A multi-channel active noise control system using deep learning-based method to estimate secondary path and normalized-clustered control strategy for vehicle interior engine noise

•A normalized clustered control strategy is adopted to a new normalize the step size of the two-channel FxLMS algorithm for each local controller, which balances the system convergence rate and the steady state error, thus improving the noise reduction performance of the system, especially the track...

Full description

Saved in:
Bibliographic Details
Published in:Applied acoustics Vol. 228; p. 110263
Main Authors: Cheng, Can, Liu, Zhien, Chen, Wan, Li, Xiaolong, Liao, Wu, Lu, Chihua
Format: Journal Article
Language:English
Published: Elsevier Ltd 15.01.2025
Subjects:
ISSN:0003-682X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A normalized clustered control strategy is adopted to a new normalize the step size of the two-channel FxLMS algorithm for each local controller, which balances the system convergence rate and the steady state error, thus improving the noise reduction performance of the system, especially the tracking ability of the noise reduction under non-stationary acceleration conditions.•A deep learning method is proposed to estimate the secondary paths, which avoids the frequent re-estimation of secondary paths using the traditional offline estimation method under the disturbance of the dynamic environment. Then, a genetic algorithm is used to estimate a neural network model with the optimal number of hidden layer nodes to ensure the accuracy of secondary path estimation. Finally, to deal with the real-time problem of estimating secondary paths by the neural network, this study adopts the interpolation method to substitute the secondary paths estimated based on the deep neural networks (DNN) method into the ANC system for filtering convolution calculation.•A series of real vehicle experiments are conducted based on the proposed multi-channel ANC system. It has practical engineering guiding significance. Although the multi-channel active noise control (ANC) system based on the traditional clustered control strategy solves the problems of high algorithm complexity and fragile stability, the step size setting of each local controller relies on the trial-and-error method, which makes it difficult to trade-off the convergence speed and the steady-state error of the algorithm, and the secondary path estimation is susceptible to the interference of the dynamic environment. To solve the above problems, this study proposes an efficient multi-channel ANC system, which accurately estimates the secondary paths based on the deep learning prediction model and adopts a normalized-clustered control strategy to normalize the step size of the two-channel FxLMS algorithm of each local controller, which balances the system convergence speed and the steady-state error. A series of real-vehicle ANC experiments are conducted. The results show that under stationary conditions, the proposed control strategy control converges quickly and has better noise reduction performance than the traditional clustered control strategy. Under non-stationary conditions, after normalizing the step size of the local controller, the proposed control strategy can better balance the steady-state error and the convergence speed of the control strategy and improve the noise reduction tracking ability. Finally, it is verified that the proposed deep learning method can accurately estimate the secondary path after changes and ensure the noise reduction performance of the proposed control strategy.
AbstractList •A normalized clustered control strategy is adopted to a new normalize the step size of the two-channel FxLMS algorithm for each local controller, which balances the system convergence rate and the steady state error, thus improving the noise reduction performance of the system, especially the tracking ability of the noise reduction under non-stationary acceleration conditions.•A deep learning method is proposed to estimate the secondary paths, which avoids the frequent re-estimation of secondary paths using the traditional offline estimation method under the disturbance of the dynamic environment. Then, a genetic algorithm is used to estimate a neural network model with the optimal number of hidden layer nodes to ensure the accuracy of secondary path estimation. Finally, to deal with the real-time problem of estimating secondary paths by the neural network, this study adopts the interpolation method to substitute the secondary paths estimated based on the deep neural networks (DNN) method into the ANC system for filtering convolution calculation.•A series of real vehicle experiments are conducted based on the proposed multi-channel ANC system. It has practical engineering guiding significance. Although the multi-channel active noise control (ANC) system based on the traditional clustered control strategy solves the problems of high algorithm complexity and fragile stability, the step size setting of each local controller relies on the trial-and-error method, which makes it difficult to trade-off the convergence speed and the steady-state error of the algorithm, and the secondary path estimation is susceptible to the interference of the dynamic environment. To solve the above problems, this study proposes an efficient multi-channel ANC system, which accurately estimates the secondary paths based on the deep learning prediction model and adopts a normalized-clustered control strategy to normalize the step size of the two-channel FxLMS algorithm of each local controller, which balances the system convergence speed and the steady-state error. A series of real-vehicle ANC experiments are conducted. The results show that under stationary conditions, the proposed control strategy control converges quickly and has better noise reduction performance than the traditional clustered control strategy. Under non-stationary conditions, after normalizing the step size of the local controller, the proposed control strategy can better balance the steady-state error and the convergence speed of the control strategy and improve the noise reduction tracking ability. Finally, it is verified that the proposed deep learning method can accurately estimate the secondary path after changes and ensure the noise reduction performance of the proposed control strategy.
ArticleNumber 110263
Author Liu, Zhien
Liao, Wu
Lu, Chihua
Cheng, Can
Chen, Wan
Li, Xiaolong
Author_xml – sequence: 1
  givenname: Can
  surname: Cheng
  fullname: Cheng, Can
  organization: Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
– sequence: 2
  givenname: Zhien
  surname: Liu
  fullname: Liu, Zhien
  organization: Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
– sequence: 3
  givenname: Wan
  orcidid: 0000-0003-4091-6964
  surname: Chen
  fullname: Chen, Wan
  email: wch@whut.edu.cn
  organization: Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
– sequence: 4
  givenname: Xiaolong
  surname: Li
  fullname: Li, Xiaolong
  organization: Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
– sequence: 5
  givenname: Wu
  surname: Liao
  fullname: Liao, Wu
  organization: Wuhan Second Ship Design and Research Institute, Wuhan, 430064, China
– sequence: 6
  givenname: Chihua
  surname: Lu
  fullname: Lu, Chihua
  organization: Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
BookMark eNqFkM9qGzEQxnVIIX9focwLrKs_u9419NAQ2iYQ6CWF3sSsNGvLaCUjyQb3tfqClXGaQy85DTPM75v5vmt2EWIgxj4KvhBcLD9tF7hDE_e5LCSX7UIILpfqgl1xzlWzHOSvS3ad87a2XHbdFftzD_PeF9eYDYZAHtAUdyAI0WUCE0NJ0UM-5kIz7LMLa7BEO_CEKdSuGTGThZnKJlooESgXN2MhyFRpi-kIOywbwGCraJrRu99kG-Prj5Qq-najpIqtjzDFBAfaOOMJXKhLrg4orF14feuWfZjQZ7p7rTfs57evLw-PzfOP708P98-NUUKWRsnJCCvHqeNmJdWAA18NdurEpEbVCtWpEU2LLXa96lrqRdursR9WPckVqs6qG7Y865oUc0406V2q3tJRC65Pceut_he3PsWtz3FX8PN_oHEFizs5Reffx7-ccarmDo6SzsZRMGRdIlO0je49ib8rr6pi
CitedBy_id crossref_primary_10_1016_j_oceaneng_2025_121202
crossref_primary_10_1016_j_apacoust_2025_110618
crossref_primary_10_1088_1742_6596_3057_1_012074
Cites_doi 10.1109/LSP.2021.3130023
10.1109/TASLP.2020.3008803
10.1016/j.ymssp.2022.109293
10.1016/j.apacoust.2019.05.030
10.1016/j.neunet.2021.03.037
10.1016/j.ymssp.2018.10.031
10.1016/j.ymssp.2018.05.018
10.1016/j.jsv.2017.06.005
10.1109/TASLP.2016.2516439
10.1007/978-3-030-29513-4_36
10.1121/10.0001401
10.1016/j.ymssp.2015.01.008
10.1016/j.jsv.2020.115763
10.1016/j.apacoust.2017.10.026
10.1016/j.engappai.2023.105971
10.7717/peerj-cs.724
10.1016/j.ymssp.2021.108698
10.1016/j.ymssp.2023.110786
10.1016/j.ymssp.2020.107346
10.1016/j.ymssp.2018.11.003
10.1016/j.ymssp.2022.109831
10.1016/j.apacoust.2023.109296
10.1016/j.jsv.2017.04.034
10.1007/s12206-023-0206-2
10.3390/machines10080670
10.1016/j.ymssp.2023.110940
10.3390/s21155026
10.1016/j.ymssp.2023.110328
10.1016/j.neunet.2022.11.029
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.apacoust.2024.110263
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
ExternalDocumentID 10_1016_j_apacoust_2024_110263
S0003682X24004146
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABMAC
ABNEU
ACDAQ
ACFVG
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
XPP
ZMT
~02
~G-
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFFNX
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
VH1
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c312t-32fc1d2bf50c9238a8098df51f3b341353bac4a4a57354e71473b7897e29a35d3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001314327500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0003-682X
IngestDate Tue Nov 18 21:17:02 EST 2025
Sat Nov 29 03:00:52 EST 2025
Sat Jan 18 16:10:50 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Secondary path estimation
Active noise control
Vehicle interior engine noise
Normalized-clustered control strategy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-32fc1d2bf50c9238a8098df51f3b341353bac4a4a57354e71473b7897e29a35d3
ORCID 0000-0003-4091-6964
ParticipantIDs crossref_primary_10_1016_j_apacoust_2024_110263
crossref_citationtrail_10_1016_j_apacoust_2024_110263
elsevier_sciencedirect_doi_10_1016_j_apacoust_2024_110263
PublicationCentury 2000
PublicationDate 2025-01-15
PublicationDateYYYYMMDD 2025-01-15
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied acoustics
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cha, Mostafavi, Benipal (b0100) 2023; 121
Zhang, Wang, Guo, Yang, Wang, Liu (b0130) 2019; 120
Akhtar (b0010) 2019; 155
Cheer, Elliott (b0020) 2015; 60
Chen, Lu, Liu, Williams, Xie (b0055) 2022; 168
Liu, Chen, Yang, Gao, Zhang (b0085) 2017; 409
Zhang, Wang (b0070) 2021; 141
Im, Kim, Woo, Jang, Han, Hwang (b0095) 2023; 37
Gao, Lu, Qiu (b0035) 2016; 24
Rachmatullah, Santoso, Surendro (b0140) 2021; 7
Zhou, Chen, Li, Cai (b0040) 2023; 196
Delegà, Bernasconi, Piroddi (b0045) 2017; 401
Shi, Lam, Gan, Wen (b0005) 2021; 151
Jung, Elliott, Cheer (b0015) 2019; 121
Zhang, Zhang, Meng (b0110) 2019; 01
Ziegler EJ. Selective active cancellation system for repetitive phenomena. Registered patent number US 4878188 A, 1989.
Oh, Jung, Lee, Lee, Kang (b0080) 2024; 206
Yu, Wang (b0145) 2021; 21
Chen, Liu, Hu, Li, Sun, Cheng (b0125) 2023; 204
Bagha, Das, Behera (b0090) 2020; 28
An, Cao, Liu (b0120) 2021; 491
Zhang, Wu, Yin, Gong, Yang, Cao (b0150) 2022; 178
Chen, Cheng, Yao, Li, Yan (b0075) 2021; 29
Pradhan, Zhang, Qiu (b0115) 2020; 147
Ibnu CR, Santoso J, Surendro K. Determining the number of hidden layers in neural network by using principal component analysis. In Inte Syst Appl: Proc 2019 Inte Syst Confer 2020; 2:490-500.
Zheng, Jia, Wan, Zeng, Qiu (b0155) 2023; 205
Zhang, Wang (b0065) 2023; 158
Zhang, Zhang, Meng, Pi (b0025) 2023; 186
Li, Wang, He, Wang, Yang, Ding (b0105) 2022; 10
Rout, Das, Panda (b0060) 2019; 114
Chang, Kuo, Huang (b0050) 2018; 131
Yu (10.1016/j.apacoust.2024.110263_b0145) 2021; 21
Zhang (10.1016/j.apacoust.2024.110263_b0065) 2023; 158
Gao (10.1016/j.apacoust.2024.110263_b0035) 2016; 24
Liu (10.1016/j.apacoust.2024.110263_b0085) 2017; 409
Chang (10.1016/j.apacoust.2024.110263_b0050) 2018; 131
Cha (10.1016/j.apacoust.2024.110263_b0100) 2023; 121
Zheng (10.1016/j.apacoust.2024.110263_b0155) 2023; 205
Li (10.1016/j.apacoust.2024.110263_b0105) 2022; 10
Rout (10.1016/j.apacoust.2024.110263_b0060) 2019; 114
Pradhan (10.1016/j.apacoust.2024.110263_b0115) 2020; 147
Zhang (10.1016/j.apacoust.2024.110263_b0150) 2022; 178
Zhang (10.1016/j.apacoust.2024.110263_b0130) 2019; 120
Zhang (10.1016/j.apacoust.2024.110263_b0025) 2023; 186
Im (10.1016/j.apacoust.2024.110263_b0095) 2023; 37
Akhtar (10.1016/j.apacoust.2024.110263_b0010) 2019; 155
Zhang (10.1016/j.apacoust.2024.110263_b0070) 2021; 141
Zhou (10.1016/j.apacoust.2024.110263_b0040) 2023; 196
Delegà (10.1016/j.apacoust.2024.110263_b0045) 2017; 401
Oh (10.1016/j.apacoust.2024.110263_b0080) 2024; 206
Cheer (10.1016/j.apacoust.2024.110263_b0020) 2015; 60
Jung (10.1016/j.apacoust.2024.110263_b0015) 2019; 121
Zhang (10.1016/j.apacoust.2024.110263_b0110) 2019; 01
10.1016/j.apacoust.2024.110263_b0135
An (10.1016/j.apacoust.2024.110263_b0120) 2021; 491
Chen (10.1016/j.apacoust.2024.110263_b0125) 2023; 204
Shi (10.1016/j.apacoust.2024.110263_b0005) 2021; 151
Chen (10.1016/j.apacoust.2024.110263_b0075) 2021; 29
Rachmatullah (10.1016/j.apacoust.2024.110263_b0140) 2021; 7
10.1016/j.apacoust.2024.110263_b0030
Chen (10.1016/j.apacoust.2024.110263_b0055) 2022; 168
Bagha (10.1016/j.apacoust.2024.110263_b0090) 2020; 28
References_xml – volume: 155
  start-page: 240
  year: 2019
  end-page: 249
  ident: b0010
  article-title: A time-varying normalized step-size based generalized fractional moment adaptive algorithm and its application to ANC of impulsive sources
  publication-title: Appl Acoust
– volume: 206
  year: 2024
  ident: b0080
  article-title: Enhancing active noise control of road noise using deep neural network to update secondary path estimate in real time
  publication-title: Mech Syst Signal Process
– reference: Ibnu CR, Santoso J, Surendro K. Determining the number of hidden layers in neural network by using principal component analysis. In Inte Syst Appl: Proc 2019 Inte Syst Confer 2020; 2:490-500.
– volume: 24
  start-page: 1164
  year: 2016
  end-page: 1174
  ident: b0035
  article-title: A simplified subband ANC algorithm without secondary path modeling
  publication-title: IEEE Trans Audio Speech Lang Process
– volume: 205
  year: 2023
  ident: b0155
  article-title: A study on hybrid active noise control system combined with remote microphone technique
  publication-title: Appl Acoust
– volume: 60
  start-page: 753
  year: 2015
  end-page: 769
  ident: b0020
  article-title: Multichannel control systems for the attenuation of interior road noise in vehicles
  publication-title: Mech Syst Signal Process
– reference: Ziegler EJ. Selective active cancellation system for repetitive phenomena. Registered patent number US 4878188 A, 1989.
– volume: 158
  start-page: 318
  year: 2023
  end-page: 327
  ident: b0065
  article-title: Deep MCANC: a deep learning approach to multi-channel active noise control
  publication-title: Neural Netw
– volume: 28
  start-page: 2084
  year: 2020
  end-page: 2094
  ident: b0090
  article-title: An efficient narrowband active noise control system for accommodating frequency mismatch
  publication-title: IEEE Trans Audio Speech Lang Process
– volume: 196
  year: 2023
  ident: b0040
  article-title: Delayless partial subband update algorithm for feed-forward active road noise control system in pure electric vehicles
  publication-title: Mech Syst Signal Process
– volume: 37
  start-page: 1189
  year: 2023
  end-page: 1196
  ident: b0095
  article-title: Deep learning-assisted active noise control in a time-varying environment
  publication-title: J Mech Sci Technol
– volume: 21
  start-page: 5026
  year: 2021
  ident: b0145
  article-title: A method for real-time fault detection of liquid rocket engine based on adaptive genetic algorithm optimizing back propagation neural network
  publication-title: Sensors
– volume: 7
  start-page: e724
  year: 2021
  ident: b0140
  article-title: Determining the number of hidden layer and hidden neuron of neural network for wind speed prediction
  publication-title: PeerJ Comp Sci
– volume: 401
  start-page: 311
  year: 2017
  end-page: 325
  ident: b0045
  article-title: A novel cost-effective parallel narrowband ANC system with local secondary-path estimation
  publication-title: J Sound Vib
– volume: 120
  start-page: 150
  year: 2019
  end-page: 165
  ident: b0130
  article-title: A normalized frequency-domain block filtered-x LMS algorithm for active vehicle interior noise control
  publication-title: Mech Syst Signal Process
– volume: 131
  start-page: 154
  year: 2018
  end-page: 164
  ident: b0050
  article-title: Secondary path modeling for narrowband active noise control systems
  publication-title: Appl Acoust
– volume: 147
  start-page: 3808
  year: 2020
  end-page: 3813
  ident: b0115
  article-title: A time domain decentralized algorithm for two channel active noise control
  publication-title: J Acoust Soc Am
– volume: 01
  start-page: 1567
  year: 2019
  ident: b0110
  article-title: Performance testing and analysis of multi-channel active control system for vehicle interior noise using adaptive notch filter
  publication-title: SAE Technical Paper
– volume: 491
  year: 2021
  ident: b0120
  article-title: Optimized decentralized filtered-x least mean square algorithm for over-determined systems with periodic disturbances
  publication-title: J Sound Vib
– volume: 114
  start-page: 378
  year: 2019
  end-page: 398
  ident: b0060
  article-title: PSO based adaptive narrowband ANC algorithm without the use of synchronization signal and secondary path estimate
  publication-title: Mech Syst Signal Process
– volume: 10
  start-page: 670
  year: 2022
  ident: b0105
  article-title: Vehicle engine noise cancellation based on a multi-channel fractional-order active noise control algorithm
  publication-title: Machines
– volume: 151
  year: 2021
  ident: b0005
  article-title: Block coordinate descent based algorithm for computational complexity reduction in multichannel active noise control system
  publication-title: Mech Syst Sig Process
– volume: 121
  start-page: 144
  year: 2019
  end-page: 157
  ident: b0015
  article-title: Local active control of road noise inside a vehicle
  publication-title: Mech Syst Signal Process
– volume: 141
  start-page: 1
  year: 2021
  end-page: 10
  ident: b0070
  article-title: Deep ANC: a deep learning approach to active noise control
  publication-title: Neural Netw
– volume: 409
  start-page: 145
  year: 2017
  end-page: 164
  ident: b0085
  article-title: Analysis and compensation of reference frequency mismatch in multiple-frequency feedforward active noise and vibration control system
  publication-title: J Sound Vib
– volume: 204
  year: 2023
  ident: b0125
  article-title: A low-complexity multi-channel active noise control system using local secondary path estimation and clustered control strategy for vehicle interior engine noise
  publication-title: Mech Syst Signal Process
– volume: 29
  start-page: 234
  year: 2021
  end-page: 238
  ident: b0075
  article-title: A secondary path-decoupled active noise control algorithm based on deep learning
  publication-title: IEEE Signal Process Lett
– volume: 121
  year: 2023
  ident: b0100
  article-title: DNoiseNet: deep learning-based feedback active noise control in various noisy environments
  publication-title: Eng Appl Artif Intell
– volume: 178
  year: 2022
  ident: b0150
  article-title: Robust parallel virtual sensing method for feedback active noise control in a headrest
  publication-title: Mech Syst Signal Process
– volume: 186
  year: 2023
  ident: b0025
  article-title: Active control of vehicle interior engine noise using a multi-channel delayed adaptive notch algorithm based on FxLMS structure
  publication-title: Mech Syst Signal Process
– volume: 168
  year: 2022
  ident: b0055
  article-title: A computationally efficient active sound quality control algorithm using local secondary-path estimation for vehicle interior noise
  publication-title: Mech Syst Signal Process
– volume: 29
  start-page: 234
  year: 2021
  ident: 10.1016/j.apacoust.2024.110263_b0075
  article-title: A secondary path-decoupled active noise control algorithm based on deep learning
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2021.3130023
– volume: 28
  start-page: 2084
  year: 2020
  ident: 10.1016/j.apacoust.2024.110263_b0090
  article-title: An efficient narrowband active noise control system for accommodating frequency mismatch
  publication-title: IEEE Trans Audio Speech Lang Process
  doi: 10.1109/TASLP.2020.3008803
– volume: 178
  year: 2022
  ident: 10.1016/j.apacoust.2024.110263_b0150
  article-title: Robust parallel virtual sensing method for feedback active noise control in a headrest
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2022.109293
– volume: 155
  start-page: 240
  year: 2019
  ident: 10.1016/j.apacoust.2024.110263_b0010
  article-title: A time-varying normalized step-size based generalized fractional moment adaptive algorithm and its application to ANC of impulsive sources
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2019.05.030
– volume: 141
  start-page: 1
  year: 2021
  ident: 10.1016/j.apacoust.2024.110263_b0070
  article-title: Deep ANC: a deep learning approach to active noise control
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2021.03.037
– volume: 120
  start-page: 150
  year: 2019
  ident: 10.1016/j.apacoust.2024.110263_b0130
  article-title: A normalized frequency-domain block filtered-x LMS algorithm for active vehicle interior noise control
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.10.031
– ident: 10.1016/j.apacoust.2024.110263_b0030
– volume: 114
  start-page: 378
  year: 2019
  ident: 10.1016/j.apacoust.2024.110263_b0060
  article-title: PSO based adaptive narrowband ANC algorithm without the use of synchronization signal and secondary path estimate
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.05.018
– volume: 409
  start-page: 145
  year: 2017
  ident: 10.1016/j.apacoust.2024.110263_b0085
  article-title: Analysis and compensation of reference frequency mismatch in multiple-frequency feedforward active noise and vibration control system
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2017.06.005
– volume: 24
  start-page: 1164
  issue: 7
  year: 2016
  ident: 10.1016/j.apacoust.2024.110263_b0035
  article-title: A simplified subband ANC algorithm without secondary path modeling
  publication-title: IEEE Trans Audio Speech Lang Process
  doi: 10.1109/TASLP.2016.2516439
– ident: 10.1016/j.apacoust.2024.110263_b0135
  doi: 10.1007/978-3-030-29513-4_36
– volume: 01
  start-page: 1567
  year: 2019
  ident: 10.1016/j.apacoust.2024.110263_b0110
  article-title: Performance testing and analysis of multi-channel active control system for vehicle interior noise using adaptive notch filter
  publication-title: SAE Technical Paper
– volume: 147
  start-page: 3808
  issue: 6
  year: 2020
  ident: 10.1016/j.apacoust.2024.110263_b0115
  article-title: A time domain decentralized algorithm for two channel active noise control
  publication-title: J Acoust Soc Am
  doi: 10.1121/10.0001401
– volume: 60
  start-page: 753
  year: 2015
  ident: 10.1016/j.apacoust.2024.110263_b0020
  article-title: Multichannel control systems for the attenuation of interior road noise in vehicles
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2015.01.008
– volume: 491
  year: 2021
  ident: 10.1016/j.apacoust.2024.110263_b0120
  article-title: Optimized decentralized filtered-x least mean square algorithm for over-determined systems with periodic disturbances
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2020.115763
– volume: 131
  start-page: 154
  year: 2018
  ident: 10.1016/j.apacoust.2024.110263_b0050
  article-title: Secondary path modeling for narrowband active noise control systems
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2017.10.026
– volume: 121
  year: 2023
  ident: 10.1016/j.apacoust.2024.110263_b0100
  article-title: DNoiseNet: deep learning-based feedback active noise control in various noisy environments
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.105971
– volume: 7
  start-page: e724
  year: 2021
  ident: 10.1016/j.apacoust.2024.110263_b0140
  article-title: Determining the number of hidden layer and hidden neuron of neural network for wind speed prediction
  publication-title: PeerJ Comp Sci
  doi: 10.7717/peerj-cs.724
– volume: 168
  year: 2022
  ident: 10.1016/j.apacoust.2024.110263_b0055
  article-title: A computationally efficient active sound quality control algorithm using local secondary-path estimation for vehicle interior noise
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2021.108698
– volume: 204
  year: 2023
  ident: 10.1016/j.apacoust.2024.110263_b0125
  article-title: A low-complexity multi-channel active noise control system using local secondary path estimation and clustered control strategy for vehicle interior engine noise
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2023.110786
– volume: 151
  year: 2021
  ident: 10.1016/j.apacoust.2024.110263_b0005
  article-title: Block coordinate descent based algorithm for computational complexity reduction in multichannel active noise control system
  publication-title: Mech Syst Sig Process
  doi: 10.1016/j.ymssp.2020.107346
– volume: 121
  start-page: 144
  year: 2019
  ident: 10.1016/j.apacoust.2024.110263_b0015
  article-title: Local active control of road noise inside a vehicle
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.11.003
– volume: 186
  year: 2023
  ident: 10.1016/j.apacoust.2024.110263_b0025
  article-title: Active control of vehicle interior engine noise using a multi-channel delayed adaptive notch algorithm based on FxLMS structure
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2022.109831
– volume: 205
  year: 2023
  ident: 10.1016/j.apacoust.2024.110263_b0155
  article-title: A study on hybrid active noise control system combined with remote microphone technique
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2023.109296
– volume: 401
  start-page: 311
  year: 2017
  ident: 10.1016/j.apacoust.2024.110263_b0045
  article-title: A novel cost-effective parallel narrowband ANC system with local secondary-path estimation
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2017.04.034
– volume: 37
  start-page: 1189
  year: 2023
  ident: 10.1016/j.apacoust.2024.110263_b0095
  article-title: Deep learning-assisted active noise control in a time-varying environment
  publication-title: J Mech Sci Technol
  doi: 10.1007/s12206-023-0206-2
– volume: 10
  start-page: 670
  issue: 8
  year: 2022
  ident: 10.1016/j.apacoust.2024.110263_b0105
  article-title: Vehicle engine noise cancellation based on a multi-channel fractional-order active noise control algorithm
  publication-title: Machines
  doi: 10.3390/machines10080670
– volume: 206
  year: 2024
  ident: 10.1016/j.apacoust.2024.110263_b0080
  article-title: Enhancing active noise control of road noise using deep neural network to update secondary path estimate in real time
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2023.110940
– volume: 21
  start-page: 5026
  issue: 15
  year: 2021
  ident: 10.1016/j.apacoust.2024.110263_b0145
  article-title: A method for real-time fault detection of liquid rocket engine based on adaptive genetic algorithm optimizing back propagation neural network
  publication-title: Sensors
  doi: 10.3390/s21155026
– volume: 196
  year: 2023
  ident: 10.1016/j.apacoust.2024.110263_b0040
  article-title: Delayless partial subband update algorithm for feed-forward active road noise control system in pure electric vehicles
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2023.110328
– volume: 158
  start-page: 318
  year: 2023
  ident: 10.1016/j.apacoust.2024.110263_b0065
  article-title: Deep MCANC: a deep learning approach to multi-channel active noise control
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2022.11.029
SSID ssj0000255
Score 2.417473
Snippet •A normalized clustered control strategy is adopted to a new normalize the step size of the two-channel FxLMS algorithm for each local controller, which...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110263
SubjectTerms Active noise control
Deep learning
Normalized-clustered control strategy
Secondary path estimation
Vehicle interior engine noise
Title A multi-channel active noise control system using deep learning-based method to estimate secondary path and normalized-clustered control strategy for vehicle interior engine noise
URI https://dx.doi.org/10.1016/j.apacoust.2024.110263
Volume 228
WOSCitedRecordID wos001314327500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0003-682X
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000255
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLVKByRYIBgYMbzkBbvKpbFj4iyrahCwGLEYRHdRYjs0oyqt-tKI35pvmP_C148khYphFmyiyqof1T29PnbuPRehd3mkZDoSmmhtziZxIUsiRCmJAvKfxlAd1hWbSM7PxXSafu31bkIuzG6e1LW4ukqX_9XUps0YG1Jn72DuZlDTYD4bo5unMbt5_pPhxy5IkEBKb63nVi1jpwf1oupEpjsB58HW3hQorZehfMQPAvua8pWlgZmCDIehtXqwhrOzgig7KGNs3zrUwHjn1U-tiJxvQXNBq3YOJ3zrIkJ3egYLtfIUqwpkxq0QoltWlyEHWmw8tS001nD-yUw7vzTphBFVW_t2ZVa1GW0Tn2_yvfs1aJhWufH0fqf2Fx0UYgqJS_VsnDcjH4Stvt44b-pTy537NVyGOn_5x87gLikuh4aC2PUPzRTxsO2wL8X92xbZBC6GmLjLLIyTwTiZG-ceOqIJT0UfHY0_n02_tJSAch5KN8Iv6KSqH17RYZbUYT4XT9Bjf2TBYwe1p6in62P0qCNkeYwe2EBiuX6Grsd4D37YwQ9bO2MPDezghy38MMAP78MPO_jhzQIH-OEGfhjghw388CH4tXN4-GEDP-zhhwP8sIOfW9Zz9O3j2cXkE_GFQYhkEd0QRksZKVqUfCTNAUXkYpQKVfKoZAWwMs6KXMZ5nPOE8VgnUZywIhFpommaM67YCerXi1q_QFiIPBaFOTNzAeKUqiipirQ5I9BcM8noKeLBEJn0qvlQvGWe_R0Kp-h902_pdGNu7ZEGO2ee_TpWmxkI39L35Z1ne4Uetv-x16i_WW31G3Rf7jbVevXW4_cX74XelA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-channel+active+noise+control+system+using+deep+learning-based+method+to+estimate+secondary+path+and+normalized-clustered+control+strategy+for+vehicle+interior+engine+noise&rft.jtitle=Applied+acoustics&rft.au=Cheng%2C+Can&rft.au=Liu%2C+Zhien&rft.au=Chen%2C+Wan&rft.au=Li%2C+Xiaolong&rft.date=2025-01-15&rft.issn=0003-682X&rft.volume=228&rft.spage=110263&rft_id=info:doi/10.1016%2Fj.apacoust.2024.110263&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apacoust_2024_110263
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-682X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-682X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-682X&client=summon