An adaptive threshold fast DBSCAN algorithm with preserved trajectory feature points for vessel trajectory clustering

Vessel navigation pattern recognition plays an important role in the research of intelligent transportation on water. Clustering using the data stored in The Automatic Identification System (AIS) is a current research hotspot. However, there are three problems in the past clustering analysis. First,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Ocean engineering Ročník 280; s. 114930
Hlavní autoři: Bai, Xiangen, Xie, Zhexin, Xu, Xiaofeng, Xiao, Yingjie
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.07.2023
Témata:
ISSN:0029-8018, 1873-5258
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Vessel navigation pattern recognition plays an important role in the research of intelligent transportation on water. Clustering using the data stored in The Automatic Identification System (AIS) is a current research hotspot. However, there are three problems in the past clustering analysis. First, the traditional Douglas-Peucker (DP) Compression Algorithm exists feature point loss and trajectory distortion when compressing trajectories. Second, Dynamic Time Warping (DTW) and the density-based spatial clustering of applications with noise (DBSCAN) algorithm require high time cost. Finally, most of the studies ignore the interaction between parameters when choosing the parameters of DBSCAN. These problems seriously affect the efficiency and accuracy of clustering. To solve these problems, this paper improves the existing methods by (1) Adaptive selection of compression thresholds and trajectory feature points for each trajectory when using the DP algorithm ensures the realism of the compressed trajectory; (2) using the Fast-DTW algorithm to improve the computation speed and ensure the accuracy of trajectory similarity; (3) Self-selection of parameter combinations based on Silhouette Coefficient (SC) scores was achieved using the similarity distribution of the trajectories in combination with an improved K-Adaptive Nearest Neighbors (KANN). The experiments show that the proposed method can greatly reduce the time cost of clustering compared to the original method and significantly outperforms the three compared algorithms in terms of clustering effect images. •In this paper, we improves the trajectory clustering by:•adaptively selecting compression thresholds and trajectory feature points for each trajectory when using the DP algorithm.•using the Fast-DTW algorithm to improve the computation speed and ensure the accuracy of trajectory similarity.•The KANN method is improved and a more stable threshold selection method is proposed.
AbstractList Vessel navigation pattern recognition plays an important role in the research of intelligent transportation on water. Clustering using the data stored in The Automatic Identification System (AIS) is a current research hotspot. However, there are three problems in the past clustering analysis. First, the traditional Douglas-Peucker (DP) Compression Algorithm exists feature point loss and trajectory distortion when compressing trajectories. Second, Dynamic Time Warping (DTW) and the density-based spatial clustering of applications with noise (DBSCAN) algorithm require high time cost. Finally, most of the studies ignore the interaction between parameters when choosing the parameters of DBSCAN. These problems seriously affect the efficiency and accuracy of clustering. To solve these problems, this paper improves the existing methods by (1) Adaptive selection of compression thresholds and trajectory feature points for each trajectory when using the DP algorithm ensures the realism of the compressed trajectory; (2) using the Fast-DTW algorithm to improve the computation speed and ensure the accuracy of trajectory similarity; (3) Self-selection of parameter combinations based on Silhouette Coefficient (SC) scores was achieved using the similarity distribution of the trajectories in combination with an improved K-Adaptive Nearest Neighbors (KANN). The experiments show that the proposed method can greatly reduce the time cost of clustering compared to the original method and significantly outperforms the three compared algorithms in terms of clustering effect images. •In this paper, we improves the trajectory clustering by:•adaptively selecting compression thresholds and trajectory feature points for each trajectory when using the DP algorithm.•using the Fast-DTW algorithm to improve the computation speed and ensure the accuracy of trajectory similarity.•The KANN method is improved and a more stable threshold selection method is proposed.
ArticleNumber 114930
Author Xu, Xiaofeng
Xie, Zhexin
Bai, Xiangen
Xiao, Yingjie
Author_xml – sequence: 1
  givenname: Xiangen
  surname: Bai
  fullname: Bai, Xiangen
– sequence: 2
  givenname: Zhexin
  surname: Xie
  fullname: Xie, Zhexin
– sequence: 3
  givenname: Xiaofeng
  surname: Xu
  fullname: Xu, Xiaofeng
  email: fxx_xu@163.com
– sequence: 4
  givenname: Yingjie
  surname: Xiao
  fullname: Xiao, Yingjie
BookMark eNqFkMtKAzEUhoNUsK2-guQFpuYyV3BhrVcoulDXIc2ctBmmyZCkI317p1RB3Lg5Z_N_P-d8EzSyzgJCl5TMKKH5VTNzCqQFu54xwviM0rTi5ASNaVnwJGNZOUJjQliVlISWZ2gSQkMIyXPCx2g3t1jWsoumBxw3HsLGtTXWMkR8d_u2mL9g2a6dN3GzxZ_DxN2QAd9DjaOXDajo_B5rkHHnAXfO2Biwdh73EAK0v0Oq3YUI3tj1OTrVsg1w8b2n6OPh_n3xlCxfH58X82WiOGUx4bQsV1mdyaKoVpyVuc7TLFWV0rIsJNAcMlC0UpWkoBmQuihUKlkhGdegU8Wn6PrYq7wLwYMWykQZjbPDWaYVlIiDQtGIH4XioFAcFQ54_gfvvNlKv_8fvDmCMDzXG_AiKANWQW38IEPUzvxX8QX70pUw
CitedBy_id crossref_primary_10_1080_15230406_2025_2537980
crossref_primary_10_1080_20464177_2025_2518785
crossref_primary_10_1016_j_trc_2024_104648
crossref_primary_10_3390_jmse13050849
crossref_primary_10_3390_jmse13050905
crossref_primary_10_1016_j_compeleceng_2024_109611
crossref_primary_10_1016_j_oceaneng_2025_121774
crossref_primary_10_1007_s12145_025_01774_4
crossref_primary_10_1016_j_oceaneng_2025_121073
crossref_primary_10_1016_j_oceaneng_2024_119439
crossref_primary_10_1016_j_oceaneng_2025_121691
crossref_primary_10_3390_app13158917
crossref_primary_10_1016_j_oceaneng_2024_119737
crossref_primary_10_3390_bdcc9060143
crossref_primary_10_1109_TKDE_2025_3579434
crossref_primary_10_1109_JIOT_2024_3410176
crossref_primary_10_1016_j_energy_2024_130844
crossref_primary_10_3390_ijgi12100398
crossref_primary_10_1016_j_oceaneng_2024_117872
crossref_primary_10_1016_j_oceaneng_2023_116640
crossref_primary_10_1038_s41598_024_71779_4
crossref_primary_10_2478_acss_2024_0003
crossref_primary_10_1016_j_oceaneng_2024_119189
crossref_primary_10_1016_j_oceaneng_2023_116082
crossref_primary_10_1007_s00773_025_01065_z
crossref_primary_10_3390_drones8110644
crossref_primary_10_1007_s42452_025_06672_4
crossref_primary_10_1016_j_est_2024_113393
crossref_primary_10_1016_j_oceaneng_2024_119329
crossref_primary_10_1016_j_oceaneng_2025_121461
crossref_primary_10_1080_03088839_2024_2436080
Cites_doi 10.1016/j.apor.2019.102049
10.1017/S0373463318000723
10.2478/pomr-2021-0013
10.3138/FM57-6770-U75U-7727
10.3390/e15062218
10.1080/01621459.1963.10500845
10.3390/jmse9060566
10.3390/ijgi10110757
10.1017/S0373463316000850
10.1016/j.ins.2020.04.009
10.1109/TPAMI.1979.4766909
10.1016/j.oceaneng.2022.111207
10.1007/s13131-020-1638-5
10.1017/S0373463315000831
10.1016/j.ijnaoe.2022.100474
10.1016/j.oceaneng.2021.109041
10.3233/IDA-2007-11508
10.1016/j.oceaneng.2018.08.005
10.1016/j.oceaneng.2018.12.019
10.1109/ICDM.2001.989531
10.1016/j.oceaneng.2020.106995
10.1016/j.patrec.2022.03.010
10.1080/14786440109462720
10.1007/s11222-007-9033-z
10.1145/304181.304187
10.1214/aoms/1177704472
10.1016/j.oceaneng.2022.111001
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.oceaneng.2023.114930
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
EISSN 1873-5258
ExternalDocumentID 10_1016_j_oceaneng_2023_114930
S0029801823013148
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SET
WUQ
~HD
ID FETCH-LOGICAL-c312t-3188b5d5a779b3286f6454c9cfa87ae16e5ec19c9a1ef2e0d77c4a27a23fef4c3
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001024203100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-8018
IngestDate Sat Nov 29 07:29:53 EST 2025
Tue Nov 18 21:43:12 EST 2025
Fri Feb 23 02:38:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords AF-DP
DBSCAN
Fast-DTW
Ship trajectory clustering
Navigation pattern recognition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-3188b5d5a779b3286f6454c9cfa87ae16e5ec19c9a1ef2e0d77c4a27a23fef4c3
ParticipantIDs crossref_citationtrail_10_1016_j_oceaneng_2023_114930
crossref_primary_10_1016_j_oceaneng_2023_114930
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2023_114930
PublicationCentury 2000
PublicationDate 2023-07-15
PublicationDateYYYYMMDD 2023-07-15
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-15
  day: 15
PublicationDecade 2020
PublicationTitle Ocean engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Chen, Chen, Mou (bib26) 2021; 9
Qiao (bib19) 2022; 156
Nie, Chen, Xia, Huang, Li (bib15) 2021; 10
Wei, Xie, Lv (bib29) 2020; 198
Han, Yang (bib8) 2020; 39
Zhao, Shi (bib40) 2019; 72
Wen, Sui, Zhou, Xiao, Chen, Dong, Zhang (bib30) 2020; 96
Cao (bib3) 2018
Ankerst (bib1) 1999; 28
Li, Liu, Yang, Liu, Wu, Yuan (bib14) 2020; 534
Shi, Malik (bib23) 2000; 8
Vol. 96. No. 34. 1996.
Douglas, Peucker (bib5) 1973; 10
Zhao, Shi (bib38) 2018; 166
von Luxburg (bib25) 2007; 17
Ester, Martin, et al. "A density-based algorithm for discovering clusters in large spatial databases with noise."
Pearson (bib18) 1901; 11
Xu, Zhang, Ren, Zeng, Yuan, Liu, Wang, Ou (bib33) 2022; 2022
Salvador, Chan (bib21) 2007; 11
Zhao, Shi (bib39) 2019; 172
Zhen, Jin, Hu, Shao, Nikitakos (bib41) 2017; 70
Yan (bib35) 2022; 252
Boztepe Karataş, Karagoz, Orhan (bib2) 2021; 16
Rdusseeun, Kaufman (bib20) 1987; vol. 31
Zhang, Liu, Cai, Wu, Shi (bib37) 2016; 69
Keogh, Chu, Hart, Pazzani (bib11) 2001
Pallotta, Vespe, Bryan (bib16) 2013; 15
Hartigan, Wong (bib10) 1979; 1
Xu (bib32) 2021; 1
Li, Liu, Liu, Huang, Hu, Wang (bib12) 2016
Tang (bib24) 2021; 232
Shen, Tang, Yin (bib22) 2022; 14
Yang (bib36) 2022; 249
Davies, Bouldin (bib4) 1979
Ward, Joe (bib27) 1963; 301
Hakola (bib7) 2020
Wen (bib31) 2020; 96
Li, Yan, Jiang (bib13) 2019
Parzen (bib17) 1962; 33
Boztepe Karataş (10.1016/j.oceaneng.2023.114930_bib2) 2021; 16
Pearson (10.1016/j.oceaneng.2023.114930_bib18) 1901; 11
Hakola (10.1016/j.oceaneng.2023.114930_bib7) 2020
Ankerst (10.1016/j.oceaneng.2023.114930_bib1) 1999; 28
Douglas (10.1016/j.oceaneng.2023.114930_bib5) 1973; 10
Hartigan (10.1016/j.oceaneng.2023.114930_bib10) 1979; 1
Keogh (10.1016/j.oceaneng.2023.114930_bib11) 2001
Shen (10.1016/j.oceaneng.2023.114930_bib22) 2022; 14
Tang (10.1016/j.oceaneng.2023.114930_bib24) 2021; 232
Wang (10.1016/j.oceaneng.2023.114930_bib26) 2021; 9
von Luxburg (10.1016/j.oceaneng.2023.114930_bib25) 2007; 17
Zhang (10.1016/j.oceaneng.2023.114930_bib37) 2016; 69
Yang (10.1016/j.oceaneng.2023.114930_bib36) 2022; 249
Salvador (10.1016/j.oceaneng.2023.114930_bib21) 2007; 11
Parzen (10.1016/j.oceaneng.2023.114930_bib17) 1962; 33
Zhao (10.1016/j.oceaneng.2023.114930_bib40) 2019; 72
Wen (10.1016/j.oceaneng.2023.114930_bib30) 2020; 96
Xu (10.1016/j.oceaneng.2023.114930_bib32) 2021; 1
10.1016/j.oceaneng.2023.114930_bib42
Han (10.1016/j.oceaneng.2023.114930_bib8) 2020; 39
Nie (10.1016/j.oceaneng.2023.114930_bib15) 2021; 10
Qiao (10.1016/j.oceaneng.2023.114930_bib19) 2022; 156
Li (10.1016/j.oceaneng.2023.114930_bib14) 2020; 534
Xu (10.1016/j.oceaneng.2023.114930_bib33) 2022; 2022
Zhao (10.1016/j.oceaneng.2023.114930_bib38) 2018; 166
Zhao (10.1016/j.oceaneng.2023.114930_bib39) 2019; 172
Li (10.1016/j.oceaneng.2023.114930_bib13) 2019
Wei (10.1016/j.oceaneng.2023.114930_bib29) 2020; 198
Ward (10.1016/j.oceaneng.2023.114930_bib27) 1963; 301
Pallotta (10.1016/j.oceaneng.2023.114930_bib16) 2013; 15
Wen (10.1016/j.oceaneng.2023.114930_bib31) 2020; 96
Shi (10.1016/j.oceaneng.2023.114930_bib23) 2000; 8
Davies (10.1016/j.oceaneng.2023.114930_bib4) 1979
Li (10.1016/j.oceaneng.2023.114930_bib12) 2016
Yan (10.1016/j.oceaneng.2023.114930_bib35) 2022; 252
Cao (10.1016/j.oceaneng.2023.114930_bib3) 2018
Rdusseeun (10.1016/j.oceaneng.2023.114930_bib20) 1987; vol. 31
Zhen (10.1016/j.oceaneng.2023.114930_bib41) 2017; 70
References_xml – volume: 17
  start-page: 395
  year: 2007
  end-page: 416
  ident: bib25
  article-title: A tutorial on spectral clustering
  publication-title: Stat. Comput.
– year: 2018
  ident: bib3
  article-title: PCA-based hierarchical clustering of AIS trajectories with automatic extraction of clusters
  publication-title: 2018 IEEE 3rd International Conference on Big Data Analysis (ICBDA)
– volume: 8
  start-page: 888
  year: 2000
  end-page: 905
  ident: bib23
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 72
  start-page: 290
  year: 2019
  end-page: 306
  ident: bib40
  article-title: A novel similarity measure for clustering vessel trajectories based on dynamic time warping
  publication-title: J. Navig.
– volume: 2022
  start-page: 17
  year: 2022
  ident: bib33
  article-title: Improved vessel trajectory prediction model based on stacked-BiGRUs
  publication-title: Secur. Commun. Network.
– reference: . Vol. 96. No. 34. 1996.
– start-page: 289
  year: 2001
  end-page: 296
  ident: bib11
  article-title: An online algorithm for segmenting time series
  publication-title: Proc. 2001 IEEE Int. Conf. Data Min.
– volume: 1
  start-page: 100
  year: 1979
  end-page: 108
  ident: bib10
  article-title: Algorithm AS 136: a k-means clustering algorithm
  publication-title: J. royal stat. soc. ser. c (appl. stat.)28
– volume: 69
  start-page: 729
  year: 2016
  end-page: 744
  ident: bib37
  article-title: AIS trajectories simplification and threshold determination
  publication-title: J. Navig.
– volume: 11
  start-page: 559
  year: 1901
  end-page: 572
  ident: bib18
  article-title: LIII. On lines and planes of closest fit to systems of points in space
  publication-title: London, Edinburgh Dublin Phil. Mag. J. Sci.
– volume: 9
  start-page: 566
  year: 2021
  ident: bib26
  article-title: Ship AIS trajectory clustering: an HDBSCAN-based approach
  publication-title: J. Mar. Sci. Eng.
– volume: 10
  start-page: 112
  year: 1973
  end-page: 122
  ident: bib5
  article-title: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature
  publication-title: Cartographica: Int. J. Geogr. Inf. Geovisualization
– volume: 249
  year: 2022
  ident: bib36
  article-title: Maritime traffic flow clustering analysis by density based trajectory clustering with noise
  publication-title: Ocean. Eng.
– volume: 252
  year: 2022
  ident: bib35
  article-title: Development of denoising and compression algorithms for AIS-based vessel trajectories
  publication-title: Ocean. Eng.
– volume: 172
  start-page: 456
  year: 2019
  end-page: 467
  ident: bib39
  article-title: A trajectory clustering method based on Douglas-Peucker compression and density for marine traffic pattern recognition
  publication-title: Ocean. Eng.
– volume: 70
  start-page: 648
  year: 2017
  end-page: 670
  ident: bib41
  article-title: Maritime anomaly detection within coastal waters based on vessel trajectory clustering and naïve bayes classifier
  publication-title: J. Navig.
– reference: Ester, Martin, et al. "A density-based algorithm for discovering clusters in large spatial databases with noise."
– volume: 10
  start-page: 757
  year: 2021
  ident: bib15
  article-title: Trajectory similarity analysis with the weight of direction and
  publication-title: ISPRS Int. J. Geo-Inf.
– volume: 33
  start-page: 1065
  year: 1962
  end-page: 1076
  ident: bib17
  article-title: On estimation of a probability density function and mode
  publication-title: Ann. Math. Stat.
– volume: 534
  start-page: 97116
  year: 2020
  ident: bib14
  article-title: Adaptively constrained dynamic time warping for time series classification and clustering
  publication-title: Inf. Sci.
– volume: 39
  start-page: 113
  year: 2020
  end-page: 120
  ident: bib8
  article-title: Big data-driven automatic generation of ship route planning in complex maritime environments
  publication-title: Acta Oceanol. Sin.
– volume: 301
  start-page: 236
  year: 1963
  end-page: 244
  ident: bib27
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: J. Am. statis. assoc.58
– volume: 11
  start-page: 561
  year: 2007
  end-page: 580
  ident: bib21
  article-title: Toward accurate dynamic time warping in linear time and space
  publication-title: Intell. Data Anal.
– volume: 96
  year: 2020
  ident: bib30
  article-title: Automatic ship route design between two ports: a data-driven method
  publication-title: Appl. Ocean Res.
– volume: 1
  start-page: 136
  year: 2021
  end-page: 148
  ident: bib32
  article-title: Research on ship trajectory extraction based on multi-attribute DBSCAN optimisation algorithm
  publication-title: Pol. Marit. Res.
– start-page: 224
  year: 1979
  end-page: 227
  ident: bib4
  article-title: A cluster separation measure
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2019
  ident: bib13
  article-title: Research on method of self-adaptive determination of DBSCAN algorithm parameters
  publication-title: Comput. Eng. Appl.
– volume: 16
  year: 2021
  ident: bib2
  article-title: Trajectory pattern extraction and anomaly detection for maritime vessels
  publication-title: Internet Things
– volume: 156
  start-page: 167
  year: 2022
  end-page: 173
  ident: bib19
  article-title: Rapid trajectory clustering based on neighbor spatial analysis
  publication-title: Pattern Recogn. Lett.
– volume: vol. 31
  year: 1987
  ident: bib20
  article-title: Clustering by means of medoids
  publication-title: InProceedings of the Statistica
– year: 2020
  ident: bib7
  article-title: "Vessel tracking (AIS), vessel metadata and dirway datasets"
  publication-title: IEEE Dataport
– volume: 96
  year: 2020
  ident: bib31
  article-title: Automatic ship route design between two ports: a data-driven method
  publication-title: Appl. Ocean Res.
– volume: 14
  year: 2022
  ident: bib22
  article-title: A novel method for ship trajectory clustering
  publication-title: Int. J. Nav. Archit. Ocean Eng.
– volume: 232
  year: 2021
  ident: bib24
  article-title: A method for compressing AIS trajectory data based on the adaptive-threshold Douglas-Peucker algorithm
  publication-title: Ocean. Eng.
– volume: 198
  year: 2020
  ident: bib29
  article-title: Self-adaption vessel traffic behaviour recognition algorithm based on multi-attribute trajectory characteristics
  publication-title: Ocean. Eng.
– volume: 15
  start-page: 2218
  year: 2013
  end-page: 2245
  ident: bib16
  article-title: Vessel pattern knowledge discovery from AIS data: a framework for anomaly detection and route prediction
  publication-title: Entropy
– volume: 166
  start-page: 37
  year: 2018
  end-page: 46
  ident: bib38
  article-title: A method for simplifying ship trajectory based on improved Douglas–Peucker algorithm
  publication-title: Ocean. Eng.
– start-page: 1
  year: 2016
  end-page: 5
  ident: bib12
  article-title: Trajectory compression-guided visualization of spatio-temporal AIS vessel density
  publication-title: 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP), Yangzhou, China
– volume: 28
  start-page: 49
  year: 1999
  end-page: 60
  ident: bib1
  article-title: OPTICS: ordering points to identify the clustering structure
  publication-title: ACM Sigmod record
– volume: 96
  year: 2020
  ident: 10.1016/j.oceaneng.2023.114930_bib31
  article-title: Automatic ship route design between two ports: a data-driven method
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2019.102049
– volume: 8
  start-page: 888
  year: 2000
  ident: 10.1016/j.oceaneng.2023.114930_bib23
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 96
  year: 2020
  ident: 10.1016/j.oceaneng.2023.114930_bib30
  article-title: Automatic ship route design between two ports: a data-driven method
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2019.102049
– volume: 72
  start-page: 290
  issue: 2
  year: 2019
  ident: 10.1016/j.oceaneng.2023.114930_bib40
  article-title: A novel similarity measure for clustering vessel trajectories based on dynamic time warping
  publication-title: J. Navig.
  doi: 10.1017/S0373463318000723
– volume: 1
  start-page: 136
  issue: 28
  year: 2021
  ident: 10.1016/j.oceaneng.2023.114930_bib32
  article-title: Research on ship trajectory extraction based on multi-attribute DBSCAN optimisation algorithm
  publication-title: Pol. Marit. Res.
  doi: 10.2478/pomr-2021-0013
– volume: 10
  start-page: 112
  issue: 2
  year: 1973
  ident: 10.1016/j.oceaneng.2023.114930_bib5
  article-title: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature
  publication-title: Cartographica: Int. J. Geogr. Inf. Geovisualization
  doi: 10.3138/FM57-6770-U75U-7727
– volume: 15
  start-page: 2218
  issue: 12
  year: 2013
  ident: 10.1016/j.oceaneng.2023.114930_bib16
  article-title: Vessel pattern knowledge discovery from AIS data: a framework for anomaly detection and route prediction
  publication-title: Entropy
  doi: 10.3390/e15062218
– volume: 301
  start-page: 236
  year: 1963
  ident: 10.1016/j.oceaneng.2023.114930_bib27
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: J. Am. statis. assoc.58
  doi: 10.1080/01621459.1963.10500845
– volume: 9
  start-page: 566
  issue: 6
  year: 2021
  ident: 10.1016/j.oceaneng.2023.114930_bib26
  article-title: Ship AIS trajectory clustering: an HDBSCAN-based approach
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse9060566
– volume: 10
  start-page: 757
  issue: 11
  year: 2021
  ident: 10.1016/j.oceaneng.2023.114930_bib15
  article-title: Trajectory similarity analysis with the weight of direction andk-neighborhood for AIS data
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi10110757
– volume: 70
  start-page: 648
  issue: 3
  year: 2017
  ident: 10.1016/j.oceaneng.2023.114930_bib41
  article-title: Maritime anomaly detection within coastal waters based on vessel trajectory clustering and naïve bayes classifier
  publication-title: J. Navig.
  doi: 10.1017/S0373463316000850
– volume: 534
  start-page: 97116
  year: 2020
  ident: 10.1016/j.oceaneng.2023.114930_bib14
  article-title: Adaptively constrained dynamic time warping for time series classification and clustering
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.04.009
– start-page: 224
  year: 1979
  ident: 10.1016/j.oceaneng.2023.114930_bib4
  article-title: A cluster separation measure
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1979.4766909
– volume: 252
  year: 2022
  ident: 10.1016/j.oceaneng.2023.114930_bib35
  article-title: Development of denoising and compression algorithms for AIS-based vessel trajectories
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2022.111207
– volume: 39
  start-page: 113
  year: 2020
  ident: 10.1016/j.oceaneng.2023.114930_bib8
  article-title: Big data-driven automatic generation of ship route planning in complex maritime environments
  publication-title: Acta Oceanol. Sin.
  doi: 10.1007/s13131-020-1638-5
– volume: 69
  start-page: 729
  issue: 4
  year: 2016
  ident: 10.1016/j.oceaneng.2023.114930_bib37
  article-title: AIS trajectories simplification and threshold determination
  publication-title: J. Navig.
  doi: 10.1017/S0373463315000831
– volume: 14
  year: 2022
  ident: 10.1016/j.oceaneng.2023.114930_bib22
  article-title: A novel method for ship trajectory clustering
  publication-title: Int. J. Nav. Archit. Ocean Eng.
  doi: 10.1016/j.ijnaoe.2022.100474
– volume: 232
  year: 2021
  ident: 10.1016/j.oceaneng.2023.114930_bib24
  article-title: A method for compressing AIS trajectory data based on the adaptive-threshold Douglas-Peucker algorithm
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2021.109041
– volume: 11
  start-page: 561
  issue: 5
  year: 2007
  ident: 10.1016/j.oceaneng.2023.114930_bib21
  article-title: Toward accurate dynamic time warping in linear time and space
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-2007-11508
– volume: 166
  start-page: 37
  year: 2018
  ident: 10.1016/j.oceaneng.2023.114930_bib38
  article-title: A method for simplifying ship trajectory based on improved Douglas–Peucker algorithm
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2018.08.005
– volume: 172
  start-page: 456
  year: 2019
  ident: 10.1016/j.oceaneng.2023.114930_bib39
  article-title: A trajectory clustering method based on Douglas-Peucker compression and density for marine traffic pattern recognition
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2018.12.019
– start-page: 1
  year: 2016
  ident: 10.1016/j.oceaneng.2023.114930_bib12
  article-title: Trajectory compression-guided visualization of spatio-temporal AIS vessel density
– volume: 2022
  start-page: 17
  year: 2022
  ident: 10.1016/j.oceaneng.2023.114930_bib33
  article-title: Improved vessel trajectory prediction model based on stacked-BiGRUs
  publication-title: Secur. Commun. Network.
– year: 2020
  ident: 10.1016/j.oceaneng.2023.114930_bib7
  article-title: "Vessel tracking (AIS), vessel metadata and dirway datasets"
  publication-title: IEEE Dataport
– start-page: 289
  year: 2001
  ident: 10.1016/j.oceaneng.2023.114930_bib11
  article-title: An online algorithm for segmenting time series
  publication-title: Proc. 2001 IEEE Int. Conf. Data Min.
  doi: 10.1109/ICDM.2001.989531
– ident: 10.1016/j.oceaneng.2023.114930_bib42
– volume: 198
  year: 2020
  ident: 10.1016/j.oceaneng.2023.114930_bib29
  article-title: Self-adaption vessel traffic behaviour recognition algorithm based on multi-attribute trajectory characteristics
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2020.106995
– year: 2018
  ident: 10.1016/j.oceaneng.2023.114930_bib3
  article-title: PCA-based hierarchical clustering of AIS trajectories with automatic extraction of clusters
– volume: 1
  start-page: 100
  year: 1979
  ident: 10.1016/j.oceaneng.2023.114930_bib10
  article-title: Algorithm AS 136: a k-means clustering algorithm
  publication-title: J. royal stat. soc. ser. c (appl. stat.)28
– volume: 156
  start-page: 167
  year: 2022
  ident: 10.1016/j.oceaneng.2023.114930_bib19
  article-title: Rapid trajectory clustering based on neighbor spatial analysis
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2022.03.010
– volume: 11
  start-page: 559
  year: 1901
  ident: 10.1016/j.oceaneng.2023.114930_bib18
  article-title: LIII. On lines and planes of closest fit to systems of points in space
  publication-title: London, Edinburgh Dublin Phil. Mag. J. Sci.
  doi: 10.1080/14786440109462720
– year: 2019
  ident: 10.1016/j.oceaneng.2023.114930_bib13
  article-title: Research on method of self-adaptive determination of DBSCAN algorithm parameters
  publication-title: Comput. Eng. Appl.
– volume: 17
  start-page: 395
  year: 2007
  ident: 10.1016/j.oceaneng.2023.114930_bib25
  article-title: A tutorial on spectral clustering
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-007-9033-z
– volume: 28
  start-page: 49
  issue: 2
  year: 1999
  ident: 10.1016/j.oceaneng.2023.114930_bib1
  article-title: OPTICS: ordering points to identify the clustering structure
  publication-title: ACM Sigmod record
  doi: 10.1145/304181.304187
– volume: 33
  start-page: 1065
  issue: 3
  year: 1962
  ident: 10.1016/j.oceaneng.2023.114930_bib17
  article-title: On estimation of a probability density function and mode
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177704472
– volume: vol. 31
  year: 1987
  ident: 10.1016/j.oceaneng.2023.114930_bib20
  article-title: Clustering by means of medoids
– volume: 249
  year: 2022
  ident: 10.1016/j.oceaneng.2023.114930_bib36
  article-title: Maritime traffic flow clustering analysis by density based trajectory clustering with noise
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2022.111001
– volume: 16
  year: 2021
  ident: 10.1016/j.oceaneng.2023.114930_bib2
  article-title: Trajectory pattern extraction and anomaly detection for maritime vessels
  publication-title: Internet Things
SSID ssj0006603
Score 2.514368
Snippet Vessel navigation pattern recognition plays an important role in the research of intelligent transportation on water. Clustering using the data stored in The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 114930
SubjectTerms AF-DP
DBSCAN
Fast-DTW
Navigation pattern recognition
Ship trajectory clustering
Title An adaptive threshold fast DBSCAN algorithm with preserved trajectory feature points for vessel trajectory clustering
URI https://dx.doi.org/10.1016/j.oceaneng.2023.114930
Volume 280
WOSCitedRecordID wos001024203100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006603
  issn: 0029-8018
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgcWCcHCiuUlH7hFKVvn6WOBRcBhQWKRcoscx2ZThaRq06r7J_jNzMTOA1ix7IFL0rr25DFfx-PxPAh5GeSZH-ex73qK-a4fSuHGIPVcAWJSKuCKzkVbbCI6O4uThH-eTH50sTDbMqqqeLfjy__KamgDZmPo7A3Y3ROFBvgMTIcjsB2O_8T4eeWIXCxbl6AGOLXGDSZHi3XjvH39BQs8ivJbvSqai-_GCouusOj3mGO9iEVrxb90tGozfjrLukBHGXRG3GKa8XLcSZYbzLPQzX5Wx_0k0bqvhkSHg7W0dR1ICgxo6EGZ2B2SC7UrhsaN7VlrNRDA7-2cAUQXhRpbLJiHplATs9lHEHCcGeOxFGamoJOVo7BK42a_5g8Rb6wNi2mNDwO3MMVLTIcBv-bU_m2u6z0QO-e2RdrRSZFOaujcIvssCjhIyf35h9PkYz-3h-GJ1zkN4ROMYs6vvqOr1Z2RCnN-n9yzaw86N5h5QCaqOiQHo4yUh-Ruyzybxvwh2cwr2oGJ9mCiCCZqwER7MFEEE-3BRAecUAsmasBEAUzUgGncaQDTI_L13en5m_euLdThSm_GGozAj7MgD0QU8cxjcagxT5zkUos4EmoWqkDJGZdczJRm6iSPIukLFgnmaaV96R2Rvaqu1GNCfa3h9zCL_Aw0dVi-wDnOA85yLT0mg2MSdO8zlTaLPRZTKdO_c_SYvOrHLU0el2tH8I5dqdVGjZaZAhKvGfvkxld7Su4Mf5VnZK9ZbdRzcltum2K9emFh-BPiqLSN
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+threshold+fast+DBSCAN+algorithm+with+preserved+trajectory+feature+points+for+vessel+trajectory+clustering&rft.jtitle=Ocean+engineering&rft.au=Bai%2C+Xiangen&rft.au=Xie%2C+Zhexin&rft.au=Xu%2C+Xiaofeng&rft.au=Xiao%2C+Yingjie&rft.date=2023-07-15&rft.issn=0029-8018&rft.volume=280&rft.spage=114930&rft_id=info:doi/10.1016%2Fj.oceaneng.2023.114930&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2023_114930
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon