A multi-channel active noise control system using deep learning-based method to estimate secondary path and normalized-clustered control strategy for vehicle interior engine noise
•A normalized clustered control strategy is adopted to a new normalize the step size of the two-channel FxLMS algorithm for each local controller, which balances the system convergence rate and the steady state error, thus improving the noise reduction performance of the system, especially the track...
Uloženo v:
| Vydáno v: | Applied acoustics Ročník 228; s. 110263 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
15.01.2025
|
| Témata: | |
| ISSN: | 0003-682X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A normalized clustered control strategy is adopted to a new normalize the step size of the two-channel FxLMS algorithm for each local controller, which balances the system convergence rate and the steady state error, thus improving the noise reduction performance of the system, especially the tracking ability of the noise reduction under non-stationary acceleration conditions.•A deep learning method is proposed to estimate the secondary paths, which avoids the frequent re-estimation of secondary paths using the traditional offline estimation method under the disturbance of the dynamic environment. Then, a genetic algorithm is used to estimate a neural network model with the optimal number of hidden layer nodes to ensure the accuracy of secondary path estimation. Finally, to deal with the real-time problem of estimating secondary paths by the neural network, this study adopts the interpolation method to substitute the secondary paths estimated based on the deep neural networks (DNN) method into the ANC system for filtering convolution calculation.•A series of real vehicle experiments are conducted based on the proposed multi-channel ANC system. It has practical engineering guiding significance.
Although the multi-channel active noise control (ANC) system based on the traditional clustered control strategy solves the problems of high algorithm complexity and fragile stability, the step size setting of each local controller relies on the trial-and-error method, which makes it difficult to trade-off the convergence speed and the steady-state error of the algorithm, and the secondary path estimation is susceptible to the interference of the dynamic environment. To solve the above problems, this study proposes an efficient multi-channel ANC system, which accurately estimates the secondary paths based on the deep learning prediction model and adopts a normalized-clustered control strategy to normalize the step size of the two-channel FxLMS algorithm of each local controller, which balances the system convergence speed and the steady-state error. A series of real-vehicle ANC experiments are conducted. The results show that under stationary conditions, the proposed control strategy control converges quickly and has better noise reduction performance than the traditional clustered control strategy. Under non-stationary conditions, after normalizing the step size of the local controller, the proposed control strategy can better balance the steady-state error and the convergence speed of the control strategy and improve the noise reduction tracking ability. Finally, it is verified that the proposed deep learning method can accurately estimate the secondary path after changes and ensure the noise reduction performance of the proposed control strategy. |
|---|---|
| AbstractList | •A normalized clustered control strategy is adopted to a new normalize the step size of the two-channel FxLMS algorithm for each local controller, which balances the system convergence rate and the steady state error, thus improving the noise reduction performance of the system, especially the tracking ability of the noise reduction under non-stationary acceleration conditions.•A deep learning method is proposed to estimate the secondary paths, which avoids the frequent re-estimation of secondary paths using the traditional offline estimation method under the disturbance of the dynamic environment. Then, a genetic algorithm is used to estimate a neural network model with the optimal number of hidden layer nodes to ensure the accuracy of secondary path estimation. Finally, to deal with the real-time problem of estimating secondary paths by the neural network, this study adopts the interpolation method to substitute the secondary paths estimated based on the deep neural networks (DNN) method into the ANC system for filtering convolution calculation.•A series of real vehicle experiments are conducted based on the proposed multi-channel ANC system. It has practical engineering guiding significance.
Although the multi-channel active noise control (ANC) system based on the traditional clustered control strategy solves the problems of high algorithm complexity and fragile stability, the step size setting of each local controller relies on the trial-and-error method, which makes it difficult to trade-off the convergence speed and the steady-state error of the algorithm, and the secondary path estimation is susceptible to the interference of the dynamic environment. To solve the above problems, this study proposes an efficient multi-channel ANC system, which accurately estimates the secondary paths based on the deep learning prediction model and adopts a normalized-clustered control strategy to normalize the step size of the two-channel FxLMS algorithm of each local controller, which balances the system convergence speed and the steady-state error. A series of real-vehicle ANC experiments are conducted. The results show that under stationary conditions, the proposed control strategy control converges quickly and has better noise reduction performance than the traditional clustered control strategy. Under non-stationary conditions, after normalizing the step size of the local controller, the proposed control strategy can better balance the steady-state error and the convergence speed of the control strategy and improve the noise reduction tracking ability. Finally, it is verified that the proposed deep learning method can accurately estimate the secondary path after changes and ensure the noise reduction performance of the proposed control strategy. |
| ArticleNumber | 110263 |
| Author | Liu, Zhien Liao, Wu Lu, Chihua Cheng, Can Chen, Wan Li, Xiaolong |
| Author_xml | – sequence: 1 givenname: Can surname: Cheng fullname: Cheng, Can organization: Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China – sequence: 2 givenname: Zhien surname: Liu fullname: Liu, Zhien organization: Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China – sequence: 3 givenname: Wan orcidid: 0000-0003-4091-6964 surname: Chen fullname: Chen, Wan email: wch@whut.edu.cn organization: Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China – sequence: 4 givenname: Xiaolong surname: Li fullname: Li, Xiaolong organization: Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China – sequence: 5 givenname: Wu surname: Liao fullname: Liao, Wu organization: Wuhan Second Ship Design and Research Institute, Wuhan, 430064, China – sequence: 6 givenname: Chihua surname: Lu fullname: Lu, Chihua organization: Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China |
| BookMark | eNqFkM9qGzEQxnVIIX9focwLrKs_u9419NAQ2iYQ6CWF3sSsNGvLaCUjyQb3tfqClXGaQy85DTPM75v5vmt2EWIgxj4KvhBcLD9tF7hDE_e5LCSX7UIILpfqgl1xzlWzHOSvS3ad87a2XHbdFftzD_PeF9eYDYZAHtAUdyAI0WUCE0NJ0UM-5kIz7LMLa7BEO_CEKdSuGTGThZnKJlooESgXN2MhyFRpi-kIOywbwGCraJrRu99kG-Prj5Qq-najpIqtjzDFBAfaOOMJXKhLrg4orF14feuWfZjQZ7p7rTfs57evLw-PzfOP708P98-NUUKWRsnJCCvHqeNmJdWAA18NdurEpEbVCtWpEU2LLXa96lrqRdursR9WPckVqs6qG7Y865oUc0406V2q3tJRC65Pceut_he3PsWtz3FX8PN_oHEFizs5Reffx7-ccarmDo6SzsZRMGRdIlO0je49ib8rr6pi |
| CitedBy_id | crossref_primary_10_1016_j_oceaneng_2025_121202 crossref_primary_10_1016_j_apacoust_2025_110618 crossref_primary_10_1088_1742_6596_3057_1_012074 |
| Cites_doi | 10.1109/LSP.2021.3130023 10.1109/TASLP.2020.3008803 10.1016/j.ymssp.2022.109293 10.1016/j.apacoust.2019.05.030 10.1016/j.neunet.2021.03.037 10.1016/j.ymssp.2018.10.031 10.1016/j.ymssp.2018.05.018 10.1016/j.jsv.2017.06.005 10.1109/TASLP.2016.2516439 10.1007/978-3-030-29513-4_36 10.1121/10.0001401 10.1016/j.ymssp.2015.01.008 10.1016/j.jsv.2020.115763 10.1016/j.apacoust.2017.10.026 10.1016/j.engappai.2023.105971 10.7717/peerj-cs.724 10.1016/j.ymssp.2021.108698 10.1016/j.ymssp.2023.110786 10.1016/j.ymssp.2020.107346 10.1016/j.ymssp.2018.11.003 10.1016/j.ymssp.2022.109831 10.1016/j.apacoust.2023.109296 10.1016/j.jsv.2017.04.034 10.1007/s12206-023-0206-2 10.3390/machines10080670 10.1016/j.ymssp.2023.110940 10.3390/s21155026 10.1016/j.ymssp.2023.110328 10.1016/j.neunet.2022.11.029 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.apacoust.2024.110263 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| ExternalDocumentID | 10_1016_j_apacoust_2024_110263 S0003682X24004146 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABMAC ABNEU ACDAQ ACFVG ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSQ SST SSZ T5K XPP ZMT ~02 ~G- 9DU AAQXK AATTM AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFFNX AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET VH1 WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c312t-32fc1d2bf50c9238a8098df51f3b341353bac4a4a57354e71473b7897e29a35d3 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001314327500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0003-682X |
| IngestDate | Tue Nov 18 21:17:02 EST 2025 Sat Nov 29 03:00:52 EST 2025 Sat Jan 18 16:10:50 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Secondary path estimation Active noise control Vehicle interior engine noise Normalized-clustered control strategy |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-32fc1d2bf50c9238a8098df51f3b341353bac4a4a57354e71473b7897e29a35d3 |
| ORCID | 0000-0003-4091-6964 |
| ParticipantIDs | crossref_primary_10_1016_j_apacoust_2024_110263 crossref_citationtrail_10_1016_j_apacoust_2024_110263 elsevier_sciencedirect_doi_10_1016_j_apacoust_2024_110263 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-15 |
| PublicationDateYYYYMMDD | 2025-01-15 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied acoustics |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Cha, Mostafavi, Benipal (b0100) 2023; 121 Zhang, Wang, Guo, Yang, Wang, Liu (b0130) 2019; 120 Akhtar (b0010) 2019; 155 Cheer, Elliott (b0020) 2015; 60 Chen, Lu, Liu, Williams, Xie (b0055) 2022; 168 Liu, Chen, Yang, Gao, Zhang (b0085) 2017; 409 Zhang, Wang (b0070) 2021; 141 Im, Kim, Woo, Jang, Han, Hwang (b0095) 2023; 37 Gao, Lu, Qiu (b0035) 2016; 24 Rachmatullah, Santoso, Surendro (b0140) 2021; 7 Zhou, Chen, Li, Cai (b0040) 2023; 196 Delegà, Bernasconi, Piroddi (b0045) 2017; 401 Shi, Lam, Gan, Wen (b0005) 2021; 151 Jung, Elliott, Cheer (b0015) 2019; 121 Zhang, Zhang, Meng (b0110) 2019; 01 Ziegler EJ. Selective active cancellation system for repetitive phenomena. Registered patent number US 4878188 A, 1989. Oh, Jung, Lee, Lee, Kang (b0080) 2024; 206 Yu, Wang (b0145) 2021; 21 Chen, Liu, Hu, Li, Sun, Cheng (b0125) 2023; 204 Bagha, Das, Behera (b0090) 2020; 28 An, Cao, Liu (b0120) 2021; 491 Zhang, Wu, Yin, Gong, Yang, Cao (b0150) 2022; 178 Chen, Cheng, Yao, Li, Yan (b0075) 2021; 29 Pradhan, Zhang, Qiu (b0115) 2020; 147 Ibnu CR, Santoso J, Surendro K. Determining the number of hidden layers in neural network by using principal component analysis. In Inte Syst Appl: Proc 2019 Inte Syst Confer 2020; 2:490-500. Zheng, Jia, Wan, Zeng, Qiu (b0155) 2023; 205 Zhang, Wang (b0065) 2023; 158 Zhang, Zhang, Meng, Pi (b0025) 2023; 186 Li, Wang, He, Wang, Yang, Ding (b0105) 2022; 10 Rout, Das, Panda (b0060) 2019; 114 Chang, Kuo, Huang (b0050) 2018; 131 Yu (10.1016/j.apacoust.2024.110263_b0145) 2021; 21 Zhang (10.1016/j.apacoust.2024.110263_b0065) 2023; 158 Gao (10.1016/j.apacoust.2024.110263_b0035) 2016; 24 Liu (10.1016/j.apacoust.2024.110263_b0085) 2017; 409 Chang (10.1016/j.apacoust.2024.110263_b0050) 2018; 131 Cha (10.1016/j.apacoust.2024.110263_b0100) 2023; 121 Zheng (10.1016/j.apacoust.2024.110263_b0155) 2023; 205 Li (10.1016/j.apacoust.2024.110263_b0105) 2022; 10 Rout (10.1016/j.apacoust.2024.110263_b0060) 2019; 114 Pradhan (10.1016/j.apacoust.2024.110263_b0115) 2020; 147 Zhang (10.1016/j.apacoust.2024.110263_b0150) 2022; 178 Zhang (10.1016/j.apacoust.2024.110263_b0130) 2019; 120 Zhang (10.1016/j.apacoust.2024.110263_b0025) 2023; 186 Im (10.1016/j.apacoust.2024.110263_b0095) 2023; 37 Akhtar (10.1016/j.apacoust.2024.110263_b0010) 2019; 155 Zhang (10.1016/j.apacoust.2024.110263_b0070) 2021; 141 Zhou (10.1016/j.apacoust.2024.110263_b0040) 2023; 196 Delegà (10.1016/j.apacoust.2024.110263_b0045) 2017; 401 Oh (10.1016/j.apacoust.2024.110263_b0080) 2024; 206 Cheer (10.1016/j.apacoust.2024.110263_b0020) 2015; 60 Jung (10.1016/j.apacoust.2024.110263_b0015) 2019; 121 Zhang (10.1016/j.apacoust.2024.110263_b0110) 2019; 01 10.1016/j.apacoust.2024.110263_b0135 An (10.1016/j.apacoust.2024.110263_b0120) 2021; 491 Chen (10.1016/j.apacoust.2024.110263_b0125) 2023; 204 Shi (10.1016/j.apacoust.2024.110263_b0005) 2021; 151 Chen (10.1016/j.apacoust.2024.110263_b0075) 2021; 29 Rachmatullah (10.1016/j.apacoust.2024.110263_b0140) 2021; 7 10.1016/j.apacoust.2024.110263_b0030 Chen (10.1016/j.apacoust.2024.110263_b0055) 2022; 168 Bagha (10.1016/j.apacoust.2024.110263_b0090) 2020; 28 |
| References_xml | – volume: 155 start-page: 240 year: 2019 end-page: 249 ident: b0010 article-title: A time-varying normalized step-size based generalized fractional moment adaptive algorithm and its application to ANC of impulsive sources publication-title: Appl Acoust – volume: 206 year: 2024 ident: b0080 article-title: Enhancing active noise control of road noise using deep neural network to update secondary path estimate in real time publication-title: Mech Syst Signal Process – reference: Ibnu CR, Santoso J, Surendro K. Determining the number of hidden layers in neural network by using principal component analysis. In Inte Syst Appl: Proc 2019 Inte Syst Confer 2020; 2:490-500. – volume: 24 start-page: 1164 year: 2016 end-page: 1174 ident: b0035 article-title: A simplified subband ANC algorithm without secondary path modeling publication-title: IEEE Trans Audio Speech Lang Process – volume: 205 year: 2023 ident: b0155 article-title: A study on hybrid active noise control system combined with remote microphone technique publication-title: Appl Acoust – volume: 60 start-page: 753 year: 2015 end-page: 769 ident: b0020 article-title: Multichannel control systems for the attenuation of interior road noise in vehicles publication-title: Mech Syst Signal Process – reference: Ziegler EJ. Selective active cancellation system for repetitive phenomena. Registered patent number US 4878188 A, 1989. – volume: 158 start-page: 318 year: 2023 end-page: 327 ident: b0065 article-title: Deep MCANC: a deep learning approach to multi-channel active noise control publication-title: Neural Netw – volume: 28 start-page: 2084 year: 2020 end-page: 2094 ident: b0090 article-title: An efficient narrowband active noise control system for accommodating frequency mismatch publication-title: IEEE Trans Audio Speech Lang Process – volume: 196 year: 2023 ident: b0040 article-title: Delayless partial subband update algorithm for feed-forward active road noise control system in pure electric vehicles publication-title: Mech Syst Signal Process – volume: 37 start-page: 1189 year: 2023 end-page: 1196 ident: b0095 article-title: Deep learning-assisted active noise control in a time-varying environment publication-title: J Mech Sci Technol – volume: 21 start-page: 5026 year: 2021 ident: b0145 article-title: A method for real-time fault detection of liquid rocket engine based on adaptive genetic algorithm optimizing back propagation neural network publication-title: Sensors – volume: 7 start-page: e724 year: 2021 ident: b0140 article-title: Determining the number of hidden layer and hidden neuron of neural network for wind speed prediction publication-title: PeerJ Comp Sci – volume: 401 start-page: 311 year: 2017 end-page: 325 ident: b0045 article-title: A novel cost-effective parallel narrowband ANC system with local secondary-path estimation publication-title: J Sound Vib – volume: 120 start-page: 150 year: 2019 end-page: 165 ident: b0130 article-title: A normalized frequency-domain block filtered-x LMS algorithm for active vehicle interior noise control publication-title: Mech Syst Signal Process – volume: 131 start-page: 154 year: 2018 end-page: 164 ident: b0050 article-title: Secondary path modeling for narrowband active noise control systems publication-title: Appl Acoust – volume: 147 start-page: 3808 year: 2020 end-page: 3813 ident: b0115 article-title: A time domain decentralized algorithm for two channel active noise control publication-title: J Acoust Soc Am – volume: 01 start-page: 1567 year: 2019 ident: b0110 article-title: Performance testing and analysis of multi-channel active control system for vehicle interior noise using adaptive notch filter publication-title: SAE Technical Paper – volume: 491 year: 2021 ident: b0120 article-title: Optimized decentralized filtered-x least mean square algorithm for over-determined systems with periodic disturbances publication-title: J Sound Vib – volume: 114 start-page: 378 year: 2019 end-page: 398 ident: b0060 article-title: PSO based adaptive narrowband ANC algorithm without the use of synchronization signal and secondary path estimate publication-title: Mech Syst Signal Process – volume: 10 start-page: 670 year: 2022 ident: b0105 article-title: Vehicle engine noise cancellation based on a multi-channel fractional-order active noise control algorithm publication-title: Machines – volume: 151 year: 2021 ident: b0005 article-title: Block coordinate descent based algorithm for computational complexity reduction in multichannel active noise control system publication-title: Mech Syst Sig Process – volume: 121 start-page: 144 year: 2019 end-page: 157 ident: b0015 article-title: Local active control of road noise inside a vehicle publication-title: Mech Syst Signal Process – volume: 141 start-page: 1 year: 2021 end-page: 10 ident: b0070 article-title: Deep ANC: a deep learning approach to active noise control publication-title: Neural Netw – volume: 409 start-page: 145 year: 2017 end-page: 164 ident: b0085 article-title: Analysis and compensation of reference frequency mismatch in multiple-frequency feedforward active noise and vibration control system publication-title: J Sound Vib – volume: 204 year: 2023 ident: b0125 article-title: A low-complexity multi-channel active noise control system using local secondary path estimation and clustered control strategy for vehicle interior engine noise publication-title: Mech Syst Signal Process – volume: 29 start-page: 234 year: 2021 end-page: 238 ident: b0075 article-title: A secondary path-decoupled active noise control algorithm based on deep learning publication-title: IEEE Signal Process Lett – volume: 121 year: 2023 ident: b0100 article-title: DNoiseNet: deep learning-based feedback active noise control in various noisy environments publication-title: Eng Appl Artif Intell – volume: 178 year: 2022 ident: b0150 article-title: Robust parallel virtual sensing method for feedback active noise control in a headrest publication-title: Mech Syst Signal Process – volume: 186 year: 2023 ident: b0025 article-title: Active control of vehicle interior engine noise using a multi-channel delayed adaptive notch algorithm based on FxLMS structure publication-title: Mech Syst Signal Process – volume: 168 year: 2022 ident: b0055 article-title: A computationally efficient active sound quality control algorithm using local secondary-path estimation for vehicle interior noise publication-title: Mech Syst Signal Process – volume: 29 start-page: 234 year: 2021 ident: 10.1016/j.apacoust.2024.110263_b0075 article-title: A secondary path-decoupled active noise control algorithm based on deep learning publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2021.3130023 – volume: 28 start-page: 2084 year: 2020 ident: 10.1016/j.apacoust.2024.110263_b0090 article-title: An efficient narrowband active noise control system for accommodating frequency mismatch publication-title: IEEE Trans Audio Speech Lang Process doi: 10.1109/TASLP.2020.3008803 – volume: 178 year: 2022 ident: 10.1016/j.apacoust.2024.110263_b0150 article-title: Robust parallel virtual sensing method for feedback active noise control in a headrest publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2022.109293 – volume: 155 start-page: 240 year: 2019 ident: 10.1016/j.apacoust.2024.110263_b0010 article-title: A time-varying normalized step-size based generalized fractional moment adaptive algorithm and its application to ANC of impulsive sources publication-title: Appl Acoust doi: 10.1016/j.apacoust.2019.05.030 – volume: 141 start-page: 1 year: 2021 ident: 10.1016/j.apacoust.2024.110263_b0070 article-title: Deep ANC: a deep learning approach to active noise control publication-title: Neural Netw doi: 10.1016/j.neunet.2021.03.037 – volume: 120 start-page: 150 year: 2019 ident: 10.1016/j.apacoust.2024.110263_b0130 article-title: A normalized frequency-domain block filtered-x LMS algorithm for active vehicle interior noise control publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.10.031 – ident: 10.1016/j.apacoust.2024.110263_b0030 – volume: 114 start-page: 378 year: 2019 ident: 10.1016/j.apacoust.2024.110263_b0060 article-title: PSO based adaptive narrowband ANC algorithm without the use of synchronization signal and secondary path estimate publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.05.018 – volume: 409 start-page: 145 year: 2017 ident: 10.1016/j.apacoust.2024.110263_b0085 article-title: Analysis and compensation of reference frequency mismatch in multiple-frequency feedforward active noise and vibration control system publication-title: J Sound Vib doi: 10.1016/j.jsv.2017.06.005 – volume: 24 start-page: 1164 issue: 7 year: 2016 ident: 10.1016/j.apacoust.2024.110263_b0035 article-title: A simplified subband ANC algorithm without secondary path modeling publication-title: IEEE Trans Audio Speech Lang Process doi: 10.1109/TASLP.2016.2516439 – ident: 10.1016/j.apacoust.2024.110263_b0135 doi: 10.1007/978-3-030-29513-4_36 – volume: 01 start-page: 1567 year: 2019 ident: 10.1016/j.apacoust.2024.110263_b0110 article-title: Performance testing and analysis of multi-channel active control system for vehicle interior noise using adaptive notch filter publication-title: SAE Technical Paper – volume: 147 start-page: 3808 issue: 6 year: 2020 ident: 10.1016/j.apacoust.2024.110263_b0115 article-title: A time domain decentralized algorithm for two channel active noise control publication-title: J Acoust Soc Am doi: 10.1121/10.0001401 – volume: 60 start-page: 753 year: 2015 ident: 10.1016/j.apacoust.2024.110263_b0020 article-title: Multichannel control systems for the attenuation of interior road noise in vehicles publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2015.01.008 – volume: 491 year: 2021 ident: 10.1016/j.apacoust.2024.110263_b0120 article-title: Optimized decentralized filtered-x least mean square algorithm for over-determined systems with periodic disturbances publication-title: J Sound Vib doi: 10.1016/j.jsv.2020.115763 – volume: 131 start-page: 154 year: 2018 ident: 10.1016/j.apacoust.2024.110263_b0050 article-title: Secondary path modeling for narrowband active noise control systems publication-title: Appl Acoust doi: 10.1016/j.apacoust.2017.10.026 – volume: 121 year: 2023 ident: 10.1016/j.apacoust.2024.110263_b0100 article-title: DNoiseNet: deep learning-based feedback active noise control in various noisy environments publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.105971 – volume: 7 start-page: e724 year: 2021 ident: 10.1016/j.apacoust.2024.110263_b0140 article-title: Determining the number of hidden layer and hidden neuron of neural network for wind speed prediction publication-title: PeerJ Comp Sci doi: 10.7717/peerj-cs.724 – volume: 168 year: 2022 ident: 10.1016/j.apacoust.2024.110263_b0055 article-title: A computationally efficient active sound quality control algorithm using local secondary-path estimation for vehicle interior noise publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2021.108698 – volume: 204 year: 2023 ident: 10.1016/j.apacoust.2024.110263_b0125 article-title: A low-complexity multi-channel active noise control system using local secondary path estimation and clustered control strategy for vehicle interior engine noise publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2023.110786 – volume: 151 year: 2021 ident: 10.1016/j.apacoust.2024.110263_b0005 article-title: Block coordinate descent based algorithm for computational complexity reduction in multichannel active noise control system publication-title: Mech Syst Sig Process doi: 10.1016/j.ymssp.2020.107346 – volume: 121 start-page: 144 year: 2019 ident: 10.1016/j.apacoust.2024.110263_b0015 article-title: Local active control of road noise inside a vehicle publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.11.003 – volume: 186 year: 2023 ident: 10.1016/j.apacoust.2024.110263_b0025 article-title: Active control of vehicle interior engine noise using a multi-channel delayed adaptive notch algorithm based on FxLMS structure publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2022.109831 – volume: 205 year: 2023 ident: 10.1016/j.apacoust.2024.110263_b0155 article-title: A study on hybrid active noise control system combined with remote microphone technique publication-title: Appl Acoust doi: 10.1016/j.apacoust.2023.109296 – volume: 401 start-page: 311 year: 2017 ident: 10.1016/j.apacoust.2024.110263_b0045 article-title: A novel cost-effective parallel narrowband ANC system with local secondary-path estimation publication-title: J Sound Vib doi: 10.1016/j.jsv.2017.04.034 – volume: 37 start-page: 1189 year: 2023 ident: 10.1016/j.apacoust.2024.110263_b0095 article-title: Deep learning-assisted active noise control in a time-varying environment publication-title: J Mech Sci Technol doi: 10.1007/s12206-023-0206-2 – volume: 10 start-page: 670 issue: 8 year: 2022 ident: 10.1016/j.apacoust.2024.110263_b0105 article-title: Vehicle engine noise cancellation based on a multi-channel fractional-order active noise control algorithm publication-title: Machines doi: 10.3390/machines10080670 – volume: 206 year: 2024 ident: 10.1016/j.apacoust.2024.110263_b0080 article-title: Enhancing active noise control of road noise using deep neural network to update secondary path estimate in real time publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2023.110940 – volume: 21 start-page: 5026 issue: 15 year: 2021 ident: 10.1016/j.apacoust.2024.110263_b0145 article-title: A method for real-time fault detection of liquid rocket engine based on adaptive genetic algorithm optimizing back propagation neural network publication-title: Sensors doi: 10.3390/s21155026 – volume: 196 year: 2023 ident: 10.1016/j.apacoust.2024.110263_b0040 article-title: Delayless partial subband update algorithm for feed-forward active road noise control system in pure electric vehicles publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2023.110328 – volume: 158 start-page: 318 year: 2023 ident: 10.1016/j.apacoust.2024.110263_b0065 article-title: Deep MCANC: a deep learning approach to multi-channel active noise control publication-title: Neural Netw doi: 10.1016/j.neunet.2022.11.029 |
| SSID | ssj0000255 |
| Score | 2.417557 |
| Snippet | •A normalized clustered control strategy is adopted to a new normalize the step size of the two-channel FxLMS algorithm for each local controller, which... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 110263 |
| SubjectTerms | Active noise control Deep learning Normalized-clustered control strategy Secondary path estimation Vehicle interior engine noise |
| Title | A multi-channel active noise control system using deep learning-based method to estimate secondary path and normalized-clustered control strategy for vehicle interior engine noise |
| URI | https://dx.doi.org/10.1016/j.apacoust.2024.110263 |
| Volume | 228 |
| WOSCitedRecordID | wos001314327500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0003-682X databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000255 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKFyQ4IFhALC_5wK1yaRN77RyrahFwWHFYRG9REjs0qyit-tKKv7W_Yf8XM7bzKFQse-ASVVH9qObr-LM98w0h7xMAbSAFZ4CGjHE9ClmSc8HwEg3YfwYr6MgWm5Dn52o2i772ejd1LsyulFWlrq6i5X81NbwDY2Pq7B3M3XQKL-AzGB2eYHZ4_pPhJy5IkGFKb2VKq5axM4NqUXQi052A82BrTwq0Mcu6fMQPhuua9pWlkZmiDAfQWjNY495ZY5QdljG2tw4VMt6y-Gk0y8otai4Y3Y7hhG9dROjOzHGiVp5iVaDMuBVCdNPqMuSaFoOntoXGGs4_nRvnl6adMKJia29X5kWb0Tb1-Sbfu1_DF7MiAU_vV2p_0BFgTCFzqZ6N8w7ZqbLV1xvnHfjUcud-gcsEzl_-sTK4Q4rLIVAQO_8hDMGHbYN9Ke7flsgmcLGOibuM635i7Cd2_dwjR4D7SPXJ0eTz2exLSwkCIerSjfgLOqnqh2d0mCV1mM_FE_LYb1noxEHtKemZ6pg86ghZHpMHNpA4Wz8j1xO6Bz_q4EetnamHBnXwoxZ-FOFH9-FHHfzoZkFr-NEGfhThRwF-9BD82jE8_CjAj3r40Rp-1MHPTes5-fbx7GL6ifnCICwLx8GGhUGejXWQ5mKUwQZFJWoUKZ2LcR6myMpEmCYZT3giZCi4kWMuw1SqSJogSkKhwxekXy0q85JQo1SapKdCcq34OEmVNHmeR1yKNE-Vjk6IqA0RZ141H4u3lPHfoXBCPjTtlk435tYWUW3n2LNfx2pjgPAtbV_debTX5GH7H3tD-pvV1rwl97Pdpliv3nn8_gLnb96Y |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-channel+active+noise+control+system+using+deep+learning-based+method+to+estimate+secondary+path+and+normalized-clustered+control+strategy+for+vehicle+interior+engine+noise&rft.jtitle=Applied+acoustics&rft.au=Cheng%2C+Can&rft.au=Liu%2C+Zhien&rft.au=Chen%2C+Wan&rft.au=Li%2C+Xiaolong&rft.date=2025-01-15&rft.issn=0003-682X&rft.volume=228&rft.spage=110263&rft_id=info:doi/10.1016%2Fj.apacoust.2024.110263&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apacoust_2024_110263 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-682X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-682X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-682X&client=summon |