Integration of real-time optimization and model predictive control
This paper proposes a controller design approach that integrates RTO and MPC for the control of constrained uncertain nonlinear systems. Assuming that the economic function is a known function of constrained system’s states, parameterized by unknown parameters and time-varying, the controller design...
Uloženo v:
| Vydáno v: | Journal of process control Ročník 20; číslo 2; s. 125 - 133 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.02.2010
|
| Témata: | |
| ISSN: | 0959-1524, 1873-2771 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper proposes a controller design approach that integrates RTO and MPC for the control of constrained uncertain nonlinear systems. Assuming that the economic function is a known function of constrained system’s states, parameterized by unknown parameters and time-varying, the controller design objective is to simultaneously identify and regulate the system to the optimal operating point. The approach relies on a novel set-based parameter estimation routine and a robust model predictive controller that takes into the effect of parameter estimation errors. A simulation example is used to demonstrate the effectiveness of the design technique. |
|---|---|
| ISSN: | 0959-1524 1873-2771 |
| DOI: | 10.1016/j.jprocont.2009.09.001 |