An efficient Meta-VSW method for ship behaviors recognition and application

Ship behaviors refer to the operational process such as sailing, entering into port/departure, etc., which indicate by their position, speed, and so on. The collected big data normally have been treated by unsupervised Machine Learning methods. However, the process is time consuming and lacks consid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ocean engineering Jg. 311; S. 118870
Hauptverfasser: Cai, Zhiyuan, Fan, Qidong, Li, Lecheng, Yu, Long, Li, Congbo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.11.2024
Schlagworte:
ISSN:0029-8018
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Ship behaviors refer to the operational process such as sailing, entering into port/departure, etc., which indicate by their position, speed, and so on. The collected big data normally have been treated by unsupervised Machine Learning methods. However, the process is time consuming and lacks consideration of time continuity. From the unknown data to recognize and recur the ship behaviors is still a complex problem. Hence, this study proposes a universal Meta-trajectory Variable Sliding Window (Meta-VSW) method to provide an efficient and high-fidelity solution. In this method, the ship data were connected into the smallest units by the meta-trajectory coding, and combines with variable sliding windows to achieve fast, continuous and accurate recognition of ship behaviors. Taking an inland-water ship and a marine transport ship as examples, the validity of the method was fulfilled and compared with two commonly used algorithms, Affinity Propagation (AP) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN). It has the fastest computational speed and can effectively classify the behaviors of massive unknown data from different ships. And it has good performance in capturing behavior boundaries, with the recognition accuracy up to 0.9. Then, the method was applied to analyze the operational effectively and fuel consumption. •An efficient and universal Meta-trajectory Variable Sliding Window (Meta-VSW) method for ship behavior recognition is proposed.•The computational speed and accuracy of the Meta-VSW method are analyzed in comparison with commonly used unsupervised algorithms.•The universality and effectiveness of the Meta-VSW method have been validated through the massive unknown data from two different ships.•The results of ship behavior recognition were applied to the analysis of operational efficiency and fuel consumption.
AbstractList Ship behaviors refer to the operational process such as sailing, entering into port/departure, etc., which indicate by their position, speed, and so on. The collected big data normally have been treated by unsupervised Machine Learning methods. However, the process is time consuming and lacks consideration of time continuity. From the unknown data to recognize and recur the ship behaviors is still a complex problem. Hence, this study proposes a universal Meta-trajectory Variable Sliding Window (Meta-VSW) method to provide an efficient and high-fidelity solution. In this method, the ship data were connected into the smallest units by the meta-trajectory coding, and combines with variable sliding windows to achieve fast, continuous and accurate recognition of ship behaviors. Taking an inland-water ship and a marine transport ship as examples, the validity of the method was fulfilled and compared with two commonly used algorithms, Affinity Propagation (AP) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN). It has the fastest computational speed and can effectively classify the behaviors of massive unknown data from different ships. And it has good performance in capturing behavior boundaries, with the recognition accuracy up to 0.9. Then, the method was applied to analyze the operational effectively and fuel consumption. •An efficient and universal Meta-trajectory Variable Sliding Window (Meta-VSW) method for ship behavior recognition is proposed.•The computational speed and accuracy of the Meta-VSW method are analyzed in comparison with commonly used unsupervised algorithms.•The universality and effectiveness of the Meta-VSW method have been validated through the massive unknown data from two different ships.•The results of ship behavior recognition were applied to the analysis of operational efficiency and fuel consumption.
ArticleNumber 118870
Author Cai, Zhiyuan
Yu, Long
Li, Lecheng
Fan, Qidong
Li, Congbo
Author_xml – sequence: 1
  givenname: Zhiyuan
  orcidid: 0000-0002-7096-6658
  surname: Cai
  fullname: Cai, Zhiyuan
  organization: State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
– sequence: 2
  givenname: Qidong
  orcidid: 0000-0002-2814-5784
  surname: Fan
  fullname: Fan, Qidong
  organization: State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
– sequence: 3
  givenname: Lecheng
  surname: Li
  fullname: Li, Lecheng
  organization: State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
– sequence: 4
  givenname: Long
  orcidid: 0000-0002-9177-7741
  surname: Yu
  fullname: Yu, Long
  email: yulone@sjtu.edu.cn
  organization: State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
– sequence: 5
  givenname: Congbo
  surname: Li
  fullname: Li, Congbo
  organization: Marine Design and Research Institute of China, Shanghai, 200011, China
BookMark eNqFkMtOwzAQRb0oEm3hF5B_IMGOm8SRWFBVvEQRC15Ly52MW1etHdlWJf6ehMKGDauZkeZczZwJGTnvkJALznLOeHW5zT2gdujWecGKWc65lDUbkTFjRZNJxuUpmcS4ZYxVFRNj8jh3FI2xYNEl-oRJZ-8vH3SPaeNbanygcWM7usKNPlgfIg0Ifu1sst5R7Vqqu25nQQ_zGTkxehfx_KdOydvtzeviPls-3z0s5ssMBC9SVjRYC14bibKEvsMGjGiQr1jdGoElliujoWD9lpzNSiPqxnAOIAtuGqhATEl1zIXgYwxoVBfsXodPxZkaNKit-tWgBg3qqKEHr_6AYNP36Slou_sfvz7i2D93sBhUHLQBtra3klTr7X8RX5QRgmE
CitedBy_id crossref_primary_10_3390_jmse13050886
crossref_primary_10_1016_j_tra_2025_104427
Cites_doi 10.1016/j.oceaneng.2018.02.060
10.3390/jmse10020139
10.1145/3362161
10.1126/science.1136800
10.1016/j.engappai.2018.01.004
10.1109/TIP.2015.2438540
10.1016/j.scitotenv.2018.09.045
10.3390/jmse11040763
10.1016/j.patcog.2017.12.024
10.3390/s19122706
10.1145/2499621
10.3390/rs15061477
10.1109/ACCESS.2019.2920969
10.1016/j.oceaneng.2023.116434
10.1016/j.jvcir.2015.09.013
10.1016/j.oceaneng.2020.106919
10.1371/journal.pone.0219910
10.1007/s11042-023-15384-z
10.1016/j.eswa.2012.05.060
10.3390/s17081792
10.1016/j.ress.2021.107674
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.oceaneng.2024.118870
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
ExternalDocumentID 10_1016_j_oceaneng_2024_118870
S002980182402208X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
LY6
LY7
R2-
SAC
SET
WUQ
~HD
ID FETCH-LOGICAL-c312t-29e7317f8e85c731e9cf39e1b07df3e5e5bfac20e738445f379f11cc821f9c6c3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001295190100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-8018
IngestDate Sat Nov 29 03:33:00 EST 2025
Tue Nov 18 22:35:03 EST 2025
Sat Sep 14 18:00:29 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Fuel consumption
Operational efficiency
Meta-trajectory
Unsupervised algorithm
Massive unknown data
Ship behavior recognition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-29e7317f8e85c731e9cf39e1b07df3e5e5bfac20e738445f379f11cc821f9c6c3
ORCID 0000-0002-2814-5784
0000-0002-7096-6658
0000-0002-9177-7741
ParticipantIDs crossref_primary_10_1016_j_oceaneng_2024_118870
crossref_citationtrail_10_1016_j_oceaneng_2024_118870
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2024_118870
PublicationCentury 2000
PublicationDate 2024-11-01
2024-11-00
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Ocean engineering
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Shi, Liu, Zhao, Wu (bib26) 2018; 155
Farahnakian, Nicolas, Farahnakian, Nevalainen, Sheikh, Heikkonen, Raduly-Baka (bib6) 2023; 15
Elshourbagy, Hemayed, Fayek (bib5) 2016; 17
Xue (bib21) 2017
Huan, Xie, Guo, Chi, Mao, Li, Pan (bib13) 2019; 14
Zheng, Li, Lu (bib28) 2019; 15
Bulling, Blanke, Schiele (bib2) 2014; 46
Liu, Liu, Ding (bib16) 2020
Moreno-Gutiérrez, Pájaro-Velázquez, Amado-Sánchez, Rodríguez-Moreno, Calderay-Cayetano, Durán-Grados (bib17) 2019; 650
Hoseini, Steen (bib11) 2016
Smith, Aldous, Bucknall (bib1) 2013
Hoseini, Steen (bib12) 2017; 139
Wang, Sun, Ding (bib19) 2015; 33
Tang, Mou, Chen, Zhou (bib18) 2022; 10
Zhang, Hirayama, Ren, Wang, Li (bib24) 2023; 11
Li, Wang, Khatoon, Wang (bib15) 2024; 25
Zhang, Zhang, Zhang, Bao, Zhang, Deng (bib27) 2019; 7
He, Tan, Zhang (bib10) 2018; 70
Yao, Lin, Shi, Ranasinghe (bib23) 2018; 78
Gao, Shi (bib9) 2020; 205
Yan, Ricci, Liu, Sebe (bib22) 2015; 24
de Vries, van Someren (bib4) 2012; 39
Li, Liu, Liu, Xiong, Wu, Kim (bib14) 2017; 17
Frey, Dueck (bib7) 2007; 315
Zhang, Montewka, Manderbacka, Kujala, Hirdaris (bib25) 2021; 213
Cai, Li, Yu, Li, Sun (bib3) 2024; 291
Gao, Shi (bib8) 2019; 19
Wang, Liu, Wang, Zhang (bib20) 2024; 83
de Vries (10.1016/j.oceaneng.2024.118870_bib4) 2012; 39
Zheng (10.1016/j.oceaneng.2024.118870_bib28) 2019; 15
Hoseini (10.1016/j.oceaneng.2024.118870_bib12) 2017; 139
Bulling (10.1016/j.oceaneng.2024.118870_bib2) 2014; 46
Moreno-Gutiérrez (10.1016/j.oceaneng.2024.118870_bib17) 2019; 650
Hoseini (10.1016/j.oceaneng.2024.118870_bib11) 2016
Gao (10.1016/j.oceaneng.2024.118870_bib8) 2019; 19
Zhang (10.1016/j.oceaneng.2024.118870_bib26) 2018; 155
Cai (10.1016/j.oceaneng.2024.118870_bib3) 2024; 291
Li (10.1016/j.oceaneng.2024.118870_bib15) 2024; 25
Smith (10.1016/j.oceaneng.2024.118870_bib1) 2013
Xue (10.1016/j.oceaneng.2024.118870_bib21) 2017
Zhang (10.1016/j.oceaneng.2024.118870_bib25) 2021; 213
Yao (10.1016/j.oceaneng.2024.118870_bib23) 2018; 78
Elshourbagy (10.1016/j.oceaneng.2024.118870_bib5) 2016; 17
Farahnakian (10.1016/j.oceaneng.2024.118870_bib6) 2023; 15
He (10.1016/j.oceaneng.2024.118870_bib10) 2018; 70
Zhang (10.1016/j.oceaneng.2024.118870_bib24) 2023; 11
Yan (10.1016/j.oceaneng.2024.118870_bib22) 2015; 24
Wang (10.1016/j.oceaneng.2024.118870_bib19) 2015; 33
Zhang (10.1016/j.oceaneng.2024.118870_bib27) 2019; 7
Huan (10.1016/j.oceaneng.2024.118870_bib13) 2019; 14
Liu (10.1016/j.oceaneng.2024.118870_bib16) 2020
Frey (10.1016/j.oceaneng.2024.118870_bib7) 2007; 315
Gao (10.1016/j.oceaneng.2024.118870_bib9) 2020; 205
Wang (10.1016/j.oceaneng.2024.118870_bib20) 2024; 83
Li (10.1016/j.oceaneng.2024.118870_bib14) 2017; 17
Tang (10.1016/j.oceaneng.2024.118870_bib18) 2022; 10
References_xml – volume: 33
  start-page: 193
  year: 2015
  end-page: 202
  ident: bib19
  article-title: A self-adaptive weighted affinity propagation clustering for key frames extraction on human action recognition
  publication-title: J. Vis. Commun. Image R.
– volume: 78
  start-page: 252
  year: 2018
  end-page: 266
  ident: bib23
  article-title: Efficient dense labelling of human activity sequences from wearables using fully convolutional networks
  publication-title: Pattern Recog
– volume: 15
  start-page: 1
  year: 2019
  end-page: 20
  ident: bib28
  article-title: Unsupervised learning of human action categories in still images with deep representations
  publication-title: ACM Trans. Multimedia Comput. Commun. Appl.
– year: 2016
  ident: bib11
  article-title: A data mining approach to identify maneuvers in ship in-service measurements
  publication-title: Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering OMAE2016 June 19–24, 2016
– volume: 315
  start-page: 972
  year: 2007
  end-page: 976
  ident: bib7
  article-title: Clustering by passing messages between data points
  publication-title: Science
– volume: 11
  start-page: 763
  year: 2023
  ident: bib24
  article-title: Ship anomalous behavior detection using clustering and deep recurrent neural network
  publication-title: Jmse
– volume: 24
  start-page: 2984
  year: 2015
  end-page: 2995
  ident: bib22
  article-title: Egocentric daily activity recognition via multitask clustering
  publication-title: IEEE Trans. Image Process.
– start-page: 373
  year: 2020
  end-page: 378
  ident: bib16
  article-title: Semi‐supervised long short‐term memory for human action recognition
  publication-title: J. Eng.
– volume: 213
  year: 2021
  ident: bib25
  article-title: A big data analytics method for the evaluation of ship - ship collision risk reflecting hydrometeorological conditions
  publication-title: Reliab. Eng. Syst. Safe.
– volume: 19
  start-page: 2706
  year: 2019
  ident: bib8
  article-title: Ship spatiotemporal key feature point online extraction based on ais multi-sensor data using an improved sliding window algorithm
  publication-title: Sensors
– volume: 139
  year: 2017
  ident: bib12
  article-title: Multivariate time series data mining in ship monitoring database
  publication-title: J. Offshore Mech. Arct.
– volume: 205
  year: 2020
  ident: bib9
  article-title: Ship-handling behavior pattern recognition using ais sub-trajectory clustering analysis based on the T-sne and spectral clustering algorithms
  publication-title: Ocean Eng
– volume: 70
  start-page: 109
  year: 2018
  end-page: 122
  ident: bib10
  article-title: A wavelet tensor fuzzy clustering scheme for multi-sensor human activity recognition
  publication-title: Eng. Appl. Artif. Intel.
– volume: 7
  start-page: 75213
  year: 2019
  end-page: 75226
  ident: bib27
  article-title: Human activity recognition based on motion sensor using U-net
  publication-title: IEEE Access
– volume: 17
  start-page: 1792
  year: 2017
  ident: bib14
  article-title: A dimensionality reduction-based multi-step clustering method for robust vessel trajectory analysis
  publication-title: Sensors
– year: 2013
  ident: bib1
  article-title: Noon report data uncertainty
  publication-title: Low Carbon Shipping Conference London 2013
– year: 2017
  ident: bib21
  article-title: Ship ais data mining and processing method in bridge waters of inland river
  publication-title: 17th COTA (Chinese Overseas Transportation Association) International Conference of Transportation Professionals
– volume: 39
  start-page: 13426
  year: 2012
  end-page: 13439
  ident: bib4
  article-title: Machine learning for vessel trajectories using compression, alignments and domain knowledge
  publication-title: Expert Syst. Appl.
– volume: 83
  start-page: 4887
  year: 2024
  end-page: 4913
  ident: bib20
  article-title: Unsupervised image segmentation evaluation based on feature extraction
  publication-title: Multimed Tools Appl
– volume: 25
  year: 2024
  ident: bib15
  article-title: Road detection by using gradient magnitude image and adaptive thresholding based watershed. Egypt
  publication-title: Inform J.
– volume: 17
  start-page: 227
  year: 2016
  end-page: 237
  ident: bib5
  article-title: Enhanced bag of words using multilevel K -means for human activity recognition. Egypt
  publication-title: Inform J.
– volume: 46
  start-page: 1
  year: 2014
  end-page: 33
  ident: bib2
  article-title: A tutorial on human activity recognition using body-worn inertial sensors
  publication-title: ACM Comput. Surv.
– volume: 10
  start-page: 139
  year: 2022
  ident: bib18
  article-title: Review of ship behavior characteristics in mixed waterborne traffic
  publication-title: J. Mar. Sci. Eng.
– volume: 291
  year: 2024
  ident: bib3
  article-title: Diversity, quality, and quantity of real ship data on the black-box and gray-box prediction models of ship fuel consumption
  publication-title: Ocean Eng
– volume: 14
  year: 2019
  ident: bib13
  article-title: Human action recognition based on hoirm feature fusion and ap clustering bow
  publication-title: PLoS One
– volume: 650
  start-page: 575
  year: 2019
  end-page: 584
  ident: bib17
  article-title: Comparative analysis between different methods for calculating on-board ship's emissions and energy consumption based on operational data
  publication-title: Sci. Total Environ.
– volume: 15
  start-page: 1477
  year: 2023
  ident: bib6
  article-title: A comprehensive study of clustering-based techniques for detecting abnormal vessel behavior
  publication-title: Rem. Sens.
– volume: 155
  start-page: 240
  year: 2018
  end-page: 250
  ident: bib26
  article-title: Data-driven based automatic maritime routing from massive ais trajectories in the face of disparity
  publication-title: Ocean Eng
– year: 2017
  ident: 10.1016/j.oceaneng.2024.118870_bib21
  article-title: Ship ais data mining and processing method in bridge waters of inland river
– volume: 155
  start-page: 240
  year: 2018
  ident: 10.1016/j.oceaneng.2024.118870_bib26
  article-title: Data-driven based automatic maritime routing from massive ais trajectories in the face of disparity
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2018.02.060
– volume: 10
  start-page: 139
  issue: 2
  year: 2022
  ident: 10.1016/j.oceaneng.2024.118870_bib18
  article-title: Review of ship behavior characteristics in mixed waterborne traffic
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse10020139
– volume: 15
  start-page: 1
  issue: 4
  year: 2019
  ident: 10.1016/j.oceaneng.2024.118870_bib28
  article-title: Unsupervised learning of human action categories in still images with deep representations
  publication-title: ACM Trans. Multimedia Comput. Commun. Appl.
  doi: 10.1145/3362161
– volume: 315
  start-page: 972
  issue: 5814
  year: 2007
  ident: 10.1016/j.oceaneng.2024.118870_bib7
  article-title: Clustering by passing messages between data points
  publication-title: Science
  doi: 10.1126/science.1136800
– volume: 70
  start-page: 109
  year: 2018
  ident: 10.1016/j.oceaneng.2024.118870_bib10
  article-title: A wavelet tensor fuzzy clustering scheme for multi-sensor human activity recognition
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2018.01.004
– year: 2013
  ident: 10.1016/j.oceaneng.2024.118870_bib1
  article-title: Noon report data uncertainty
– volume: 24
  start-page: 2984
  issue: 10
  year: 2015
  ident: 10.1016/j.oceaneng.2024.118870_bib22
  article-title: Egocentric daily activity recognition via multitask clustering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2438540
– volume: 17
  start-page: 227
  issue: 2
  year: 2016
  ident: 10.1016/j.oceaneng.2024.118870_bib5
  article-title: Enhanced bag of words using multilevel K -means for human activity recognition. Egypt
  publication-title: Inform J.
– volume: 25
  year: 2024
  ident: 10.1016/j.oceaneng.2024.118870_bib15
  article-title: Road detection by using gradient magnitude image and adaptive thresholding based watershed. Egypt
  publication-title: Inform J.
– start-page: 373
  issue: 13
  year: 2020
  ident: 10.1016/j.oceaneng.2024.118870_bib16
  article-title: Semi‐supervised long short‐term memory for human action recognition
  publication-title: J. Eng.
– volume: 650
  start-page: 575
  year: 2019
  ident: 10.1016/j.oceaneng.2024.118870_bib17
  article-title: Comparative analysis between different methods for calculating on-board ship's emissions and energy consumption based on operational data
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.09.045
– volume: 11
  start-page: 763
  issue: 4
  year: 2023
  ident: 10.1016/j.oceaneng.2024.118870_bib24
  article-title: Ship anomalous behavior detection using clustering and deep recurrent neural network
  publication-title: Jmse
  doi: 10.3390/jmse11040763
– volume: 78
  start-page: 252
  year: 2018
  ident: 10.1016/j.oceaneng.2024.118870_bib23
  article-title: Efficient dense labelling of human activity sequences from wearables using fully convolutional networks
  publication-title: Pattern Recog
  doi: 10.1016/j.patcog.2017.12.024
– volume: 19
  start-page: 2706
  issue: 12
  year: 2019
  ident: 10.1016/j.oceaneng.2024.118870_bib8
  article-title: Ship spatiotemporal key feature point online extraction based on ais multi-sensor data using an improved sliding window algorithm
  publication-title: Sensors
  doi: 10.3390/s19122706
– volume: 46
  start-page: 1
  issue: 3
  year: 2014
  ident: 10.1016/j.oceaneng.2024.118870_bib2
  article-title: A tutorial on human activity recognition using body-worn inertial sensors
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2499621
– volume: 15
  start-page: 1477
  issue: 6
  year: 2023
  ident: 10.1016/j.oceaneng.2024.118870_bib6
  article-title: A comprehensive study of clustering-based techniques for detecting abnormal vessel behavior
  publication-title: Rem. Sens.
  doi: 10.3390/rs15061477
– volume: 7
  start-page: 75213
  year: 2019
  ident: 10.1016/j.oceaneng.2024.118870_bib27
  article-title: Human activity recognition based on motion sensor using U-net
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2920969
– volume: 291
  year: 2024
  ident: 10.1016/j.oceaneng.2024.118870_bib3
  article-title: Diversity, quality, and quantity of real ship data on the black-box and gray-box prediction models of ship fuel consumption
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2023.116434
– volume: 33
  start-page: 193
  year: 2015
  ident: 10.1016/j.oceaneng.2024.118870_bib19
  article-title: A self-adaptive weighted affinity propagation clustering for key frames extraction on human action recognition
  publication-title: J. Vis. Commun. Image R.
  doi: 10.1016/j.jvcir.2015.09.013
– volume: 139
  issue: 6
  year: 2017
  ident: 10.1016/j.oceaneng.2024.118870_bib12
  article-title: Multivariate time series data mining in ship monitoring database
  publication-title: J. Offshore Mech. Arct.
– volume: 205
  year: 2020
  ident: 10.1016/j.oceaneng.2024.118870_bib9
  article-title: Ship-handling behavior pattern recognition using ais sub-trajectory clustering analysis based on the T-sne and spectral clustering algorithms
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2020.106919
– volume: 14
  issue: 7
  year: 2019
  ident: 10.1016/j.oceaneng.2024.118870_bib13
  article-title: Human action recognition based on hoirm feature fusion and ap clustering bow
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0219910
– volume: 83
  start-page: 4887
  issue: 2
  year: 2024
  ident: 10.1016/j.oceaneng.2024.118870_bib20
  article-title: Unsupervised image segmentation evaluation based on feature extraction
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-023-15384-z
– volume: 39
  start-page: 13426
  issue: 18
  year: 2012
  ident: 10.1016/j.oceaneng.2024.118870_bib4
  article-title: Machine learning for vessel trajectories using compression, alignments and domain knowledge
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.05.060
– volume: 17
  start-page: 1792
  issue: 8
  year: 2017
  ident: 10.1016/j.oceaneng.2024.118870_bib14
  article-title: A dimensionality reduction-based multi-step clustering method for robust vessel trajectory analysis
  publication-title: Sensors
  doi: 10.3390/s17081792
– year: 2016
  ident: 10.1016/j.oceaneng.2024.118870_bib11
  article-title: A data mining approach to identify maneuvers in ship in-service measurements
– volume: 213
  year: 2021
  ident: 10.1016/j.oceaneng.2024.118870_bib25
  article-title: A big data analytics method for the evaluation of ship - ship collision risk reflecting hydrometeorological conditions
  publication-title: Reliab. Eng. Syst. Safe.
  doi: 10.1016/j.ress.2021.107674
SSID ssj0006603
Score 2.412394
Snippet Ship behaviors refer to the operational process such as sailing, entering into port/departure, etc., which indicate by their position, speed, and so on. The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 118870
SubjectTerms Fuel consumption
Massive unknown data
Meta-trajectory
Operational efficiency
Ship behavior recognition
Unsupervised algorithm
Title An efficient Meta-VSW method for ship behaviors recognition and application
URI https://dx.doi.org/10.1016/j.oceaneng.2024.118870
Volume 311
WOSCitedRecordID wos001295190100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  issn: 0029-8018
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006603
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYW6KFFQoUW8ZYP3FC2SZys7eOqAvFoaStou-VAlHXGYhHKIrqL6L9nHDuJ26JSDlyiyPJjs_N5PLa_mSFkG9VuHqtCBCoEFuBMLAIBnAUhB4gYWgRxrqpkE_z4WAwG8nOnc177wtxe8bIUd3fy-llFjWUobOM6-wRxN51iAb6j0PGJYsfnfwm-XxqSxqhydNz5CJM8-Hby3WWKrkiFjp9l3fPNrYGjEDlesnel7Vuun5Q5s4c2fGF7e1ERAs4uRr-mLdT27MHql1Exbqt-sK7YgEBpC39Mq8K6mjuBiBPniudp1VialU74WpU5HWr1Im5jhE0Q8pfKtqcHl92x-QwcvWuG6LYNfo-R_cfa1TAKa7LaZVb3k5l-MtvPDJmLeSpRcc_1D3YHh81a3euFrCYBmS_wfMgf_kUPmy-eSXL6miy4vQTtWwwskg6US-SVF2FyicxXYnNhyd-Qo35JG3DQGhzUgoMiOKgBB23AQT1wUAQH9cDxlnzd2z19vx-4dBqBYlE8CWKJkzDiWoBIFb6BVJpJiIYhLzSDFNKhNgE7sZZIklQzLnUUKSXiSEvVU2yZzJbjElYIlRxShqv8kEmRFAnLIUpw38kZz7nWOlwlaf0vZcrFmjcpT66yf8tplbxr2l3baCuPtpC1EDJnM1pbMEN8PdJ27cmjrZOX7QTYILOTmylskhfqdjL6ebPlwHUPOauQQQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+Meta-VSW+method+for+ship+behaviors+recognition+and+application&rft.jtitle=Ocean+engineering&rft.au=Cai%2C+Zhiyuan&rft.au=Fan%2C+Qidong&rft.au=Li%2C+Lecheng&rft.au=Yu%2C+Long&rft.date=2024-11-01&rft.issn=0029-8018&rft.volume=311&rft.spage=118870&rft_id=info:doi/10.1016%2Fj.oceaneng.2024.118870&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2024_118870
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon