An adaptive threshold fast DBSCAN algorithm with preserved trajectory feature points for vessel trajectory clustering
Vessel navigation pattern recognition plays an important role in the research of intelligent transportation on water. Clustering using the data stored in The Automatic Identification System (AIS) is a current research hotspot. However, there are three problems in the past clustering analysis. First,...
Uloženo v:
| Vydáno v: | Ocean engineering Ročník 280; s. 114930 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
15.07.2023
|
| Témata: | |
| ISSN: | 0029-8018, 1873-5258 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Vessel navigation pattern recognition plays an important role in the research of intelligent transportation on water. Clustering using the data stored in The Automatic Identification System (AIS) is a current research hotspot. However, there are three problems in the past clustering analysis. First, the traditional Douglas-Peucker (DP) Compression Algorithm exists feature point loss and trajectory distortion when compressing trajectories. Second, Dynamic Time Warping (DTW) and the density-based spatial clustering of applications with noise (DBSCAN) algorithm require high time cost. Finally, most of the studies ignore the interaction between parameters when choosing the parameters of DBSCAN. These problems seriously affect the efficiency and accuracy of clustering. To solve these problems, this paper improves the existing methods by (1) Adaptive selection of compression thresholds and trajectory feature points for each trajectory when using the DP algorithm ensures the realism of the compressed trajectory; (2) using the Fast-DTW algorithm to improve the computation speed and ensure the accuracy of trajectory similarity; (3) Self-selection of parameter combinations based on Silhouette Coefficient (SC) scores was achieved using the similarity distribution of the trajectories in combination with an improved K-Adaptive Nearest Neighbors (KANN). The experiments show that the proposed method can greatly reduce the time cost of clustering compared to the original method and significantly outperforms the three compared algorithms in terms of clustering effect images.
•In this paper, we improves the trajectory clustering by:•adaptively selecting compression thresholds and trajectory feature points for each trajectory when using the DP algorithm.•using the Fast-DTW algorithm to improve the computation speed and ensure the accuracy of trajectory similarity.•The KANN method is improved and a more stable threshold selection method is proposed. |
|---|---|
| AbstractList | Vessel navigation pattern recognition plays an important role in the research of intelligent transportation on water. Clustering using the data stored in The Automatic Identification System (AIS) is a current research hotspot. However, there are three problems in the past clustering analysis. First, the traditional Douglas-Peucker (DP) Compression Algorithm exists feature point loss and trajectory distortion when compressing trajectories. Second, Dynamic Time Warping (DTW) and the density-based spatial clustering of applications with noise (DBSCAN) algorithm require high time cost. Finally, most of the studies ignore the interaction between parameters when choosing the parameters of DBSCAN. These problems seriously affect the efficiency and accuracy of clustering. To solve these problems, this paper improves the existing methods by (1) Adaptive selection of compression thresholds and trajectory feature points for each trajectory when using the DP algorithm ensures the realism of the compressed trajectory; (2) using the Fast-DTW algorithm to improve the computation speed and ensure the accuracy of trajectory similarity; (3) Self-selection of parameter combinations based on Silhouette Coefficient (SC) scores was achieved using the similarity distribution of the trajectories in combination with an improved K-Adaptive Nearest Neighbors (KANN). The experiments show that the proposed method can greatly reduce the time cost of clustering compared to the original method and significantly outperforms the three compared algorithms in terms of clustering effect images.
•In this paper, we improves the trajectory clustering by:•adaptively selecting compression thresholds and trajectory feature points for each trajectory when using the DP algorithm.•using the Fast-DTW algorithm to improve the computation speed and ensure the accuracy of trajectory similarity.•The KANN method is improved and a more stable threshold selection method is proposed. |
| ArticleNumber | 114930 |
| Author | Xu, Xiaofeng Xie, Zhexin Bai, Xiangen Xiao, Yingjie |
| Author_xml | – sequence: 1 givenname: Xiangen surname: Bai fullname: Bai, Xiangen – sequence: 2 givenname: Zhexin surname: Xie fullname: Xie, Zhexin – sequence: 3 givenname: Xiaofeng surname: Xu fullname: Xu, Xiaofeng email: fxx_xu@163.com – sequence: 4 givenname: Yingjie surname: Xiao fullname: Xiao, Yingjie |
| BookMark | eNqFkMtKAzEUhoNUsK2-guQFpuYyV3BhrVcoulDXIc2ctBmmyZCkI317p1RB3Lg5Z_N_P-d8EzSyzgJCl5TMKKH5VTNzCqQFu54xwviM0rTi5ASNaVnwJGNZOUJjQliVlISWZ2gSQkMIyXPCx2g3t1jWsoumBxw3HsLGtTXWMkR8d_u2mL9g2a6dN3GzxZ_DxN2QAd9DjaOXDajo_B5rkHHnAXfO2Biwdh73EAK0v0Oq3YUI3tj1OTrVsg1w8b2n6OPh_n3xlCxfH58X82WiOGUx4bQsV1mdyaKoVpyVuc7TLFWV0rIsJNAcMlC0UpWkoBmQuihUKlkhGdegU8Wn6PrYq7wLwYMWykQZjbPDWaYVlIiDQtGIH4XioFAcFQ54_gfvvNlKv_8fvDmCMDzXG_AiKANWQW38IEPUzvxX8QX70pUw |
| CitedBy_id | crossref_primary_10_1080_15230406_2025_2537980 crossref_primary_10_1080_20464177_2025_2518785 crossref_primary_10_1016_j_trc_2024_104648 crossref_primary_10_3390_jmse13050849 crossref_primary_10_3390_jmse13050905 crossref_primary_10_1016_j_compeleceng_2024_109611 crossref_primary_10_1016_j_oceaneng_2025_121774 crossref_primary_10_1007_s12145_025_01774_4 crossref_primary_10_1016_j_oceaneng_2025_121073 crossref_primary_10_1016_j_oceaneng_2024_119439 crossref_primary_10_1016_j_oceaneng_2025_121691 crossref_primary_10_3390_app13158917 crossref_primary_10_1016_j_oceaneng_2024_119737 crossref_primary_10_3390_bdcc9060143 crossref_primary_10_1109_TKDE_2025_3579434 crossref_primary_10_1109_JIOT_2024_3410176 crossref_primary_10_1016_j_energy_2024_130844 crossref_primary_10_3390_ijgi12100398 crossref_primary_10_1016_j_oceaneng_2024_117872 crossref_primary_10_1016_j_oceaneng_2023_116640 crossref_primary_10_1038_s41598_024_71779_4 crossref_primary_10_2478_acss_2024_0003 crossref_primary_10_1016_j_oceaneng_2024_119189 crossref_primary_10_1016_j_oceaneng_2023_116082 crossref_primary_10_1007_s00773_025_01065_z crossref_primary_10_3390_drones8110644 crossref_primary_10_1007_s42452_025_06672_4 crossref_primary_10_1016_j_est_2024_113393 crossref_primary_10_1016_j_oceaneng_2024_119329 crossref_primary_10_1016_j_oceaneng_2025_121461 crossref_primary_10_1080_03088839_2024_2436080 |
| Cites_doi | 10.1016/j.apor.2019.102049 10.1017/S0373463318000723 10.2478/pomr-2021-0013 10.3138/FM57-6770-U75U-7727 10.3390/e15062218 10.1080/01621459.1963.10500845 10.3390/jmse9060566 10.3390/ijgi10110757 10.1017/S0373463316000850 10.1016/j.ins.2020.04.009 10.1109/TPAMI.1979.4766909 10.1016/j.oceaneng.2022.111207 10.1007/s13131-020-1638-5 10.1017/S0373463315000831 10.1016/j.ijnaoe.2022.100474 10.1016/j.oceaneng.2021.109041 10.3233/IDA-2007-11508 10.1016/j.oceaneng.2018.08.005 10.1016/j.oceaneng.2018.12.019 10.1109/ICDM.2001.989531 10.1016/j.oceaneng.2020.106995 10.1016/j.patrec.2022.03.010 10.1080/14786440109462720 10.1007/s11222-007-9033-z 10.1145/304181.304187 10.1214/aoms/1177704472 10.1016/j.oceaneng.2022.111001 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.oceaneng.2023.114930 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Oceanography |
| EISSN | 1873-5258 |
| ExternalDocumentID | 10_1016_j_oceaneng_2023_114930 S0029801823013148 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SET WUQ ~HD |
| ID | FETCH-LOGICAL-c312t-3188b5d5a779b3286f6454c9cfa87ae16e5ec19c9a1ef2e0d77c4a27a23fef4c3 |
| ISICitedReferencesCount | 36 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001024203100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-8018 |
| IngestDate | Sat Nov 29 07:29:53 EST 2025 Tue Nov 18 21:43:12 EST 2025 Fri Feb 23 02:38:26 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | AF-DP DBSCAN Fast-DTW Ship trajectory clustering Navigation pattern recognition |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-3188b5d5a779b3286f6454c9cfa87ae16e5ec19c9a1ef2e0d77c4a27a23fef4c3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_oceaneng_2023_114930 crossref_primary_10_1016_j_oceaneng_2023_114930 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2023_114930 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-15 |
| PublicationDateYYYYMMDD | 2023-07-15 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Ocean engineering |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wang, Chen, Chen, Mou (bib26) 2021; 9 Qiao (bib19) 2022; 156 Nie, Chen, Xia, Huang, Li (bib15) 2021; 10 Wei, Xie, Lv (bib29) 2020; 198 Han, Yang (bib8) 2020; 39 Zhao, Shi (bib40) 2019; 72 Wen, Sui, Zhou, Xiao, Chen, Dong, Zhang (bib30) 2020; 96 Cao (bib3) 2018 Ankerst (bib1) 1999; 28 Li, Liu, Yang, Liu, Wu, Yuan (bib14) 2020; 534 Shi, Malik (bib23) 2000; 8 Vol. 96. No. 34. 1996. Douglas, Peucker (bib5) 1973; 10 Zhao, Shi (bib38) 2018; 166 von Luxburg (bib25) 2007; 17 Ester, Martin, et al. "A density-based algorithm for discovering clusters in large spatial databases with noise." Pearson (bib18) 1901; 11 Xu, Zhang, Ren, Zeng, Yuan, Liu, Wang, Ou (bib33) 2022; 2022 Salvador, Chan (bib21) 2007; 11 Zhao, Shi (bib39) 2019; 172 Zhen, Jin, Hu, Shao, Nikitakos (bib41) 2017; 70 Yan (bib35) 2022; 252 Boztepe Karataş, Karagoz, Orhan (bib2) 2021; 16 Rdusseeun, Kaufman (bib20) 1987; vol. 31 Zhang, Liu, Cai, Wu, Shi (bib37) 2016; 69 Keogh, Chu, Hart, Pazzani (bib11) 2001 Pallotta, Vespe, Bryan (bib16) 2013; 15 Hartigan, Wong (bib10) 1979; 1 Xu (bib32) 2021; 1 Li, Liu, Liu, Huang, Hu, Wang (bib12) 2016 Tang (bib24) 2021; 232 Shen, Tang, Yin (bib22) 2022; 14 Yang (bib36) 2022; 249 Davies, Bouldin (bib4) 1979 Ward, Joe (bib27) 1963; 301 Hakola (bib7) 2020 Wen (bib31) 2020; 96 Li, Yan, Jiang (bib13) 2019 Parzen (bib17) 1962; 33 Boztepe Karataş (10.1016/j.oceaneng.2023.114930_bib2) 2021; 16 Pearson (10.1016/j.oceaneng.2023.114930_bib18) 1901; 11 Hakola (10.1016/j.oceaneng.2023.114930_bib7) 2020 Ankerst (10.1016/j.oceaneng.2023.114930_bib1) 1999; 28 Douglas (10.1016/j.oceaneng.2023.114930_bib5) 1973; 10 Hartigan (10.1016/j.oceaneng.2023.114930_bib10) 1979; 1 Keogh (10.1016/j.oceaneng.2023.114930_bib11) 2001 Shen (10.1016/j.oceaneng.2023.114930_bib22) 2022; 14 Tang (10.1016/j.oceaneng.2023.114930_bib24) 2021; 232 Wang (10.1016/j.oceaneng.2023.114930_bib26) 2021; 9 von Luxburg (10.1016/j.oceaneng.2023.114930_bib25) 2007; 17 Zhang (10.1016/j.oceaneng.2023.114930_bib37) 2016; 69 Yang (10.1016/j.oceaneng.2023.114930_bib36) 2022; 249 Salvador (10.1016/j.oceaneng.2023.114930_bib21) 2007; 11 Parzen (10.1016/j.oceaneng.2023.114930_bib17) 1962; 33 Zhao (10.1016/j.oceaneng.2023.114930_bib40) 2019; 72 Wen (10.1016/j.oceaneng.2023.114930_bib30) 2020; 96 Xu (10.1016/j.oceaneng.2023.114930_bib32) 2021; 1 10.1016/j.oceaneng.2023.114930_bib42 Han (10.1016/j.oceaneng.2023.114930_bib8) 2020; 39 Nie (10.1016/j.oceaneng.2023.114930_bib15) 2021; 10 Qiao (10.1016/j.oceaneng.2023.114930_bib19) 2022; 156 Li (10.1016/j.oceaneng.2023.114930_bib14) 2020; 534 Xu (10.1016/j.oceaneng.2023.114930_bib33) 2022; 2022 Zhao (10.1016/j.oceaneng.2023.114930_bib38) 2018; 166 Zhao (10.1016/j.oceaneng.2023.114930_bib39) 2019; 172 Li (10.1016/j.oceaneng.2023.114930_bib13) 2019 Wei (10.1016/j.oceaneng.2023.114930_bib29) 2020; 198 Ward (10.1016/j.oceaneng.2023.114930_bib27) 1963; 301 Pallotta (10.1016/j.oceaneng.2023.114930_bib16) 2013; 15 Wen (10.1016/j.oceaneng.2023.114930_bib31) 2020; 96 Shi (10.1016/j.oceaneng.2023.114930_bib23) 2000; 8 Davies (10.1016/j.oceaneng.2023.114930_bib4) 1979 Li (10.1016/j.oceaneng.2023.114930_bib12) 2016 Yan (10.1016/j.oceaneng.2023.114930_bib35) 2022; 252 Cao (10.1016/j.oceaneng.2023.114930_bib3) 2018 Rdusseeun (10.1016/j.oceaneng.2023.114930_bib20) 1987; vol. 31 Zhen (10.1016/j.oceaneng.2023.114930_bib41) 2017; 70 |
| References_xml | – volume: 17 start-page: 395 year: 2007 end-page: 416 ident: bib25 article-title: A tutorial on spectral clustering publication-title: Stat. Comput. – year: 2018 ident: bib3 article-title: PCA-based hierarchical clustering of AIS trajectories with automatic extraction of clusters publication-title: 2018 IEEE 3rd International Conference on Big Data Analysis (ICBDA) – volume: 8 start-page: 888 year: 2000 end-page: 905 ident: bib23 article-title: Normalized cuts and image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 72 start-page: 290 year: 2019 end-page: 306 ident: bib40 article-title: A novel similarity measure for clustering vessel trajectories based on dynamic time warping publication-title: J. Navig. – volume: 2022 start-page: 17 year: 2022 ident: bib33 article-title: Improved vessel trajectory prediction model based on stacked-BiGRUs publication-title: Secur. Commun. Network. – reference: . Vol. 96. No. 34. 1996. – start-page: 289 year: 2001 end-page: 296 ident: bib11 article-title: An online algorithm for segmenting time series publication-title: Proc. 2001 IEEE Int. Conf. Data Min. – volume: 1 start-page: 100 year: 1979 end-page: 108 ident: bib10 article-title: Algorithm AS 136: a k-means clustering algorithm publication-title: J. royal stat. soc. ser. c (appl. stat.)28 – volume: 69 start-page: 729 year: 2016 end-page: 744 ident: bib37 article-title: AIS trajectories simplification and threshold determination publication-title: J. Navig. – volume: 11 start-page: 559 year: 1901 end-page: 572 ident: bib18 article-title: LIII. On lines and planes of closest fit to systems of points in space publication-title: London, Edinburgh Dublin Phil. Mag. J. Sci. – volume: 9 start-page: 566 year: 2021 ident: bib26 article-title: Ship AIS trajectory clustering: an HDBSCAN-based approach publication-title: J. Mar. Sci. Eng. – volume: 10 start-page: 112 year: 1973 end-page: 122 ident: bib5 article-title: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature publication-title: Cartographica: Int. J. Geogr. Inf. Geovisualization – volume: 249 year: 2022 ident: bib36 article-title: Maritime traffic flow clustering analysis by density based trajectory clustering with noise publication-title: Ocean. Eng. – volume: 252 year: 2022 ident: bib35 article-title: Development of denoising and compression algorithms for AIS-based vessel trajectories publication-title: Ocean. Eng. – volume: 172 start-page: 456 year: 2019 end-page: 467 ident: bib39 article-title: A trajectory clustering method based on Douglas-Peucker compression and density for marine traffic pattern recognition publication-title: Ocean. Eng. – volume: 70 start-page: 648 year: 2017 end-page: 670 ident: bib41 article-title: Maritime anomaly detection within coastal waters based on vessel trajectory clustering and naïve bayes classifier publication-title: J. Navig. – reference: Ester, Martin, et al. "A density-based algorithm for discovering clusters in large spatial databases with noise." – volume: 10 start-page: 757 year: 2021 ident: bib15 article-title: Trajectory similarity analysis with the weight of direction and publication-title: ISPRS Int. J. Geo-Inf. – volume: 33 start-page: 1065 year: 1962 end-page: 1076 ident: bib17 article-title: On estimation of a probability density function and mode publication-title: Ann. Math. Stat. – volume: 534 start-page: 97116 year: 2020 ident: bib14 article-title: Adaptively constrained dynamic time warping for time series classification and clustering publication-title: Inf. Sci. – volume: 39 start-page: 113 year: 2020 end-page: 120 ident: bib8 article-title: Big data-driven automatic generation of ship route planning in complex maritime environments publication-title: Acta Oceanol. Sin. – volume: 301 start-page: 236 year: 1963 end-page: 244 ident: bib27 article-title: Hierarchical grouping to optimize an objective function publication-title: J. Am. statis. assoc.58 – volume: 11 start-page: 561 year: 2007 end-page: 580 ident: bib21 article-title: Toward accurate dynamic time warping in linear time and space publication-title: Intell. Data Anal. – volume: 96 year: 2020 ident: bib30 article-title: Automatic ship route design between two ports: a data-driven method publication-title: Appl. Ocean Res. – volume: 1 start-page: 136 year: 2021 end-page: 148 ident: bib32 article-title: Research on ship trajectory extraction based on multi-attribute DBSCAN optimisation algorithm publication-title: Pol. Marit. Res. – start-page: 224 year: 1979 end-page: 227 ident: bib4 article-title: A cluster separation measure publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2019 ident: bib13 article-title: Research on method of self-adaptive determination of DBSCAN algorithm parameters publication-title: Comput. Eng. Appl. – volume: 16 year: 2021 ident: bib2 article-title: Trajectory pattern extraction and anomaly detection for maritime vessels publication-title: Internet Things – volume: 156 start-page: 167 year: 2022 end-page: 173 ident: bib19 article-title: Rapid trajectory clustering based on neighbor spatial analysis publication-title: Pattern Recogn. Lett. – volume: vol. 31 year: 1987 ident: bib20 article-title: Clustering by means of medoids publication-title: InProceedings of the Statistica – year: 2020 ident: bib7 article-title: "Vessel tracking (AIS), vessel metadata and dirway datasets" publication-title: IEEE Dataport – volume: 96 year: 2020 ident: bib31 article-title: Automatic ship route design between two ports: a data-driven method publication-title: Appl. Ocean Res. – volume: 14 year: 2022 ident: bib22 article-title: A novel method for ship trajectory clustering publication-title: Int. J. Nav. Archit. Ocean Eng. – volume: 232 year: 2021 ident: bib24 article-title: A method for compressing AIS trajectory data based on the adaptive-threshold Douglas-Peucker algorithm publication-title: Ocean. Eng. – volume: 198 year: 2020 ident: bib29 article-title: Self-adaption vessel traffic behaviour recognition algorithm based on multi-attribute trajectory characteristics publication-title: Ocean. Eng. – volume: 15 start-page: 2218 year: 2013 end-page: 2245 ident: bib16 article-title: Vessel pattern knowledge discovery from AIS data: a framework for anomaly detection and route prediction publication-title: Entropy – volume: 166 start-page: 37 year: 2018 end-page: 46 ident: bib38 article-title: A method for simplifying ship trajectory based on improved Douglas–Peucker algorithm publication-title: Ocean. Eng. – start-page: 1 year: 2016 end-page: 5 ident: bib12 article-title: Trajectory compression-guided visualization of spatio-temporal AIS vessel density publication-title: 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP), Yangzhou, China – volume: 28 start-page: 49 year: 1999 end-page: 60 ident: bib1 article-title: OPTICS: ordering points to identify the clustering structure publication-title: ACM Sigmod record – volume: 96 year: 2020 ident: 10.1016/j.oceaneng.2023.114930_bib31 article-title: Automatic ship route design between two ports: a data-driven method publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2019.102049 – volume: 8 start-page: 888 year: 2000 ident: 10.1016/j.oceaneng.2023.114930_bib23 article-title: Normalized cuts and image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 96 year: 2020 ident: 10.1016/j.oceaneng.2023.114930_bib30 article-title: Automatic ship route design between two ports: a data-driven method publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2019.102049 – volume: 72 start-page: 290 issue: 2 year: 2019 ident: 10.1016/j.oceaneng.2023.114930_bib40 article-title: A novel similarity measure for clustering vessel trajectories based on dynamic time warping publication-title: J. Navig. doi: 10.1017/S0373463318000723 – volume: 1 start-page: 136 issue: 28 year: 2021 ident: 10.1016/j.oceaneng.2023.114930_bib32 article-title: Research on ship trajectory extraction based on multi-attribute DBSCAN optimisation algorithm publication-title: Pol. Marit. Res. doi: 10.2478/pomr-2021-0013 – volume: 10 start-page: 112 issue: 2 year: 1973 ident: 10.1016/j.oceaneng.2023.114930_bib5 article-title: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature publication-title: Cartographica: Int. J. Geogr. Inf. Geovisualization doi: 10.3138/FM57-6770-U75U-7727 – volume: 15 start-page: 2218 issue: 12 year: 2013 ident: 10.1016/j.oceaneng.2023.114930_bib16 article-title: Vessel pattern knowledge discovery from AIS data: a framework for anomaly detection and route prediction publication-title: Entropy doi: 10.3390/e15062218 – volume: 301 start-page: 236 year: 1963 ident: 10.1016/j.oceaneng.2023.114930_bib27 article-title: Hierarchical grouping to optimize an objective function publication-title: J. Am. statis. assoc.58 doi: 10.1080/01621459.1963.10500845 – volume: 9 start-page: 566 issue: 6 year: 2021 ident: 10.1016/j.oceaneng.2023.114930_bib26 article-title: Ship AIS trajectory clustering: an HDBSCAN-based approach publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse9060566 – volume: 10 start-page: 757 issue: 11 year: 2021 ident: 10.1016/j.oceaneng.2023.114930_bib15 article-title: Trajectory similarity analysis with the weight of direction andk-neighborhood for AIS data publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi10110757 – volume: 70 start-page: 648 issue: 3 year: 2017 ident: 10.1016/j.oceaneng.2023.114930_bib41 article-title: Maritime anomaly detection within coastal waters based on vessel trajectory clustering and naïve bayes classifier publication-title: J. Navig. doi: 10.1017/S0373463316000850 – volume: 534 start-page: 97116 year: 2020 ident: 10.1016/j.oceaneng.2023.114930_bib14 article-title: Adaptively constrained dynamic time warping for time series classification and clustering publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.04.009 – start-page: 224 year: 1979 ident: 10.1016/j.oceaneng.2023.114930_bib4 article-title: A cluster separation measure publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1979.4766909 – volume: 252 year: 2022 ident: 10.1016/j.oceaneng.2023.114930_bib35 article-title: Development of denoising and compression algorithms for AIS-based vessel trajectories publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2022.111207 – volume: 39 start-page: 113 year: 2020 ident: 10.1016/j.oceaneng.2023.114930_bib8 article-title: Big data-driven automatic generation of ship route planning in complex maritime environments publication-title: Acta Oceanol. Sin. doi: 10.1007/s13131-020-1638-5 – volume: 69 start-page: 729 issue: 4 year: 2016 ident: 10.1016/j.oceaneng.2023.114930_bib37 article-title: AIS trajectories simplification and threshold determination publication-title: J. Navig. doi: 10.1017/S0373463315000831 – volume: 14 year: 2022 ident: 10.1016/j.oceaneng.2023.114930_bib22 article-title: A novel method for ship trajectory clustering publication-title: Int. J. Nav. Archit. Ocean Eng. doi: 10.1016/j.ijnaoe.2022.100474 – volume: 232 year: 2021 ident: 10.1016/j.oceaneng.2023.114930_bib24 article-title: A method for compressing AIS trajectory data based on the adaptive-threshold Douglas-Peucker algorithm publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2021.109041 – volume: 11 start-page: 561 issue: 5 year: 2007 ident: 10.1016/j.oceaneng.2023.114930_bib21 article-title: Toward accurate dynamic time warping in linear time and space publication-title: Intell. Data Anal. doi: 10.3233/IDA-2007-11508 – volume: 166 start-page: 37 year: 2018 ident: 10.1016/j.oceaneng.2023.114930_bib38 article-title: A method for simplifying ship trajectory based on improved Douglas–Peucker algorithm publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2018.08.005 – volume: 172 start-page: 456 year: 2019 ident: 10.1016/j.oceaneng.2023.114930_bib39 article-title: A trajectory clustering method based on Douglas-Peucker compression and density for marine traffic pattern recognition publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2018.12.019 – start-page: 1 year: 2016 ident: 10.1016/j.oceaneng.2023.114930_bib12 article-title: Trajectory compression-guided visualization of spatio-temporal AIS vessel density – volume: 2022 start-page: 17 year: 2022 ident: 10.1016/j.oceaneng.2023.114930_bib33 article-title: Improved vessel trajectory prediction model based on stacked-BiGRUs publication-title: Secur. Commun. Network. – year: 2020 ident: 10.1016/j.oceaneng.2023.114930_bib7 article-title: "Vessel tracking (AIS), vessel metadata and dirway datasets" publication-title: IEEE Dataport – start-page: 289 year: 2001 ident: 10.1016/j.oceaneng.2023.114930_bib11 article-title: An online algorithm for segmenting time series publication-title: Proc. 2001 IEEE Int. Conf. Data Min. doi: 10.1109/ICDM.2001.989531 – ident: 10.1016/j.oceaneng.2023.114930_bib42 – volume: 198 year: 2020 ident: 10.1016/j.oceaneng.2023.114930_bib29 article-title: Self-adaption vessel traffic behaviour recognition algorithm based on multi-attribute trajectory characteristics publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2020.106995 – year: 2018 ident: 10.1016/j.oceaneng.2023.114930_bib3 article-title: PCA-based hierarchical clustering of AIS trajectories with automatic extraction of clusters – volume: 1 start-page: 100 year: 1979 ident: 10.1016/j.oceaneng.2023.114930_bib10 article-title: Algorithm AS 136: a k-means clustering algorithm publication-title: J. royal stat. soc. ser. c (appl. stat.)28 – volume: 156 start-page: 167 year: 2022 ident: 10.1016/j.oceaneng.2023.114930_bib19 article-title: Rapid trajectory clustering based on neighbor spatial analysis publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2022.03.010 – volume: 11 start-page: 559 year: 1901 ident: 10.1016/j.oceaneng.2023.114930_bib18 article-title: LIII. On lines and planes of closest fit to systems of points in space publication-title: London, Edinburgh Dublin Phil. Mag. J. Sci. doi: 10.1080/14786440109462720 – year: 2019 ident: 10.1016/j.oceaneng.2023.114930_bib13 article-title: Research on method of self-adaptive determination of DBSCAN algorithm parameters publication-title: Comput. Eng. Appl. – volume: 17 start-page: 395 year: 2007 ident: 10.1016/j.oceaneng.2023.114930_bib25 article-title: A tutorial on spectral clustering publication-title: Stat. Comput. doi: 10.1007/s11222-007-9033-z – volume: 28 start-page: 49 issue: 2 year: 1999 ident: 10.1016/j.oceaneng.2023.114930_bib1 article-title: OPTICS: ordering points to identify the clustering structure publication-title: ACM Sigmod record doi: 10.1145/304181.304187 – volume: 33 start-page: 1065 issue: 3 year: 1962 ident: 10.1016/j.oceaneng.2023.114930_bib17 article-title: On estimation of a probability density function and mode publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177704472 – volume: vol. 31 year: 1987 ident: 10.1016/j.oceaneng.2023.114930_bib20 article-title: Clustering by means of medoids – volume: 249 year: 2022 ident: 10.1016/j.oceaneng.2023.114930_bib36 article-title: Maritime traffic flow clustering analysis by density based trajectory clustering with noise publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2022.111001 – volume: 16 year: 2021 ident: 10.1016/j.oceaneng.2023.114930_bib2 article-title: Trajectory pattern extraction and anomaly detection for maritime vessels publication-title: Internet Things |
| SSID | ssj0006603 |
| Score | 2.514368 |
| Snippet | Vessel navigation pattern recognition plays an important role in the research of intelligent transportation on water. Clustering using the data stored in The... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 114930 |
| SubjectTerms | AF-DP DBSCAN Fast-DTW Navigation pattern recognition Ship trajectory clustering |
| Title | An adaptive threshold fast DBSCAN algorithm with preserved trajectory feature points for vessel trajectory clustering |
| URI | https://dx.doi.org/10.1016/j.oceaneng.2023.114930 |
| Volume | 280 |
| WOSCitedRecordID | wos001024203100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006603 issn: 0029-8018 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgcWCcHCiuUlH7hFKVvn6WOBRcBhQWKRcoscx2ZThaRq06r7J_jNzMTOA1ix7IFL0rr25DFfx-PxPAh5GeSZH-ex73qK-a4fSuHGIPVcAWJSKuCKzkVbbCI6O4uThH-eTH50sTDbMqqqeLfjy__KamgDZmPo7A3Y3ROFBvgMTIcjsB2O_8T4eeWIXCxbl6AGOLXGDSZHi3XjvH39BQs8ivJbvSqai-_GCouusOj3mGO9iEVrxb90tGozfjrLukBHGXRG3GKa8XLcSZYbzLPQzX5Wx_0k0bqvhkSHg7W0dR1ICgxo6EGZ2B2SC7UrhsaN7VlrNRDA7-2cAUQXhRpbLJiHplATs9lHEHCcGeOxFGamoJOVo7BK42a_5g8Rb6wNi2mNDwO3MMVLTIcBv-bU_m2u6z0QO-e2RdrRSZFOaujcIvssCjhIyf35h9PkYz-3h-GJ1zkN4ROMYs6vvqOr1Z2RCnN-n9yzaw86N5h5QCaqOiQHo4yUh-Ruyzybxvwh2cwr2oGJ9mCiCCZqwER7MFEEE-3BRAecUAsmasBEAUzUgGncaQDTI_L13en5m_euLdThSm_GGozAj7MgD0QU8cxjcagxT5zkUos4EmoWqkDJGZdczJRm6iSPIukLFgnmaaV96R2Rvaqu1GNCfa3h9zCL_Aw0dVi-wDnOA85yLT0mg2MSdO8zlTaLPRZTKdO_c_SYvOrHLU0el2tH8I5dqdVGjZaZAhKvGfvkxld7Su4Mf5VnZK9ZbdRzcltum2K9emFh-BPiqLSN |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+threshold+fast+DBSCAN+algorithm+with+preserved+trajectory+feature+points+for+vessel+trajectory+clustering&rft.jtitle=Ocean+engineering&rft.au=Bai%2C+Xiangen&rft.au=Xie%2C+Zhexin&rft.au=Xu%2C+Xiaofeng&rft.au=Xiao%2C+Yingjie&rft.date=2023-07-15&rft.issn=0029-8018&rft.volume=280&rft.spage=114930&rft_id=info:doi/10.1016%2Fj.oceaneng.2023.114930&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2023_114930 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |