Probabilistic prediction of wind speed using an integrated deep belief network optimized by a hybrid multi-objective particle swarm algorithm
An improvement in wind speed prediction is highly necessary for estimating the accuracy as well as stability of wind power. In this work, we proposed probabilistic forecasts of wind speed for predicting the short-term wind speed intervals. The optimal model has been designed by considering three dif...
Uloženo v:
| Vydáno v: | Engineering applications of artificial intelligence Ročník 126; s. 107034 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.11.2023
|
| Témata: | |
| ISSN: | 0952-1976 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | An improvement in wind speed prediction is highly necessary for estimating the accuracy as well as stability of wind power. In this work, we proposed probabilistic forecasts of wind speed for predicting the short-term wind speed intervals. The optimal model has been designed by considering three different modules such as data decomposition, prediction, and optimization. Variational-Mode-Decomposition (VMD) is utilized for decomposing the primary time series data into a suitable number of modes followed by the Deep Belief Network (DBN) for probabilistic wind sped prediction. Here the Gauss-Bernoulli restricted Boltzmann machine (GBRBM) and Bernoulli-Bernoulli RBM (BBRBM) are combined in the DBN where the GBRBM is utilized as the initial RBM to convert the continuity feature of the source data into a binomial distribution feature. Multi-kernel-random-vector-functional-link-network (MKRVFLN) is employed here as supervised learning in DBN to avoid long execution time and get the model into local optima. In the model optimization, a hybrid multi-objective Sine-Cosine particle-swarm-optimization (MOSCPSO)is used to optimize the DBN parameters for obtaining high accuracy and strong stability output simultaneously. It determines the wind speed at 95%, 90%, 85%, and 80% prediction interval nominal confidence (PINC). To validate the proposed model and comparing with other benchmark prediction techniques, the data are taken from the wind farm located at Sotavento, Spain, at different time horizons (30 min–1 h) in different seasons. The results obtained demonstrate that the proposed technique outperforms the further existing model on the basis of prediction accuracy and stability.
•A novel VMD based Deep belief network approach is used for probabilistic wind speed prediction.•The Deep belief Network comprises both GB-RBM and BB-RBM together to improve prediction accuracy.•For final prediction, the mixed kernel RVFLN is employed instead of backpropagation algorithm.•The DBN parameters are optimized using a new hybrid multi-objective particle swarm optimization algorithm.•High prediction interval nominal confidence (PINC) level is achieved in comparison to several benchmark models. |
|---|---|
| AbstractList | An improvement in wind speed prediction is highly necessary for estimating the accuracy as well as stability of wind power. In this work, we proposed probabilistic forecasts of wind speed for predicting the short-term wind speed intervals. The optimal model has been designed by considering three different modules such as data decomposition, prediction, and optimization. Variational-Mode-Decomposition (VMD) is utilized for decomposing the primary time series data into a suitable number of modes followed by the Deep Belief Network (DBN) for probabilistic wind sped prediction. Here the Gauss-Bernoulli restricted Boltzmann machine (GBRBM) and Bernoulli-Bernoulli RBM (BBRBM) are combined in the DBN where the GBRBM is utilized as the initial RBM to convert the continuity feature of the source data into a binomial distribution feature. Multi-kernel-random-vector-functional-link-network (MKRVFLN) is employed here as supervised learning in DBN to avoid long execution time and get the model into local optima. In the model optimization, a hybrid multi-objective Sine-Cosine particle-swarm-optimization (MOSCPSO)is used to optimize the DBN parameters for obtaining high accuracy and strong stability output simultaneously. It determines the wind speed at 95%, 90%, 85%, and 80% prediction interval nominal confidence (PINC). To validate the proposed model and comparing with other benchmark prediction techniques, the data are taken from the wind farm located at Sotavento, Spain, at different time horizons (30 min–1 h) in different seasons. The results obtained demonstrate that the proposed technique outperforms the further existing model on the basis of prediction accuracy and stability.
•A novel VMD based Deep belief network approach is used for probabilistic wind speed prediction.•The Deep belief Network comprises both GB-RBM and BB-RBM together to improve prediction accuracy.•For final prediction, the mixed kernel RVFLN is employed instead of backpropagation algorithm.•The DBN parameters are optimized using a new hybrid multi-objective particle swarm optimization algorithm.•High prediction interval nominal confidence (PINC) level is achieved in comparison to several benchmark models. |
| ArticleNumber | 107034 |
| Author | Dash, Pradipta Kishore Sarangi, Snigdha Bisoi, Ranjeeta |
| Author_xml | – sequence: 1 givenname: Snigdha surname: Sarangi fullname: Sarangi, Snigdha – sequence: 2 givenname: Pradipta Kishore orcidid: 0000-0002-8950-7136 surname: Dash fullname: Dash, Pradipta Kishore email: pkdash.india@gmail.com – sequence: 3 givenname: Ranjeeta surname: Bisoi fullname: Bisoi, Ranjeeta |
| BookMark | eNqFkE1LAzEQhnNQ0Kp_QfIHtmY_3G3BgyJ-QUEPeg6TZFKn7iZLEi31P_ifTalevHgaeIfnHeaZsD3nHTJ2WoppKcr2bDVFt4RxBJpWoqpz2Im62WOHYn5eFeW8aw_YJMaVEKKeNe0h-3oKXoGinmIizceAhnQi77i3fE3O8DgiGv4eyS05OE4u4TJAyplBHLnCntByh2ntwxv3Y6KBPvNWbTjw140KZPjw3icqvFph7v5APkLI13rkcQ1h4NAvfaD0OhyzfQt9xJOfecRebm-er--LxePdw_XVotB1WaWi6nSHZVcq2zZQGW1mtsW5xq4zJv9VawMCKjzXChtjZkrZRs11bdFaBFG39RFrd706-BgDWjkGGiBsZCnkVqRcyV-RcitS7kRm8OIPqCnB1lcKQP3_-OUOx_zcB2GQURM6naWHrEYaT_9VfAMXyZ3w |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2024_116500 crossref_primary_10_1016_j_apenergy_2025_126234 crossref_primary_10_1016_j_ins_2023_120021 crossref_primary_10_1016_j_enconman_2024_118821 crossref_primary_10_1016_j_asoc_2024_112342 crossref_primary_10_1155_2024_2822223 crossref_primary_10_3390_machines12120906 crossref_primary_10_1016_j_apenergy_2025_126615 crossref_primary_10_1016_j_engappai_2025_110862 crossref_primary_10_3390_en17061270 crossref_primary_10_1016_j_apenergy_2024_123745 crossref_primary_10_1016_j_engappai_2023_107461 crossref_primary_10_3390_electronics13224513 crossref_primary_10_1016_j_ecmx_2025_101026 crossref_primary_10_1016_j_eswa_2024_124393 crossref_primary_10_1016_j_swevo_2024_101810 crossref_primary_10_1109_ACCESS_2024_3495559 crossref_primary_10_1016_j_jobe_2024_111170 crossref_primary_10_1080_02626667_2024_2374868 crossref_primary_10_7717_peerj_cs_2393 |
| Cites_doi | 10.3390/polym15010233 10.1016/j.jclepro.2023.135896 10.1162/089976602760128018 10.1016/j.energy.2020.118441 10.1016/j.rser.2013.12.054 10.1016/j.apm.2019.07.001 10.1016/j.swevo.2018.01.011 10.1007/s11721-007-0002-0 10.1016/j.energy.2017.02.150 10.1016/j.enconman.2021.115102 10.1109/4235.996017 10.1016/j.psep.2020.10.048 10.1016/j.jmrt.2021.09.119 10.1016/j.renene.2012.06.012 10.1016/j.knosys.2015.12.022 10.1016/j.compstruc.2004.03.003 10.1016/j.eswa.2017.01.004 10.1109/TPWRS.2013.2287871 10.1016/j.jmrt.2021.06.033 10.1109/TMAG.2009.2012586 10.1016/j.renene.2022.07.123 10.1016/j.renene.2020.03.170 10.1109/TPWRS.2020.2971607 10.1016/j.renene.2015.06.004 10.1080/01621459.1972.10481224 10.1016/j.apenergy.2016.07.113 10.1016/j.apenergy.2016.08.108 10.1016/j.renene.2019.04.157 10.1162/neco.2006.18.7.1527 10.1109/TPWRS.2015.2393880 10.1109/TITS.2011.2106209 10.1007/s13042-021-01340-6 10.1016/j.eswa.2021.114974 10.1016/j.apenergy.2017.10.031 10.1016/j.eswa.2011.02.176 10.1109/TSTE.2015.2434387 10.3390/coatings11121476 10.3390/polym14091893 10.1007/s11633-017-1086-7 10.1016/j.enconman.2018.01.010 10.1016/j.psep.2020.11.007 10.1016/j.csite.2021.101671 10.1109/TSTE.2011.2182215 10.1016/j.psep.2020.05.029 10.1016/j.energy.2023.127526 10.1109/TNN.2010.2096824 10.1016/j.asoc.2017.12.010 10.1016/j.renene.2015.10.014 10.1016/j.apenergy.2018.07.032 10.1109/TIA.2012.2199449 10.1016/j.neucom.2016.03.061 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2023.107034 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| ExternalDocumentID | 10_1016_j_engappai_2023_107034 S0952197623012186 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABMAC ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AATTM AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c312t-27c7e171bf64a2dcd8f6e9ce77dd0383cda0a2e5cbe4dd8bbf4b9c3feffea0363 |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001077157000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Tue Nov 18 22:43:12 EST 2025 Sat Nov 29 07:07:52 EST 2025 Tue Dec 03 03:44:32 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Variational mode decomposition Wind speed prediction Prediction IntervalsPrediction interval nominal confidence Deep belief network Multi-kernel-random-vector-functional-link-network Multi-objective sine-cosine particle-swarm-optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-27c7e171bf64a2dcd8f6e9ce77dd0383cda0a2e5cbe4dd8bbf4b9c3feffea0363 |
| ORCID | 0000-0002-8950-7136 |
| ParticipantIDs | crossref_primary_10_1016_j_engappai_2023_107034 crossref_citationtrail_10_1016_j_engappai_2023_107034 elsevier_sciencedirect_doi_10_1016_j_engappai_2023_107034 |
| PublicationCentury | 2000 |
| PublicationDate | November 2023 2023-11-00 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: November 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Khosravi, Nahavandi, Creighton, Atiya (bib27) 2011; 22 Wan, Xu, Pinson, Dong, Wong (bib52) 2014; 29 Pareto (bib43) 1964; vol. 1 Winkler (bib57) 1972; 67 Bengio, Lamblin, Popovici, Larochelle (bib3) 2007; 19 Chen, Lai, Ng, Pan, Lai, Zhong (bib5) 2021; 12 Elsheikh (bib9) 2021; 28 Elsheikh (bib11) 2021; 14 Elsheikh (bib14) 2023; 15 Liu, Chen, Tian, Li (bib30) 2012; 48 Bhaskar, Singh (bib4) 2012; 3 Eunsung, Son (bib16) 2020; 155 Edgeworth (bib7) 1881 Hinton (bib19) 2002; 14 Mirjalili (bib37) 2016; 96 Suo, Peng, Song, Zhang, Wang, Fu, Nazir (bib50) 2023; 276 Hinton, Osindero, Teh (bib20) 2006; 18 Xiao, Shao, Wang, Zhang, Lu (bib59) 2016; 180 Li, Jin (bib28) 2018; 228 Mishra, Dash (bib38) 2018; 15 Xiao, Shao, Wang, Zhang, Lu (bib60) 2016; 180 Salakhutdinov, Hinton (bib48) 2007 Pinson, Madsen, Nielsen, Papaefthymiou, Kl€ockl (bib44) 2009 An, Jiang, Liu, Zhao (bib2) 2011; 38 Liu, Mi, Li (bib32) 2018; 159 Khosravi, Mazloumi, Nahavandi, Creighton, Van Lint (bib26) 2011; 12 Lu, Ireland, Lewis (bib34) 2009; 45 Naik, Satapathy, Dash (bib40) 2018; 70 Poli, Kennedy, Blackwell (bib45) 2007 Elsheikh (bib12) 2022; 49 Elsheikh (bib10) 2021; 149 Al-Qaness, Mohammed (bib1) 2021; 149 Saba, Elsheikh (bib47) 2020; 141 Kavousi-Fard, Abdollah, SaeidNahavandi (bib24) 2015; 31 Shrivastava, Khosravi, Panigrahi (bib49) 2015; 99 Jung, Broadwater (bib23) 2014; 31 Zhang, Wei, Xie, Shen, Zhang (bib63) 2016; 205 Men, Yee, Lien, Wen, Chen (bib36) 2016; 87 Yisheng, DuanYanjie, Kang, Li, Wang (bib61) 2015; 16 Elsheikh, Abd Elaziz, Vendan (bib13) 2022 Wu, Wang, Chen, Du, Yang (bib58) 2020; 146 Hong, Satriani (bib21) 2020; 209 Wang, Zhao, Wu, Wu (bib54) 2017; 74 Zhang, Chen, Gan, Chen (bib62) 2015; 6 Liu, Jiang, Wang, Zhang (bib33) 2021; 177 Deb, Pratap, Agarwal, Meyarivan (bib6) 2002; 6 He, Chen, Shang, Li, Li, Xu (bib17) 2019; 76 Liu, Shi, Yang, Lee (bib29) 2012; 48 Luh, Chueh (bib35) 2004; 82 Khoshaim (bib25) 2021; 11 Hua, Zhang, Peng, Ji, Nazir (bib22) 2022; 252 Elsheikh (bib8) 2021; 14 Hilton (bib18) 2002; 14 Tian, Shi (bib51) 2018; 41 Moustafa, Elsheikh (bib39) 2023; 15 Nix, Weigend (bib42) 1994; 1 Zhang, Liu, Yan, Han, Li, Long (bib64) 2020; 35 Naik, Dash, Dhar (bib41) 2019; vol. 136 Zhang, Ji, Hua, Ma, Nazir, Peng (bib65) 2022; 197 Elsheikh (bib15) 2023 Wang, Heng, Xiao, Wang (bib55) 2017; 125 Liu, Tian, Liang, Li (bib31) 2015; 83 Ren, Suganthan, Srikanth, Amaratunga (bib46) 2016; vol. 367 Wang, Du, Niu, Yang (bib56) 2017; 208 Wang, Wang, Li, Peng, Liu (bib53) 2016; 182 Jung (10.1016/j.engappai.2023.107034_bib23) 2014; 31 Deb (10.1016/j.engappai.2023.107034_bib6) 2002; 6 Poli (10.1016/j.engappai.2023.107034_bib45) 2007 Edgeworth (10.1016/j.engappai.2023.107034_bib7) 1881 Naik (10.1016/j.engappai.2023.107034_bib40) 2018; 70 Eunsung (10.1016/j.engappai.2023.107034_bib16) 2020; 155 Xiao (10.1016/j.engappai.2023.107034_bib59) 2016; 180 Khosravi (10.1016/j.engappai.2023.107034_bib26) 2011; 12 Moustafa (10.1016/j.engappai.2023.107034_bib39) 2023; 15 Khosravi (10.1016/j.engappai.2023.107034_bib27) 2011; 22 Pareto (10.1016/j.engappai.2023.107034_bib43) 1964; vol. 1 Xiao (10.1016/j.engappai.2023.107034_bib60) 2016; 180 Zhang (10.1016/j.engappai.2023.107034_bib64) 2020; 35 Elsheikh (10.1016/j.engappai.2023.107034_bib10) 2021; 149 Mirjalili (10.1016/j.engappai.2023.107034_bib37) 2016; 96 Liu (10.1016/j.engappai.2023.107034_bib30) 2012; 48 Elsheikh (10.1016/j.engappai.2023.107034_bib15) 2023 Yisheng (10.1016/j.engappai.2023.107034_bib61) 2015; 16 Wang (10.1016/j.engappai.2023.107034_bib55) 2017; 125 Pinson (10.1016/j.engappai.2023.107034_bib44) 2009 Wu (10.1016/j.engappai.2023.107034_bib58) 2020; 146 He (10.1016/j.engappai.2023.107034_bib17) 2019; 76 Zhang (10.1016/j.engappai.2023.107034_bib62) 2015; 6 Hong (10.1016/j.engappai.2023.107034_bib21) 2020; 209 Liu (10.1016/j.engappai.2023.107034_bib32) 2018; 159 Wang (10.1016/j.engappai.2023.107034_bib56) 2017; 208 Hua (10.1016/j.engappai.2023.107034_bib22) 2022; 252 Hinton (10.1016/j.engappai.2023.107034_bib19) 2002; 14 Salakhutdinov (10.1016/j.engappai.2023.107034_bib48) 2007 Hinton (10.1016/j.engappai.2023.107034_bib20) 2006; 18 Khoshaim (10.1016/j.engappai.2023.107034_bib25) 2021; 11 Elsheikh (10.1016/j.engappai.2023.107034_bib8) 2021; 14 Mishra (10.1016/j.engappai.2023.107034_bib38) 2018; 15 Hilton (10.1016/j.engappai.2023.107034_bib18) 2002; 14 Zhang (10.1016/j.engappai.2023.107034_bib63) 2016; 205 Tian (10.1016/j.engappai.2023.107034_bib51) 2018; 41 Elsheikh (10.1016/j.engappai.2023.107034_bib9) 2021; 28 Chen (10.1016/j.engappai.2023.107034_bib5) 2021; 12 Liu (10.1016/j.engappai.2023.107034_bib31) 2015; 83 Naik (10.1016/j.engappai.2023.107034_bib41) 2019; vol. 136 Saba (10.1016/j.engappai.2023.107034_bib47) 2020; 141 Ren (10.1016/j.engappai.2023.107034_bib46) 2016; vol. 367 Suo (10.1016/j.engappai.2023.107034_bib50) 2023; 276 Wan (10.1016/j.engappai.2023.107034_bib52) 2014; 29 Liu (10.1016/j.engappai.2023.107034_bib29) 2012; 48 Men (10.1016/j.engappai.2023.107034_bib36) 2016; 87 Zhang (10.1016/j.engappai.2023.107034_bib65) 2022; 197 Bengio (10.1016/j.engappai.2023.107034_bib3) 2007; 19 Elsheikh (10.1016/j.engappai.2023.107034_bib11) 2021; 14 Elsheikh (10.1016/j.engappai.2023.107034_bib14) 2023; 15 Nix (10.1016/j.engappai.2023.107034_bib42) 1994; 1 Kavousi-Fard (10.1016/j.engappai.2023.107034_bib24) 2015; 31 Al-Qaness (10.1016/j.engappai.2023.107034_bib1) 2021; 149 Elsheikh (10.1016/j.engappai.2023.107034_bib12) 2022; 49 Bhaskar (10.1016/j.engappai.2023.107034_bib4) 2012; 3 Wang (10.1016/j.engappai.2023.107034_bib53) 2016; 182 Elsheikh (10.1016/j.engappai.2023.107034_bib13) 2022 Li (10.1016/j.engappai.2023.107034_bib28) 2018; 228 Liu (10.1016/j.engappai.2023.107034_bib33) 2021; 177 Shrivastava (10.1016/j.engappai.2023.107034_bib49) 2015; 99 Lu (10.1016/j.engappai.2023.107034_bib34) 2009; 45 Luh (10.1016/j.engappai.2023.107034_bib35) 2004; 82 An (10.1016/j.engappai.2023.107034_bib2) 2011; 38 Wang (10.1016/j.engappai.2023.107034_bib54) 2017; 74 Winkler (10.1016/j.engappai.2023.107034_bib57) 1972; 67 |
| References_xml | – volume: 49 year: 2022 ident: bib12 article-title: Low-cost bilayered structure for improving the performance of solar stills: performance/cost analysis and water yield prediction using machine learning publication-title: Sustain. Energy Technol. Assessments – volume: 48 start-page: 1136 year: 2012 end-page: 1141 ident: bib29 article-title: Short-term wind-power prediction based on wavelet transform support vector machine and statistic-characteristics analysis publication-title: IEEE Trans. Ind. Appl. – volume: 180 start-page: 213 year: 2016 end-page: 233 ident: bib59 article-title: Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting publication-title: Appl. Energy – volume: 141 start-page: 1 year: 2020 end-page: 8 ident: bib47 article-title: Forecasting the prevalence of COVID-19 outbreak in Egypt using nonlinear autoregressive artificial neural networks publication-title: Process Saf. Environ. Protect. – volume: 19 start-page: 153 year: 2007 ident: bib3 article-title: Greedy layer-wise training of deep networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 146 start-page: 149 year: 2020 end-page: 165 ident: bib58 article-title: A novel hybrid system based on multi-objective optimization for wind speed forecasting publication-title: Renew. Energy – volume: 205 start-page: 53 year: 2016 end-page: 63 ident: bib63 article-title: “ Direct interval forecasting of wind speed using radial basis function neural networks in a multi-objective optimization framework” publication-title: Neurocomputing – start-page: 51 year: 2009 end-page: 62 ident: bib44 article-title: From Probabilistic Forecasts to Statistical Scenarios of Short-Term Wind Power Production” – volume: 29 start-page: 1033 year: 2014 end-page: 1044 ident: bib52 article-title: Probabilistic forecasting of windpower generation using extreme learning machine publication-title: IEEE Trans. Power Syst. – volume: 208 start-page: 344 year: 2017 end-page: 360 ident: bib56 article-title: A novel hybrid system based on a new proposed algorithm-Multi-Objective Whale Optimization Algorithm for wind speed forecasting publication-title: Appl. Energy – volume: 209 year: 2020 ident: bib21 article-title: Day-ahead spatiotemporal wind speed forecasting using robust design-based deep learning neural network publication-title: Energy – volume: 180 start-page: 213 year: 2016 end-page: 233 ident: bib60 article-title: Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting publication-title: Appl. Energy – volume: 12 start-page: 537 year: 2011 end-page: 547 ident: bib26 article-title: Prediction intervals to account for uncertainties in travel time prediction publication-title: IEEE Trans. Intell. Transport. Syst. – volume: 15 start-page: 66 year: 2018 end-page: 83 ident: bib38 article-title: Short term wind speed prediction using multiple kernel pseudo inverse neural network publication-title: Int. J. Autom. Comput. – volume: 22 start-page: 337 year: 2011 end-page: 346 ident: bib27 article-title: Lower upper bound estimation method for construction of neural network-based prediction intervals publication-title: IEEE Transact. Neural Networks Learn. Syst. – volume: 48 start-page: 545 year: 2012 end-page: 556 ident: bib30 article-title: A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks publication-title: Renew. Energy – volume: 159 start-page: 54 year: 2018 end-page: 64 ident: bib32 article-title: Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM publication-title: Energy Convers. Manag. – volume: 38 start-page: 11280 year: 2011 end-page: 11285 ident: bib2 article-title: Wind farm power prediction based on wavelet decomposition and chaotic time series publication-title: Expert Syst. Appl. – volume: 177 year: 2021 ident: bib33 article-title: Ensemble forecasting system for short-term wind speed forecasting based on optimal sub-model selection and multi-objective version of mayfly optimization algorithm publication-title: Expert Syst. Appl. – volume: 67 start-page: 187 year: 1972 end-page: 191 ident: bib57 article-title: A decision-theoretic approach to interval estimation publication-title: J. Am. Stat. Assoc. – year: 1881 ident: bib7 article-title: Mathematical Physics – volume: 99 year: 2015 ident: bib49 article-title: Prediction interval estimation ofelectricity prices using PSO tuned support vector machines publication-title: IEEE Trans. Ind. Inf. – volume: 149 start-page: 399 year: 2021 end-page: 409 ident: bib1 article-title: Efficient artificial intelligence forecasting models for COVID-19 outbreak in Russia and Brazil publication-title: Process Saf. Environ. Protect. – volume: 12 start-page: 2579 year: 2021 end-page: 2590 ident: bib5 article-title: A stochastic sensitivity-based multi-objective optimization method for short-term wind speed interval prediction publication-title: International Journal of Machine Learning and Cybernetics – volume: 16 start-page: 865 year: 2015 end-page: 873 ident: bib61 article-title: Traffic flow prediction with big data: a deep learning approach publication-title: IEEE Trans. Intell. Transport. Syst. – volume: vol. 136 start-page: 701 year: 2019 end-page: 731 ident: bib41 publication-title: A Multi-Objective Wind Speed and Wind Power Prediction Interval Forecasting Using Variational Modes Decomposition Based Multi-Kernel Robust Ridge Regression” – volume: 76 start-page: 717 year: 2019 end-page: 740 ident: bib17 article-title: A novel wind speed forecasting model based on moving window and multi-objective particle swarm optimization algorithm publication-title: Appl. Math. Model. – volume: vol. 1 year: 1964 ident: bib43 publication-title: Coursd'economiepolitique – volume: 11 start-page: 1476 year: 2021 ident: bib25 article-title: An optimized multilayer perceptrons model using grey wolf optimizer to predict mechanical and microstructural properties of friction stir processed aluminum alloy reinforced by nanoparticles publication-title: Coatings – start-page: 1249 year: 2007 end-page: 1256 ident: bib48 article-title: Using deep belief nets to learn covariance kernels for Gaussian processes publication-title: Proc. 20th Int. Conf. Neural Inf.Process. Syst. – volume: 3 start-page: 306 year: 2012 end-page: 315 ident: bib4 article-title: AWNN-assisted wind power forecasting using feed-forward neural network publication-title: IEEE Trans. Sustain. Syst. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib6 article-title: A fast and elitist multiobjectivegenetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 70 start-page: 1167 year: 2018 end-page: 1188 ident: bib40 article-title: Short-term wind speed and wind power prediction using hybrid empirical mode decomposition and kernel ridge regression publication-title: Appl. Soft Comput. – volume: 35 start-page: 2549 year: 2020 end-page: 2560 ident: bib64 article-title: Improved deep mixture density network for regional wind power probabilistic forecasting publication-title: IEEE Trans. Power Syst. – volume: 276 year: 2023 ident: bib50 article-title: Wind speed prediction by a swarm intelligence based deep learning model via signal decomposition and parameter optimization using improved chimp optimization algorithm publication-title: Energy – volume: 182 start-page: 80 year: 2016 end-page: 93 ident: bib53 article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach publication-title: Appl. Energy – volume: 82 start-page: 829 year: 2004 end-page: 844 ident: bib35 article-title: Multi-objective optimal design of truss structure with immune Algorithm publication-title: Comput. Struct. – volume: 125 start-page: 591 year: 2017 end-page: 613 ident: bib55 article-title: Research and application of a combined modelbased on multi-objective optimization for multi-step ahead wind speed forecasting publication-title: Energy – year: 2023 ident: bib15 article-title: Water distillation tower: experimental investigation, economic assessment, and performance prediction using optimized machine-learning model publication-title: J. Clean. Prod. – volume: 149 start-page: 223 year: 2021 end-page: 233 ident: bib10 article-title: Deep learning-based forecasting model for COVID-19 outbreak in Saudi Arabia publication-title: Process Saf. Environ. Protect. – volume: 1 start-page: 55 year: 1994 end-page: 60 ident: bib42 article-title: Estimating the mean and variance of the target probability distribution, in: neural Networks publication-title: IEEE World Congress on Computational Intelligence – volume: 87 start-page: 203 year: 2016 end-page: 211 ident: bib36 article-title: Short-term wind speed and power forecasting using an ensemble of mixture density neural networks publication-title: Renew. Energy – volume: 14 start-page: 1771 year: 2002 end-page: 1800 ident: bib19 article-title: Training products of experts by minimizing contrastive divergence publication-title: Neural Comput. – volume: 14 start-page: 1771 year: 2002 end-page: 1800 ident: bib18 article-title: Training products of experts by minimizing contrastive divergence publication-title: Neural Comput. – start-page: 33 year: 2007 end-page: 57 ident: bib45 article-title: Particle swarm optimization publication-title: Swarm Intell – volume: 6 start-page: 1416 year: 2015 end-page: 1425 ident: bib62 article-title: Predictive deep Boltzmann machine for multiperiod wind speed forecasting publication-title: IEEE Trans. Sustain. Energy – volume: vol. 367 start-page: 1028 year: 2016 end-page: 1093 ident: bib46 publication-title: Random Vector Functional Link Network for Short-Term Electricity Load Demand Forecasting” – volume: 197 start-page: 668 year: 2022 end-page: 682 ident: bib65 article-title: ““Evolutionary quantile regression gated recurrent unit network based on variational mode decomposition, improved whale optimization algorithm for probabilistic short-term wind speed prediction “ publication-title: Renew. Energy – volume: 155 start-page: 1060 year: 2020 end-page: 1069 ident: bib16 article-title: Theoretical energy storage system sizing method and performance analysis for wind power forecast uncertainty management publication-title: Renew. Energy – volume: 41 start-page: 49 year: 2018 end-page: 68 ident: bib51 article-title: “MPSO: modified particle swarm optimization and its applications” publication-title: Swarmand evolutionary computation – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: bib20 article-title: A fast learning algorithm for deep belief Nets publication-title: Neural Comput. – volume: 15 start-page: 3622 year: 2023 end-page: 3634 ident: bib14 article-title: Fine-tuned artificial intelligence model using pigeon optimizer for prediction of residual stresses during turning of Inconel 718 publication-title: J. Mater. Res. Technol. – volume: 14 start-page: 1893 year: 2021 ident: bib8 article-title: Bistable morphing composites for energy-harvesting applications publication-title: Polymers – volume: 14 start-page: 298 year: 2021 end-page: 311 ident: bib11 article-title: Modeling of drilling process of GFRP composite using a hybrid random vector functional link network/parasitism-predation algorithm publication-title: J. Mater. Res. Technol. – volume: 45 start-page: 1072 year: 2009 end-page: 1075 ident: bib34 article-title: Multi-objective optimization in high frequency electromagnetics-an effective technique for smart mobile terminal antenna (SMTA) design publication-title: IEEE Trans. Magn. – volume: 15 start-page: 233 year: 2023 ident: bib39 article-title: Predicting characteristics of dissimilar laser welded polymeric joints using a multi-layer perceptrons model coupled with Archimedes optimizer publication-title: Polymers – volume: 74 start-page: 96 year: 2017 end-page: 104 ident: bib54 article-title: Multi-objective optimization: a methodfor selecting the optimal solution from Pareto non-inferior solutions publication-title: Expert Syst. Appl. – volume: 252 year: 2022 ident: bib22 article-title: “Integrated framework of extreme learning machine (ELM) based on improved atom search optimization for short-term wind speed prediction “ publication-title: Energy Convers. Manag. – volume: 28 year: 2021 ident: bib9 article-title: Productivity forecasting of solar distiller integrated with evacuated tubes and external condenser using artificial intelligence model and moth-flame optimizer publication-title: Case Stud. Therm. Eng. – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: bib37 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowl. Base Syst. – volume: 31 start-page: 18 year: 2015 end-page: 26 ident: bib24 article-title: A new fuzzy-based combined prediction interval for wind power forecasting publication-title: IEEE Trans. Power Syst. – volume: 228 start-page: 2207 year: 2018 end-page: 2220 ident: bib28 article-title: ” A wind speed interval prediction system based on multi-objective optimization for machine learning method” publication-title: Appl. Energy – volume: 31 start-page: 762 year: 2014 end-page: 777 ident: bib23 article-title: Current status and future advances for windspeed and power forecasting publication-title: Renew. Sustain. Energy Rev. – start-page: 1 year: 2022 end-page: 18 ident: bib13 article-title: Modeling ultrasonic welding of polymers using an optimized artificial intelligence model using a gradient-based optimizer publication-title: Weld. World – volume: 83 start-page: 66 year: 2015 end-page: 1075 ident: bib31 article-title: New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, mind evolutionary algorithm and artificial neural networks publication-title: Renew. Energy – start-page: 1 year: 2022 ident: 10.1016/j.engappai.2023.107034_bib13 article-title: Modeling ultrasonic welding of polymers using an optimized artificial intelligence model using a gradient-based optimizer publication-title: Weld. World – volume: 15 start-page: 233 issue: 1 year: 2023 ident: 10.1016/j.engappai.2023.107034_bib39 article-title: Predicting characteristics of dissimilar laser welded polymeric joints using a multi-layer perceptrons model coupled with Archimedes optimizer publication-title: Polymers doi: 10.3390/polym15010233 – year: 2023 ident: 10.1016/j.engappai.2023.107034_bib15 article-title: Water distillation tower: experimental investigation, economic assessment, and performance prediction using optimized machine-learning model publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2023.135896 – volume: 14 start-page: 1771 issue: 8 year: 2002 ident: 10.1016/j.engappai.2023.107034_bib18 article-title: Training products of experts by minimizing contrastive divergence publication-title: Neural Comput. doi: 10.1162/089976602760128018 – start-page: 1249 year: 2007 ident: 10.1016/j.engappai.2023.107034_bib48 article-title: Using deep belief nets to learn covariance kernels for Gaussian processes publication-title: Proc. 20th Int. Conf. Neural Inf.Process. Syst. – volume: 16 start-page: 865 issue: 2 year: 2015 ident: 10.1016/j.engappai.2023.107034_bib61 article-title: Traffic flow prediction with big data: a deep learning approach publication-title: IEEE Trans. Intell. Transport. Syst. – volume: vol. 1 year: 1964 ident: 10.1016/j.engappai.2023.107034_bib43 – volume: 209 year: 2020 ident: 10.1016/j.engappai.2023.107034_bib21 article-title: Day-ahead spatiotemporal wind speed forecasting using robust design-based deep learning neural network publication-title: Energy doi: 10.1016/j.energy.2020.118441 – volume: 31 start-page: 762 year: 2014 ident: 10.1016/j.engappai.2023.107034_bib23 article-title: Current status and future advances for windspeed and power forecasting publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.12.054 – volume: 76 start-page: 717 year: 2019 ident: 10.1016/j.engappai.2023.107034_bib17 article-title: A novel wind speed forecasting model based on moving window and multi-objective particle swarm optimization algorithm publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2019.07.001 – volume: 41 start-page: 49 year: 2018 ident: 10.1016/j.engappai.2023.107034_bib51 article-title: “MPSO: modified particle swarm optimization and its applications” publication-title: Swarmand evolutionary computation doi: 10.1016/j.swevo.2018.01.011 – start-page: 33 year: 2007 ident: 10.1016/j.engappai.2023.107034_bib45 article-title: Particle swarm optimization publication-title: Swarm Intell doi: 10.1007/s11721-007-0002-0 – volume: 125 start-page: 591 year: 2017 ident: 10.1016/j.engappai.2023.107034_bib55 article-title: Research and application of a combined modelbased on multi-objective optimization for multi-step ahead wind speed forecasting publication-title: Energy doi: 10.1016/j.energy.2017.02.150 – volume: 252 year: 2022 ident: 10.1016/j.engappai.2023.107034_bib22 article-title: “Integrated framework of extreme learning machine (ELM) based on improved atom search optimization for short-term wind speed prediction “ publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.115102 – year: 1881 ident: 10.1016/j.engappai.2023.107034_bib7 – volume: 1 start-page: 55 year: 1994 ident: 10.1016/j.engappai.2023.107034_bib42 article-title: Estimating the mean and variance of the target probability distribution, in: neural Networks publication-title: IEEE World Congress on Computational Intelligence – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.engappai.2023.107034_bib6 article-title: A fast and elitist multiobjectivegenetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 149 start-page: 223 year: 2021 ident: 10.1016/j.engappai.2023.107034_bib10 article-title: Deep learning-based forecasting model for COVID-19 outbreak in Saudi Arabia publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2020.10.048 – volume: 19 start-page: 153 year: 2007 ident: 10.1016/j.engappai.2023.107034_bib3 article-title: Greedy layer-wise training of deep networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 15 start-page: 3622 year: 2023 ident: 10.1016/j.engappai.2023.107034_bib14 article-title: Fine-tuned artificial intelligence model using pigeon optimizer for prediction of residual stresses during turning of Inconel 718 publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2021.09.119 – volume: 48 start-page: 545 year: 2012 ident: 10.1016/j.engappai.2023.107034_bib30 article-title: A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks publication-title: Renew. Energy doi: 10.1016/j.renene.2012.06.012 – volume: 96 start-page: 120 year: 2016 ident: 10.1016/j.engappai.2023.107034_bib37 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2015.12.022 – volume: 82 start-page: 829 year: 2004 ident: 10.1016/j.engappai.2023.107034_bib35 article-title: Multi-objective optimal design of truss structure with immune Algorithm publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2004.03.003 – volume: 74 start-page: 96 year: 2017 ident: 10.1016/j.engappai.2023.107034_bib54 article-title: Multi-objective optimization: a methodfor selecting the optimal solution from Pareto non-inferior solutions publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.01.004 – volume: 29 start-page: 1033 issue: 3 year: 2014 ident: 10.1016/j.engappai.2023.107034_bib52 article-title: Probabilistic forecasting of windpower generation using extreme learning machine publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2013.2287871 – volume: 14 start-page: 298 year: 2021 ident: 10.1016/j.engappai.2023.107034_bib11 article-title: Modeling of drilling process of GFRP composite using a hybrid random vector functional link network/parasitism-predation algorithm publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2021.06.033 – volume: 45 start-page: 1072 issue: 3 year: 2009 ident: 10.1016/j.engappai.2023.107034_bib34 article-title: Multi-objective optimization in high frequency electromagnetics-an effective technique for smart mobile terminal antenna (SMTA) design publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2009.2012586 – volume: vol. 367 start-page: 1028 year: 2016 ident: 10.1016/j.engappai.2023.107034_bib46 – volume: 197 start-page: 668 year: 2022 ident: 10.1016/j.engappai.2023.107034_bib65 article-title: ““Evolutionary quantile regression gated recurrent unit network based on variational mode decomposition, improved whale optimization algorithm for probabilistic short-term wind speed prediction “ publication-title: Renew. Energy doi: 10.1016/j.renene.2022.07.123 – volume: 155 start-page: 1060 year: 2020 ident: 10.1016/j.engappai.2023.107034_bib16 article-title: Theoretical energy storage system sizing method and performance analysis for wind power forecast uncertainty management publication-title: Renew. Energy doi: 10.1016/j.renene.2020.03.170 – volume: 35 start-page: 2549 issue: 4 year: 2020 ident: 10.1016/j.engappai.2023.107034_bib64 article-title: Improved deep mixture density network for regional wind power probabilistic forecasting publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2020.2971607 – volume: 83 start-page: 66 year: 2015 ident: 10.1016/j.engappai.2023.107034_bib31 article-title: New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, mind evolutionary algorithm and artificial neural networks publication-title: Renew. Energy doi: 10.1016/j.renene.2015.06.004 – volume: 67 start-page: 187 issue: 337 year: 1972 ident: 10.1016/j.engappai.2023.107034_bib57 article-title: A decision-theoretic approach to interval estimation publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1972.10481224 – volume: 180 start-page: 213 year: 2016 ident: 10.1016/j.engappai.2023.107034_bib59 article-title: Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.07.113 – volume: 182 start-page: 80 year: 2016 ident: 10.1016/j.engappai.2023.107034_bib53 article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.08.108 – volume: 146 start-page: 149 year: 2020 ident: 10.1016/j.engappai.2023.107034_bib58 article-title: A novel hybrid system based on multi-objective optimization for wind speed forecasting publication-title: Renew. Energy doi: 10.1016/j.renene.2019.04.157 – volume: 18 start-page: 1527 year: 2006 ident: 10.1016/j.engappai.2023.107034_bib20 article-title: A fast learning algorithm for deep belief Nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 14 start-page: 1771 issue: 8 year: 2002 ident: 10.1016/j.engappai.2023.107034_bib19 article-title: Training products of experts by minimizing contrastive divergence publication-title: Neural Comput. doi: 10.1162/089976602760128018 – volume: 31 start-page: 18 issue: 1 year: 2015 ident: 10.1016/j.engappai.2023.107034_bib24 article-title: A new fuzzy-based combined prediction interval for wind power forecasting publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2015.2393880 – volume: 12 start-page: 537 issue: 2 year: 2011 ident: 10.1016/j.engappai.2023.107034_bib26 article-title: Prediction intervals to account for uncertainties in travel time prediction publication-title: IEEE Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2011.2106209 – volume: 12 start-page: 2579 issue: 9 year: 2021 ident: 10.1016/j.engappai.2023.107034_bib5 article-title: A stochastic sensitivity-based multi-objective optimization method for short-term wind speed interval prediction publication-title: International Journal of Machine Learning and Cybernetics doi: 10.1007/s13042-021-01340-6 – volume: 177 year: 2021 ident: 10.1016/j.engappai.2023.107034_bib33 article-title: Ensemble forecasting system for short-term wind speed forecasting based on optimal sub-model selection and multi-objective version of mayfly optimization algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114974 – volume: vol. 136 start-page: 701 year: 2019 ident: 10.1016/j.engappai.2023.107034_bib41 – volume: 208 start-page: 344 year: 2017 ident: 10.1016/j.engappai.2023.107034_bib56 article-title: A novel hybrid system based on a new proposed algorithm-Multi-Objective Whale Optimization Algorithm for wind speed forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.10.031 – volume: 180 start-page: 213 year: 2016 ident: 10.1016/j.engappai.2023.107034_bib60 article-title: Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.07.113 – volume: 38 start-page: 11280 issue: 9 year: 2011 ident: 10.1016/j.engappai.2023.107034_bib2 article-title: Wind farm power prediction based on wavelet decomposition and chaotic time series publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.02.176 – volume: 6 start-page: 1416 year: 2015 ident: 10.1016/j.engappai.2023.107034_bib62 article-title: Predictive deep Boltzmann machine for multiperiod wind speed forecasting publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2015.2434387 – volume: 11 start-page: 1476 issue: 12 year: 2021 ident: 10.1016/j.engappai.2023.107034_bib25 article-title: An optimized multilayer perceptrons model using grey wolf optimizer to predict mechanical and microstructural properties of friction stir processed aluminum alloy reinforced by nanoparticles publication-title: Coatings doi: 10.3390/coatings11121476 – volume: 14 start-page: 1893 issue: 9 year: 2021 ident: 10.1016/j.engappai.2023.107034_bib8 article-title: Bistable morphing composites for energy-harvesting applications publication-title: Polymers doi: 10.3390/polym14091893 – volume: 15 start-page: 66 year: 2018 ident: 10.1016/j.engappai.2023.107034_bib38 article-title: Short term wind speed prediction using multiple kernel pseudo inverse neural network publication-title: Int. J. Autom. Comput. doi: 10.1007/s11633-017-1086-7 – volume: 159 start-page: 54 year: 2018 ident: 10.1016/j.engappai.2023.107034_bib32 article-title: Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.01.010 – volume: 149 start-page: 399 year: 2021 ident: 10.1016/j.engappai.2023.107034_bib1 article-title: Efficient artificial intelligence forecasting models for COVID-19 outbreak in Russia and Brazil publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2020.11.007 – volume: 28 year: 2021 ident: 10.1016/j.engappai.2023.107034_bib9 article-title: Productivity forecasting of solar distiller integrated with evacuated tubes and external condenser using artificial intelligence model and moth-flame optimizer publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101671 – start-page: 51 year: 2009 ident: 10.1016/j.engappai.2023.107034_bib44 – volume: 3 start-page: 306 issue: 2 year: 2012 ident: 10.1016/j.engappai.2023.107034_bib4 article-title: AWNN-assisted wind power forecasting using feed-forward neural network publication-title: IEEE Trans. Sustain. Syst. doi: 10.1109/TSTE.2011.2182215 – volume: 141 start-page: 1 year: 2020 ident: 10.1016/j.engappai.2023.107034_bib47 article-title: Forecasting the prevalence of COVID-19 outbreak in Egypt using nonlinear autoregressive artificial neural networks publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2020.05.029 – volume: 276 year: 2023 ident: 10.1016/j.engappai.2023.107034_bib50 article-title: Wind speed prediction by a swarm intelligence based deep learning model via signal decomposition and parameter optimization using improved chimp optimization algorithm publication-title: Energy doi: 10.1016/j.energy.2023.127526 – volume: 22 start-page: 337 issue: 3 year: 2011 ident: 10.1016/j.engappai.2023.107034_bib27 article-title: Lower upper bound estimation method for construction of neural network-based prediction intervals publication-title: IEEE Transact. Neural Networks Learn. Syst. doi: 10.1109/TNN.2010.2096824 – volume: 70 start-page: 1167 year: 2018 ident: 10.1016/j.engappai.2023.107034_bib40 article-title: Short-term wind speed and wind power prediction using hybrid empirical mode decomposition and kernel ridge regression publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.12.010 – volume: 49 year: 2022 ident: 10.1016/j.engappai.2023.107034_bib12 article-title: Low-cost bilayered structure for improving the performance of solar stills: performance/cost analysis and water yield prediction using machine learning publication-title: Sustain. Energy Technol. Assessments – volume: 87 start-page: 203 year: 2016 ident: 10.1016/j.engappai.2023.107034_bib36 article-title: Short-term wind speed and power forecasting using an ensemble of mixture density neural networks publication-title: Renew. Energy doi: 10.1016/j.renene.2015.10.014 – volume: 228 start-page: 2207 year: 2018 ident: 10.1016/j.engappai.2023.107034_bib28 article-title: ” A wind speed interval prediction system based on multi-objective optimization for machine learning method” publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.07.032 – volume: 99 year: 2015 ident: 10.1016/j.engappai.2023.107034_bib49 article-title: Prediction interval estimation ofelectricity prices using PSO tuned support vector machines publication-title: IEEE Trans. Ind. Inf. – volume: 48 start-page: 1136 issue: 4 year: 2012 ident: 10.1016/j.engappai.2023.107034_bib29 article-title: Short-term wind-power prediction based on wavelet transform support vector machine and statistic-characteristics analysis publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2012.2199449 – volume: 205 start-page: 53 year: 2016 ident: 10.1016/j.engappai.2023.107034_bib63 article-title: “ Direct interval forecasting of wind speed using radial basis function neural networks in a multi-objective optimization framework” publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.03.061 |
| SSID | ssj0003846 |
| Score | 2.4781091 |
| Snippet | An improvement in wind speed prediction is highly necessary for estimating the accuracy as well as stability of wind power. In this work, we proposed... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107034 |
| SubjectTerms | Deep belief network Multi-kernel-random-vector-functional-link-network Multi-objective sine-cosine particle-swarm-optimization Prediction IntervalsPrediction interval nominal confidence Variational mode decomposition Wind speed prediction |
| Title | Probabilistic prediction of wind speed using an integrated deep belief network optimized by a hybrid multi-objective particle swarm algorithm |
| URI | https://dx.doi.org/10.1016/j.engappai.2023.107034 |
| Volume | 126 |
| WOSCitedRecordID | wos001077157000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0003846 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JjtNAEG2FDAcu7GiGTXXgZjnEu30cYBCLNBrBIOVm9ebEUWJHtmfjH_gqfoxqt7eMIoY5cLGslqq91OuqcvlVNSFvqD1lXHieiatQmi4XlslU3iqxosBiTHDHY_VmE8HxcTibRSej0e-2FuZ8FWRZeHkZbf6rqnEMla1KZ2-h7m5SHMBzVDoeUe14_CfFnxS4RBXlVXVgVj0ARMrbsPAiVWnyDXos46zU5Yl9wwhhCCkVcwvD0sTIND_cyNGmrNOfOlClxuJKlXhpHqKZs6W2l8amuRGjvKDF2qCreV6k1WK9lfjvWx8aw__mNRWhqDlL9Q4igyahXf6Hokud18SD71k6F4vOmXygpU4MFVSg-aPG17Rc5D2j911a5rXcN5otpazoMM1hO0293zBfaZsIIH_LdNtD42sp8-Xu9As6RbGcyGyOD0jTibrEpBfYbsR9zUF2tMWWEbeM23liNU-s57lD9uzAi8Ix2Tv8fDT70gUETqjrxdonGBSq776j3THSIO45fUjuNx8scKj1-4iMZPaYPGg-XqBxDSUOtfuDtGNPyK8tKEIPRcgTUFCEGopQQxFoBj0UQUERNBShgSJ0UAR2BRQ0FOEaFKGFItRQhA6KT8mPj0en7z-ZzfYfJncsuzLtgAfSQouR-C61BRdh4suIyyAQAt-pwwWdUlt6nElXiJCxxGURdxJFhKKKn_CMjLM8k_sEHCdBS2XTIJQYMU956LPEY8xnVoLCrntAvPaFx7zpja-2aFnFf1f5AXnbyW10d5gbJaJWn3ET4-rYNUao3iD7_NZXe0Hu9WvpJRlXxZl8Re7y8yoti9cNTv8AhOfYuA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+prediction+of+wind+speed+using+an+integrated+deep+belief+network+optimized+by+a+hybrid+multi-objective+particle+swarm+algorithm&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Sarangi%2C+Snigdha&rft.au=Dash%2C+Pradipta+Kishore&rft.au=Bisoi%2C+Ranjeeta&rft.date=2023-11-01&rft.issn=0952-1976&rft.volume=126&rft.spage=107034&rft_id=info:doi/10.1016%2Fj.engappai.2023.107034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2023_107034 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |