HB-RRT:A path planning algorithm for mobile robots using Halton sequence-based rapidly-exploring random tree
Path planning remains crucial for efficient robot operation. A Halton Biased Rapidly-exploring Random Tree (HB-RRT) path planning algorithm is introduced in this study. The Halton sequence, known for its uniform distribution and low discrepancy, is employed for sampling. Issues arising from the pseu...
Saved in:
| Published in: | Engineering applications of artificial intelligence Vol. 133; p. 108362 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.07.2024
|
| Subjects: | |
| ISSN: | 0952-1976, 1873-6769 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Path planning remains crucial for efficient robot operation. A Halton Biased Rapidly-exploring Random Tree (HB-RRT) path planning algorithm is introduced in this study. The Halton sequence, known for its uniform distribution and low discrepancy, is employed for sampling. Issues arising from the pseudo-random sequence in the standard RRT algorithm, leading to uneven distribution of sampling points, are addressed. A mouse-inspired goal-oriented strategy and a candidate sampling pool strategy are incorporated to enhance the sampling point quality, thereby addressing the challenge of insufficient memory during node expansion. Path optimization is further achieved through a multi-level planning approach, which aims to minimize redundancy. A subsequent smoothing of the path is conducted using a cubic B-spline method. Comparisons with the RRT, Bionic Target Bias-RRT, and Informed-RRT* algorithms, through both numerical simulations and real-world testing, confirm the superiority of the HB-RRT algorithm in terms of planning time, path length, and overall path quality. |
|---|---|
| ISSN: | 0952-1976 1873-6769 |
| DOI: | 10.1016/j.engappai.2024.108362 |