.104063_bib10) 2013; 13
Ambrose (10.1016/j.chemolab.2020.104063_bib12) 2016; 75
Khan (10.1016/j.chemolab.2020.104063_bib21) 2018; 107
Zhu (10.1016/j.chemolab.2020.104063_bib39) 2019; 19
Lowe (10.1016/j.chemolab.2020.104063_bib4) 2017; 13
Sacre (10.1016/j.chemolab.2020.104063_bib9) 2014; 101
Qiu (10.1016/j.chemolab.2020.104063_bib25) 2018; 8
Cai (10.1016/j.chemolab.2020.104063_bib34) 1998; 38
Ma (10.1016/j.chemolab.2020.104063_bib1) 2019; 10
Press (10.1016/j.chemolab.2020.104063_bib32) 1990; 4
Yuan (10.1016/j.chemolab.2020.104063_bib28) 2019; 57
Yang (10.1016/j.chemolab.2020.104063_bib14) 2017; 192
Vincent (10.1016/j.chemolab.2020.104063_bib29) 2008
Calin (10.1016/j.chemolab.2020.104063_bib7) 2014; 49
Ishii (10.1016/j.chemolab.2020.104063_bib30) 2013
Williams (10.1016/j.chemolab.2020.104063_bib20) 2016; 209
Lahmiri (10.1016/j.chemolab.2020.104063_bib38) 2015; 3
Zhou (10.1016/j.chemolab.2020.104063_bib24) 2019; 18
Feng (10.1016/j.chemolab.2020.104063_bib16) 2019; 7
Acquarelli (10.1016/j.chemolab.2020.104063_bib26) 2017; 954
Barclay (10.1016/j.chemolab.2020.104063_bib33) 1997; 69
Dale (10.1016/j.chemolab.2020.104063_bib2) 2013; 48
Srivastava (10.1016/j.chemolab.2020.104063_bib37) 2014; 15
Rungpichayapichet (10.1016/j.chemolab.2020.104063_bib11) 2017; 159
Zhang (10.1016/j.chemolab.2020.104063_bib17) 2018; 8
Lu (10.1016/j.chemolab.2020.104063_bib31) 2013
Lu (10.1016/j.chemolab.2020.104063_bib6) 2014; 19
References_xml – start-page: 3479
  year: 2013
  end-page: 3483
  ident: bib30
  article-title: Reverberant Speech Recognition Based on Denoising Autoencoder, 14th Annual Conference of the International Speech Communication Association
– volume: 49
  start-page: 435
  year: 2014
  end-page: 447
  ident: bib7
  article-title: Hyperspectral imaging in the medical field: present and future
  publication-title: Appl. Spectrosc. Rev.
– volume: 48
  start-page: 142
  year: 2013
  end-page: 159
  ident: bib2
  article-title: Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review
  publication-title: Appl. Spectrosc. Rev.
– volume: 13
  start-page: 13289
  year: 2013
  end-page: 13300
  ident: bib10
  article-title: Hyperspectral reflectance imaging technique for visualization of moisture distribution in cooked chicken breast
  publication-title: Sensors
– volume: 11
  start-page: 29
  year: 2015
  ident: bib5
  article-title: Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses-a review
  publication-title: Plant Methods
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: bib29
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the 25th international conference on Machine learning
– volume: 8
  start-page: 2166
  year: 2018
  ident: bib17
  article-title: Identification of coffee bean varieties using hyperspectral imaging: influence of preprocessing methods and pixel-wise spectra analysis
  publication-title: Sci. Rep-UK.
– volume: 954
  start-page: 22
  year: 2017
  end-page: 31
  ident: bib26
  article-title: Convolutional neural networks for vibrational spectroscopic data analysis
  publication-title: Anal. Chim. Acta
– volume: 2
  start-page: 47
  year: 2018
  ident: bib23
  article-title: Deep learning and medical diagnosis: a review of literature
  publication-title: Multimodal Technologies Interact
– volume: 192
  start-page: 53
  year: 2017
  end-page: 60
  ident: bib14
  article-title: Development of simplified models for nondestructive hyperspectral imaging monitoring of TVB-N contents in cured meat during drying process
  publication-title: J. Food Eng.
– volume: 18
  start-page: 1793
  year: 2019
  end-page: 1811
  ident: bib24
  article-title: Application of deep learning in food: a review
  publication-title: Compr. Rev. Food Sci. F.
– volume: 4
  start-page: 869
  year: 1990
  end-page: 872
  ident: bib32
  article-title: Savitzky-golay smoothing filters
  publication-title: Comput. Phys.
– volume: 19
  start-page: 4065
  year: 2019
  ident: bib39
  article-title: Identification of soybean varieties using hyperspectral imaging coupled with convolutional neural network
  publication-title: Sensors
– volume: 69
  start-page: 78
  year: 1997
  end-page: 90
  ident: bib33
  article-title: Application of wavelet transforms to experimental spectra: smoothing, denoising, and data set compression
  publication-title: Anal. Chem.
– volume: 57
  start-page: 1205
  year: 2019
  end-page: 1218
  ident: bib28
  article-title: Hyperspectral image denoising employing a spatial-spectral deep residual convolutional neural network
  publication-title: IEEE T. Geosci. Remote
– volume: 81
  start-page: 425
  year: 1994
  end-page: 455
  ident: bib36
  article-title: Ideal spatial adaptation by wavelet shrinkage
  publication-title: Biometrika
– start-page: 436
  year: 2013
  end-page: 440
  ident: bib31
  article-title: Speech enhancement based on deep denoising autoencoder, 14th annual conference of the international speech communication association
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib37
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 7
  start-page: 64494
  year: 2019
  end-page: 64505
  ident: bib16
  article-title: Detection of subtle bruises on winter jujube using hyperspectral imaging with pixel-wise deep learning method
  publication-title: IEEE Access
– volume: 85
  start-page: 8
  year: 2013
  end-page: 17
  ident: bib19
  article-title: Examination of the quality of spinach leaves using hyperspectral imaging
  publication-title: Postharvest Biol. Technol.
– volume: 75
  start-page: 173
  year: 2016
  end-page: 179
  ident: bib12
  article-title: High speed measurement of corn seed viability using hyperspectral imaging
  publication-title: Infrared Phys. Technol.
– volume: 38
  start-page: 1161
  year: 1998
  end-page: 1170
  ident: bib34
  article-title: Different discrete wavelet transforms applied to denoising analytical data
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 15
  start-page: 91
  year: 2019
  ident: bib3
  article-title: Hyperspectral imaging for seed quality and safety inspection: a review
  publication-title: Plant Methods
– volume: 13
  start-page: 80
  year: 2017
  ident: bib4
  article-title: Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress
  publication-title: Plant Methods
– volume: 9
  start-page: 6148
  year: 2017
  end-page: 6154
  ident: bib13
  article-title: NIR hyperspectral imaging with multivariate analysis for measurement of oil and protein contents in peanut varieties
  publication-title: Anal. Methods-UK
– volume: 3
  start-page: 67
  year: 2015
  end-page: 71
  ident: bib38
  article-title: Image denoising in bidimensional empirical mode decomposition domain: the role of Student’s probability distribution function
  publication-title: Healthc. Technol. Lett.
– volume: 119
  start-page: 353
  year: 2013
  end-page: 361
  ident: bib18
  article-title: Monitoring spinach shelf-life with hyperspectral image through packaging films
  publication-title: J. Food Eng.
– volume: 559
  start-page: 374
  year: 2019
  end-page: 381
  ident: bib22
  article-title: A review on the application of deep learning in legal domain
  publication-title: IFIP International Conference on Artificial Intelligence Applications and Innovations
– volume: 88
  start-page: 11055
  year: 2016
  end-page: 11061
  ident: bib15
  article-title: In-process control assay of pharmaceutical microtablets using hyperspectral imaging coupled with multivariate analysis
  publication-title: Anal. Chem.
– volume: 209
  start-page: 131
  year: 2016
  end-page: 138
  ident: bib20
  article-title: Classification of maize kernels using NIR hyperspectral imaging
  publication-title: Food Chem.
– volume: 19
  year: 2014
  ident: bib6
  article-title: Medical hyperspectral imaging: a review
  publication-title: J. Biomed. Optic.
– volume: 14
  start-page: 1963
  year: 2017
  end-page: 1967
  ident: bib27
  article-title: Hyperspectral imagery denoising by deep learning with trainable nonlinearity function
  publication-title: IEEE T. Geosci. Remote
– volume: 108
  start-page: 74
  year: 2018
  end-page: 87
  ident: bib8
  article-title: Chemometrics coupled to vibrational spectroscopy and spectroscopic imaging for the analysis of solid-phase pharmaceutical products: a brief review on non-destructive analytical methods
  publication-title: Trac. Trends Anal. Chem.
– volume: 99
  start-page: 313
  year: 2008
  end-page: 321
  ident: bib35
  article-title: Discriminating varieties of tea plant based on Vis/NIR spectral characteristics and using artificial neural networks
  publication-title: Biosyst. Eng.
– volume: 10
  start-page: 197
  year: 2019
  end-page: 220
  ident: bib1
  article-title: Advanced techniques for hyperspectral imaging in the food industry: principles and recent applications
  publication-title: Annu. Rev. Food Sci. T.
– volume: 159
  start-page: 109
  year: 2017
  end-page: 120
  ident: bib11
  article-title: Prediction mapping of physicochemical properties in mango by hyperspectral imaging
  publication-title: Biosyst. Eng.
– volume: 8
  start-page: 212
  year: 2018
  ident: bib25
  article-title: Variety identification of single rice seed using hyperspectral imaging combined with convolutional neural network
  publication-title: Appl. Sci.-Basel.
– volume: 107
  start-page: 241
  year: 2018
  end-page: 265
  ident: bib21
  article-title: A review on the application of deep learning in system health management
  publication-title: Mech. Syst. Signal Process.
– volume: 101
  start-page: 123
  year: 2014
  end-page: 140
  ident: bib9
  article-title: Data processing of vibrational chemical imaging for pharmaceutical applications
  publication-title: J. Pharmaceut. Biomed.
– volume: 49
  start-page: 435
  year: 2014
  ident: 10.1016/j.chemolab.2020.104063_bib7
  article-title: Hyperspectral imaging in the medical field: present and future
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2013.838678
– volume: 101
  start-page: 123
  year: 2014
  ident: 10.1016/j.chemolab.2020.104063_bib9
  article-title: Data processing of vibrational chemical imaging for pharmaceutical applications
  publication-title: J. Pharmaceut. Biomed.
  doi: 10.1016/j.jpba.2014.04.012
– volume: 85
  start-page: 8
  year: 2013
  ident: 10.1016/j.chemolab.2020.104063_bib19
  article-title: Examination of the quality of spinach leaves using hyperspectral imaging
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2013.04.017
– volume: 3
  start-page: 67
  year: 2015
  ident: 10.1016/j.chemolab.2020.104063_bib38
  article-title: Image denoising in bidimensional empirical mode decomposition domain: the role of Student’s probability distribution function
  publication-title: Healthc. Technol. Lett.
  doi: 10.1049/htl.2015.0007
– volume: 19
  year: 2014
  ident: 10.1016/j.chemolab.2020.104063_bib6
  article-title: Medical hyperspectral imaging: a review
  publication-title: J. Biomed. Optic.
– volume: 18
  start-page: 1793
  year: 2019
  ident: 10.1016/j.chemolab.2020.104063_bib24
  article-title: Application of deep learning in food: a review
  publication-title: Compr. Rev. Food Sci. F.
  doi: 10.1111/1541-4337.12492
– volume: 8
  start-page: 212
  year: 2018
  ident: 10.1016/j.chemolab.2020.104063_bib25
  article-title: Variety identification of single rice seed using hyperspectral imaging combined with convolutional neural network
  publication-title: Appl. Sci.-Basel.
  doi: 10.3390/app8020212
– volume: 107
  start-page: 241
  year: 2018
  ident: 10.1016/j.chemolab.2020.104063_bib21
  article-title: A review on the application of deep learning in system health management
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.11.024
– volume: 48
  start-page: 142
  year: 2013
  ident: 10.1016/j.chemolab.2020.104063_bib2
  article-title: Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2012.705800
– volume: 192
  start-page: 53
  year: 2017
  ident: 10.1016/j.chemolab.2020.104063_bib14
  article-title: Development of simplified models for nondestructive hyperspectral imaging monitoring of TVB-N contents in cured meat during drying process
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2016.07.015
– start-page: 436
  year: 2013
  ident: 10.1016/j.chemolab.2020.104063_bib31
– volume: 2
  start-page: 47
  year: 2018
  ident: 10.1016/j.chemolab.2020.104063_bib23
  article-title: Deep learning and medical diagnosis: a review of literature
  publication-title: Multimodal Technologies Interact
  doi: 10.3390/mti2030047
– volume: 15
  start-page: 91
  year: 2019
  ident: 10.1016/j.chemolab.2020.104063_bib3
  article-title: Hyperspectral imaging for seed quality and safety inspection: a review
  publication-title: Plant Methods
  doi: 10.1186/s13007-019-0476-y
– volume: 14
  start-page: 1963
  year: 2017
  ident: 10.1016/j.chemolab.2020.104063_bib27
  article-title: Hyperspectral imagery denoising by deep learning with trainable nonlinearity function
  publication-title: IEEE T. Geosci. Remote
  doi: 10.1109/LGRS.2017.2743738
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.chemolab.2020.104063_bib37
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 209
  start-page: 131
  year: 2016
  ident: 10.1016/j.chemolab.2020.104063_bib20
  article-title: Classification of maize kernels using NIR hyperspectral imaging
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2016.04.044
– volume: 19
  start-page: 4065
  year: 2019
  ident: 10.1016/j.chemolab.2020.104063_bib39
  article-title: Identification of soybean varieties using hyperspectral imaging coupled with convolutional neural network
  publication-title: Sensors
  doi: 10.3390/s19194065
– volume: 559
  start-page: 374
  year: 2019
  ident: 10.1016/j.chemolab.2020.104063_bib22
  article-title: A review on the application of deep learning in legal domain
  publication-title: IFIP International Conference on Artificial Intelligence Applications and Innovations
– start-page: 3479
  year: 2013
  ident: 10.1016/j.chemolab.2020.104063_bib30
– volume: 7
  start-page: 64494
  year: 2019
  ident: 10.1016/j.chemolab.2020.104063_bib16
  article-title: Detection of subtle bruises on winter jujube using hyperspectral imaging with pixel-wise deep learning method
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917267
– volume: 9
  start-page: 6148
  year: 2017
  ident: 10.1016/j.chemolab.2020.104063_bib13
  article-title: NIR hyperspectral imaging with multivariate analysis for measurement of oil and protein contents in peanut varieties
  publication-title: Anal. Methods-UK
  doi: 10.1039/C7AY02115A
– volume: 159
  start-page: 109
  year: 2017
  ident: 10.1016/j.chemolab.2020.104063_bib11
  article-title: Prediction mapping of physicochemical properties in mango by hyperspectral imaging
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2017.04.006
– volume: 57
  start-page: 1205
  year: 2019
  ident: 10.1016/j.chemolab.2020.104063_bib28
  article-title: Hyperspectral image denoising employing a spatial-spectral deep residual convolutional neural network
  publication-title: IEEE T. Geosci. Remote
  doi: 10.1109/TGRS.2018.2865197
– start-page: 1096
  year: 2008
  ident: 10.1016/j.chemolab.2020.104063_bib29
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the 25th international conference on Machine learning
– volume: 10
  start-page: 197
  year: 2019
  ident: 10.1016/j.chemolab.2020.104063_bib1
  article-title: Advanced techniques for hyperspectral imaging in the food industry: principles and recent applications
  publication-title: Annu. Rev. Food Sci. T.
  doi: 10.1146/annurev-food-032818-121155
– volume: 13
  start-page: 13289
  year: 2013
  ident: 10.1016/j.chemolab.2020.104063_bib10
  article-title: Hyperspectral reflectance imaging technique for visualization of moisture distribution in cooked chicken breast
  publication-title: Sensors
  doi: 10.3390/s131013289
– volume: 99
  start-page: 313
  year: 2008
  ident: 10.1016/j.chemolab.2020.104063_bib35
  article-title: Discriminating varieties of tea plant based on Vis/NIR spectral characteristics and using artificial neural networks
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2007.11.007
– volume: 11
  start-page: 29
  year: 2015
  ident: 10.1016/j.chemolab.2020.104063_bib5
  article-title: Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses-a review
  publication-title: Plant Methods
  doi: 10.1186/s13007-015-0072-8
– volume: 119
  start-page: 353
  year: 2013
  ident: 10.1016/j.chemolab.2020.104063_bib18
  article-title: Monitoring spinach shelf-life with hyperspectral image through packaging films
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2013.06.005
– volume: 88
  start-page: 11055
  year: 2016
  ident: 10.1016/j.chemolab.2020.104063_bib15
  article-title: In-process control assay of pharmaceutical microtablets using hyperspectral imaging coupled with multivariate analysis
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b02969
– volume: 13
  start-page: 80
  year: 2017
  ident: 10.1016/j.chemolab.2020.104063_bib4
  article-title: Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress
  publication-title: Plant Methods
  doi: 10.1186/s13007-017-0233-z
– volume: 38
  start-page: 1161
  year: 1998
  ident: 10.1016/j.chemolab.2020.104063_bib34
  article-title: Different discrete wavelet transforms applied to denoising analytical data
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci980210j
– volume: 81
  start-page: 425
  year: 1994
  ident: 10.1016/j.chemolab.2020.104063_bib36
  article-title: Ideal spatial adaptation by wavelet shrinkage
  publication-title: Biometrika
  doi: 10.1093/biomet/81.3.425
– volume: 108
  start-page: 74
  year: 2018
  ident: 10.1016/j.chemolab.2020.104063_bib8
  article-title: Chemometrics coupled to vibrational spectroscopy and spectroscopic imaging for the analysis of solid-phase pharmaceutical products: a brief review on non-destructive analytical methods
  publication-title: Trac. Trends Anal. Chem.
  doi: 10.1016/j.trac.2018.08.013
– volume: 75
  start-page: 173
  year: 2016
  ident: 10.1016/j.chemolab.2020.104063_bib12
  article-title: High speed measurement of corn seed viability using hyperspectral imaging
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2015.12.008
– volume: 954
  start-page: 22
  year: 2017
  ident: 10.1016/j.chemolab.2020.104063_bib26
  article-title: Convolutional neural networks for vibrational spectroscopic data analysis
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2016.12.010
– volume: 8
  start-page: 2166
  year: 2018
  ident: 10.1016/j.chemolab.2020.104063_bib17
  article-title: Identification of coffee bean varieties using hyperspectral imaging: influence of preprocessing methods and pixel-wise spectra analysis
  publication-title: Sci. Rep-UK.
  doi: 10.1038/s41598-018-20270-y
– volume: 4
  start-page: 869
  year: 1990
  ident: 10.1016/j.chemolab.2020.104063_bib32
  article-title: Savitzky-golay smoothing filters
  publication-title: Comput. Phys.
  doi: 10.1063/1.4822961
– volume: 69
  start-page: 78
  year: 1997
  ident: 10.1016/j.chemolab.2020.104063_bib33
  article-title: Application of wavelet transforms to experimental spectra: smoothing, denoising, and data set compression
  publication-title: Anal. Chem.
  doi: 10.1021/ac960638m
SSID ssj0016941
Score 2.538281
Snippet Denoising of spectra has been a great challenge in hyperspectral image analysis. Near-infrared hyperspectral images of milk powder, rice flour and soybean...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104063
SubjectTerms Denoising autoencoder
Empirical mode decomposition
Hyperspectral image
Noise reduction
Spectra simulation
Wavelet transform
Title Noise reduction in the spectral domain of hyperspectral images using denoising autoencoder methods
URI https://dx.doi.org/10.1016/j.chemolab.2020.104063
Volume 203
WOSCitedRecordID wos000552126900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016941
  issn: 0169-7439
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZOtheRnejl3XoYW9DXSxFsfRYQsc2Rhisg-zJyLLEXBq7JHbpfkD_d48udl1a6MbYiwkismKdL_J3jnS-g9A7xXg-pVQRIYwlU1UIohQ3xIAnxlmaqJn26vpf08VCLJfy22h01eXCXJylVSUuL-X5fzU1tIGxXersX5i7vyk0wGcwOlzB7HD9I8Mv6nLjaqEUQRe2O8joUypdNn5Rr1QZSCL4oOu-vVwpp_fQ-uABrEZwG5_A2Da1E7t0mhOh3PRmSGid4EC9cmW5otpz2Wt8Nu8jwtw2_magjD6MU89_tTdtdevDBKYcfM2Hcn-Wv7tXrG9t44Gidhi0oP7IXEjbDJG0O9k0Ibg5k8Q5SOHdFBZkkTLCaGyLKzb1sgh3V_8QiDg91O7R4REP3dBuF3sSF9Hbytrf3YBuPCCxwLTE8hHaoimXYoy2jj4fL7_021Eu2zeIxIcfOEg1v3-0-1nOgLmcbKNn0eXARwEqz9HIVC_Qk3lX6e8lyj1kcA8ZXFYYIIM7aOAAGVxbfAsyOEAGe8jgHjJ4ABkcIfMK_fh4fDL_RGLtDaJZQhvCCssNUGNtmWTK6JwqLSbGSM5ZLlkOUyYNUGsD76cknaVWTScFuJ_A_nMLJJS9RuOqrswOwtTmnFqjBQNXQ_NEJYXUmhWCamZzI3cR7-Yq01GY3tVHOcu6E4inWTfHmZvjLMzxLvrQ9zsP0iwP9pCdKbJIMANxzABBD_Td-4e---jpzZ_gDRo369YcoMf6oik367cRbNdiuqjR
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noise+reduction+in+the+spectral+domain+of+hyperspectral+images+using+denoising+autoencoder+methods&rft.jtitle=Chemometrics+and+intelligent+laboratory+systems&rft.au=Zhang%2C+Chu&rft.au=Zhou%2C+Lei&rft.au=Zhao%2C+Yiying&rft.au=Zhu%2C+Susu&rft.date=2020-08-15&rft.pub=Elsevier+B.V&rft.issn=0169-7439&rft.eissn=1873-3239&rft.volume=203&rft_id=info:doi/10.1016%2Fj.chemolab.2020.104063&rft.externalDocID=S016974391930718X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7439&client=summon