Probabilistic prediction of wind speed using an integrated deep belief network optimized by a hybrid multi-objective particle swarm algorithm

An improvement in wind speed prediction is highly necessary for estimating the accuracy as well as stability of wind power. In this work, we proposed probabilistic forecasts of wind speed for predicting the short-term wind speed intervals. The optimal model has been designed by considering three dif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering applications of artificial intelligence Jg. 126; S. 107034
Hauptverfasser: Sarangi, Snigdha, Dash, Pradipta Kishore, Bisoi, Ranjeeta
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.11.2023
Schlagworte:
ISSN:0952-1976
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract An improvement in wind speed prediction is highly necessary for estimating the accuracy as well as stability of wind power. In this work, we proposed probabilistic forecasts of wind speed for predicting the short-term wind speed intervals. The optimal model has been designed by considering three different modules such as data decomposition, prediction, and optimization. Variational-Mode-Decomposition (VMD) is utilized for decomposing the primary time series data into a suitable number of modes followed by the Deep Belief Network (DBN) for probabilistic wind sped prediction. Here the Gauss-Bernoulli restricted Boltzmann machine (GBRBM) and Bernoulli-Bernoulli RBM (BBRBM) are combined in the DBN where the GBRBM is utilized as the initial RBM to convert the continuity feature of the source data into a binomial distribution feature. Multi-kernel-random-vector-functional-link-network (MKRVFLN) is employed here as supervised learning in DBN to avoid long execution time and get the model into local optima. In the model optimization, a hybrid multi-objective Sine-Cosine particle-swarm-optimization (MOSCPSO)is used to optimize the DBN parameters for obtaining high accuracy and strong stability output simultaneously. It determines the wind speed at 95%, 90%, 85%, and 80% prediction interval nominal confidence (PINC). To validate the proposed model and comparing with other benchmark prediction techniques, the data are taken from the wind farm located at Sotavento, Spain, at different time horizons (30 min–1 h) in different seasons. The results obtained demonstrate that the proposed technique outperforms the further existing model on the basis of prediction accuracy and stability. •A novel VMD based Deep belief network approach is used for probabilistic wind speed prediction.•The Deep belief Network comprises both GB-RBM and BB-RBM together to improve prediction accuracy.•For final prediction, the mixed kernel RVFLN is employed instead of backpropagation algorithm.•The DBN parameters are optimized using a new hybrid multi-objective particle swarm optimization algorithm.•High prediction interval nominal confidence (PINC) level is achieved in comparison to several benchmark models.
AbstractList An improvement in wind speed prediction is highly necessary for estimating the accuracy as well as stability of wind power. In this work, we proposed probabilistic forecasts of wind speed for predicting the short-term wind speed intervals. The optimal model has been designed by considering three different modules such as data decomposition, prediction, and optimization. Variational-Mode-Decomposition (VMD) is utilized for decomposing the primary time series data into a suitable number of modes followed by the Deep Belief Network (DBN) for probabilistic wind sped prediction. Here the Gauss-Bernoulli restricted Boltzmann machine (GBRBM) and Bernoulli-Bernoulli RBM (BBRBM) are combined in the DBN where the GBRBM is utilized as the initial RBM to convert the continuity feature of the source data into a binomial distribution feature. Multi-kernel-random-vector-functional-link-network (MKRVFLN) is employed here as supervised learning in DBN to avoid long execution time and get the model into local optima. In the model optimization, a hybrid multi-objective Sine-Cosine particle-swarm-optimization (MOSCPSO)is used to optimize the DBN parameters for obtaining high accuracy and strong stability output simultaneously. It determines the wind speed at 95%, 90%, 85%, and 80% prediction interval nominal confidence (PINC). To validate the proposed model and comparing with other benchmark prediction techniques, the data are taken from the wind farm located at Sotavento, Spain, at different time horizons (30 min–1 h) in different seasons. The results obtained demonstrate that the proposed technique outperforms the further existing model on the basis of prediction accuracy and stability. •A novel VMD based Deep belief network approach is used for probabilistic wind speed prediction.•The Deep belief Network comprises both GB-RBM and BB-RBM together to improve prediction accuracy.•For final prediction, the mixed kernel RVFLN is employed instead of backpropagation algorithm.•The DBN parameters are optimized using a new hybrid multi-objective particle swarm optimization algorithm.•High prediction interval nominal confidence (PINC) level is achieved in comparison to several benchmark models.
ArticleNumber 107034
Author Dash, Pradipta Kishore
Sarangi, Snigdha
Bisoi, Ranjeeta
Author_xml – sequence: 1
  givenname: Snigdha
  surname: Sarangi
  fullname: Sarangi, Snigdha
– sequence: 2
  givenname: Pradipta Kishore
  orcidid: 0000-0002-8950-7136
  surname: Dash
  fullname: Dash, Pradipta Kishore
  email: pkdash.india@gmail.com
– sequence: 3
  givenname: Ranjeeta
  surname: Bisoi
  fullname: Bisoi, Ranjeeta
BookMark eNqFkE1LAzEQhnNQ0Kp_QfIHtmY_3G3BgyJ-QUEPeg6TZFKn7iZLEi31P_ifTalevHgaeIfnHeaZsD3nHTJ2WoppKcr2bDVFt4RxBJpWoqpz2Im62WOHYn5eFeW8aw_YJMaVEKKeNe0h-3oKXoGinmIizceAhnQi77i3fE3O8DgiGv4eyS05OE4u4TJAyplBHLnCntByh2ntwxv3Y6KBPvNWbTjw140KZPjw3icqvFph7v5APkLI13rkcQ1h4NAvfaD0OhyzfQt9xJOfecRebm-er--LxePdw_XVotB1WaWi6nSHZVcq2zZQGW1mtsW5xq4zJv9VawMCKjzXChtjZkrZRs11bdFaBFG39RFrd706-BgDWjkGGiBsZCnkVqRcyV-RcitS7kRm8OIPqCnB1lcKQP3_-OUOx_zcB2GQURM6naWHrEYaT_9VfAMXyZ3w
CitedBy_id crossref_primary_10_1016_j_measurement_2024_116500
crossref_primary_10_1016_j_apenergy_2025_126234
crossref_primary_10_1016_j_ins_2023_120021
crossref_primary_10_1016_j_enconman_2024_118821
crossref_primary_10_1016_j_asoc_2024_112342
crossref_primary_10_1155_2024_2822223
crossref_primary_10_3390_machines12120906
crossref_primary_10_1016_j_apenergy_2025_126615
crossref_primary_10_1016_j_engappai_2025_110862
crossref_primary_10_3390_en17061270
crossref_primary_10_1016_j_apenergy_2024_123745
crossref_primary_10_1016_j_engappai_2023_107461
crossref_primary_10_3390_electronics13224513
crossref_primary_10_1016_j_ecmx_2025_101026
crossref_primary_10_1016_j_eswa_2024_124393
crossref_primary_10_1016_j_swevo_2024_101810
crossref_primary_10_1109_ACCESS_2024_3495559
crossref_primary_10_1016_j_jobe_2024_111170
crossref_primary_10_1080_02626667_2024_2374868
crossref_primary_10_7717_peerj_cs_2393
Cites_doi 10.3390/polym15010233
10.1016/j.jclepro.2023.135896
10.1162/089976602760128018
10.1016/j.energy.2020.118441
10.1016/j.rser.2013.12.054
10.1016/j.apm.2019.07.001
10.1016/j.swevo.2018.01.011
10.1007/s11721-007-0002-0
10.1016/j.energy.2017.02.150
10.1016/j.enconman.2021.115102
10.1109/4235.996017
10.1016/j.psep.2020.10.048
10.1016/j.jmrt.2021.09.119
10.1016/j.renene.2012.06.012
10.1016/j.knosys.2015.12.022
10.1016/j.compstruc.2004.03.003
10.1016/j.eswa.2017.01.004
10.1109/TPWRS.2013.2287871
10.1016/j.jmrt.2021.06.033
10.1109/TMAG.2009.2012586
10.1016/j.renene.2022.07.123
10.1016/j.renene.2020.03.170
10.1109/TPWRS.2020.2971607
10.1016/j.renene.2015.06.004
10.1080/01621459.1972.10481224
10.1016/j.apenergy.2016.07.113
10.1016/j.apenergy.2016.08.108
10.1016/j.renene.2019.04.157
10.1162/neco.2006.18.7.1527
10.1109/TPWRS.2015.2393880
10.1109/TITS.2011.2106209
10.1007/s13042-021-01340-6
10.1016/j.eswa.2021.114974
10.1016/j.apenergy.2017.10.031
10.1016/j.eswa.2011.02.176
10.1109/TSTE.2015.2434387
10.3390/coatings11121476
10.3390/polym14091893
10.1007/s11633-017-1086-7
10.1016/j.enconman.2018.01.010
10.1016/j.psep.2020.11.007
10.1016/j.csite.2021.101671
10.1109/TSTE.2011.2182215
10.1016/j.psep.2020.05.029
10.1016/j.energy.2023.127526
10.1109/TNN.2010.2096824
10.1016/j.asoc.2017.12.010
10.1016/j.renene.2015.10.014
10.1016/j.apenergy.2018.07.032
10.1109/TIA.2012.2199449
10.1016/j.neucom.2016.03.061
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2023.107034
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
ExternalDocumentID 10_1016_j_engappai_2023_107034
S0952197623012186
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c312t-27c7e171bf64a2dcd8f6e9ce77dd0383cda0a2e5cbe4dd8bbf4b9c3feffea0363
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001077157000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Tue Nov 18 22:43:12 EST 2025
Sat Nov 29 07:07:52 EST 2025
Tue Dec 03 03:44:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Variational mode decomposition
Wind speed prediction
Prediction IntervalsPrediction interval nominal confidence
Deep belief network
Multi-kernel-random-vector-functional-link-network
Multi-objective sine-cosine particle-swarm-optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-27c7e171bf64a2dcd8f6e9ce77dd0383cda0a2e5cbe4dd8bbf4b9c3feffea0363
ORCID 0000-0002-8950-7136
ParticipantIDs crossref_primary_10_1016_j_engappai_2023_107034
crossref_citationtrail_10_1016_j_engappai_2023_107034
elsevier_sciencedirect_doi_10_1016_j_engappai_2023_107034
PublicationCentury 2000
PublicationDate November 2023
2023-11-00
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Khosravi, Nahavandi, Creighton, Atiya (bib27) 2011; 22
Wan, Xu, Pinson, Dong, Wong (bib52) 2014; 29
Pareto (bib43) 1964; vol. 1
Winkler (bib57) 1972; 67
Bengio, Lamblin, Popovici, Larochelle (bib3) 2007; 19
Chen, Lai, Ng, Pan, Lai, Zhong (bib5) 2021; 12
Elsheikh (bib9) 2021; 28
Elsheikh (bib11) 2021; 14
Elsheikh (bib14) 2023; 15
Liu, Chen, Tian, Li (bib30) 2012; 48
Bhaskar, Singh (bib4) 2012; 3
Eunsung, Son (bib16) 2020; 155
Edgeworth (bib7) 1881
Hinton (bib19) 2002; 14
Mirjalili (bib37) 2016; 96
Suo, Peng, Song, Zhang, Wang, Fu, Nazir (bib50) 2023; 276
Hinton, Osindero, Teh (bib20) 2006; 18
Xiao, Shao, Wang, Zhang, Lu (bib59) 2016; 180
Li, Jin (bib28) 2018; 228
Mishra, Dash (bib38) 2018; 15
Xiao, Shao, Wang, Zhang, Lu (bib60) 2016; 180
Salakhutdinov, Hinton (bib48) 2007
Pinson, Madsen, Nielsen, Papaefthymiou, Kl€ockl (bib44) 2009
An, Jiang, Liu, Zhao (bib2) 2011; 38
Liu, Mi, Li (bib32) 2018; 159
Khosravi, Mazloumi, Nahavandi, Creighton, Van Lint (bib26) 2011; 12
Lu, Ireland, Lewis (bib34) 2009; 45
Naik, Satapathy, Dash (bib40) 2018; 70
Poli, Kennedy, Blackwell (bib45) 2007
Elsheikh (bib12) 2022; 49
Elsheikh (bib10) 2021; 149
Al-Qaness, Mohammed (bib1) 2021; 149
Saba, Elsheikh (bib47) 2020; 141
Kavousi-Fard, Abdollah, SaeidNahavandi (bib24) 2015; 31
Shrivastava, Khosravi, Panigrahi (bib49) 2015; 99
Jung, Broadwater (bib23) 2014; 31
Zhang, Wei, Xie, Shen, Zhang (bib63) 2016; 205
Men, Yee, Lien, Wen, Chen (bib36) 2016; 87
Yisheng, DuanYanjie, Kang, Li, Wang (bib61) 2015; 16
Elsheikh, Abd Elaziz, Vendan (bib13) 2022
Wu, Wang, Chen, Du, Yang (bib58) 2020; 146
Hong, Satriani (bib21) 2020; 209
Wang, Zhao, Wu, Wu (bib54) 2017; 74
Zhang, Chen, Gan, Chen (bib62) 2015; 6
Liu, Jiang, Wang, Zhang (bib33) 2021; 177
Deb, Pratap, Agarwal, Meyarivan (bib6) 2002; 6
He, Chen, Shang, Li, Li, Xu (bib17) 2019; 76
Liu, Shi, Yang, Lee (bib29) 2012; 48
Luh, Chueh (bib35) 2004; 82
Khoshaim (bib25) 2021; 11
Hua, Zhang, Peng, Ji, Nazir (bib22) 2022; 252
Elsheikh (bib8) 2021; 14
Hilton (bib18) 2002; 14
Tian, Shi (bib51) 2018; 41
Moustafa, Elsheikh (bib39) 2023; 15
Nix, Weigend (bib42) 1994; 1
Zhang, Liu, Yan, Han, Li, Long (bib64) 2020; 35
Naik, Dash, Dhar (bib41) 2019; vol. 136
Zhang, Ji, Hua, Ma, Nazir, Peng (bib65) 2022; 197
Elsheikh (bib15) 2023
Wang, Heng, Xiao, Wang (bib55) 2017; 125
Liu, Tian, Liang, Li (bib31) 2015; 83
Ren, Suganthan, Srikanth, Amaratunga (bib46) 2016; vol. 367
Wang, Du, Niu, Yang (bib56) 2017; 208
Wang, Wang, Li, Peng, Liu (bib53) 2016; 182
Jung (10.1016/j.engappai.2023.107034_bib23) 2014; 31
Deb (10.1016/j.engappai.2023.107034_bib6) 2002; 6
Poli (10.1016/j.engappai.2023.107034_bib45) 2007
Edgeworth (10.1016/j.engappai.2023.107034_bib7) 1881
Naik (10.1016/j.engappai.2023.107034_bib40) 2018; 70
Eunsung (10.1016/j.engappai.2023.107034_bib16) 2020; 155
Xiao (10.1016/j.engappai.2023.107034_bib59) 2016; 180
Khosravi (10.1016/j.engappai.2023.107034_bib26) 2011; 12
Moustafa (10.1016/j.engappai.2023.107034_bib39) 2023; 15
Khosravi (10.1016/j.engappai.2023.107034_bib27) 2011; 22
Pareto (10.1016/j.engappai.2023.107034_bib43) 1964; vol. 1
Xiao (10.1016/j.engappai.2023.107034_bib60) 2016; 180
Zhang (10.1016/j.engappai.2023.107034_bib64) 2020; 35
Elsheikh (10.1016/j.engappai.2023.107034_bib10) 2021; 149
Mirjalili (10.1016/j.engappai.2023.107034_bib37) 2016; 96
Liu (10.1016/j.engappai.2023.107034_bib30) 2012; 48
Elsheikh (10.1016/j.engappai.2023.107034_bib15) 2023
Yisheng (10.1016/j.engappai.2023.107034_bib61) 2015; 16
Wang (10.1016/j.engappai.2023.107034_bib55) 2017; 125
Pinson (10.1016/j.engappai.2023.107034_bib44) 2009
Wu (10.1016/j.engappai.2023.107034_bib58) 2020; 146
He (10.1016/j.engappai.2023.107034_bib17) 2019; 76
Zhang (10.1016/j.engappai.2023.107034_bib62) 2015; 6
Hong (10.1016/j.engappai.2023.107034_bib21) 2020; 209
Liu (10.1016/j.engappai.2023.107034_bib32) 2018; 159
Wang (10.1016/j.engappai.2023.107034_bib56) 2017; 208
Hua (10.1016/j.engappai.2023.107034_bib22) 2022; 252
Hinton (10.1016/j.engappai.2023.107034_bib19) 2002; 14
Salakhutdinov (10.1016/j.engappai.2023.107034_bib48) 2007
Hinton (10.1016/j.engappai.2023.107034_bib20) 2006; 18
Khoshaim (10.1016/j.engappai.2023.107034_bib25) 2021; 11
Elsheikh (10.1016/j.engappai.2023.107034_bib8) 2021; 14
Mishra (10.1016/j.engappai.2023.107034_bib38) 2018; 15
Hilton (10.1016/j.engappai.2023.107034_bib18) 2002; 14
Zhang (10.1016/j.engappai.2023.107034_bib63) 2016; 205
Tian (10.1016/j.engappai.2023.107034_bib51) 2018; 41
Elsheikh (10.1016/j.engappai.2023.107034_bib9) 2021; 28
Chen (10.1016/j.engappai.2023.107034_bib5) 2021; 12
Liu (10.1016/j.engappai.2023.107034_bib31) 2015; 83
Naik (10.1016/j.engappai.2023.107034_bib41) 2019; vol. 136
Saba (10.1016/j.engappai.2023.107034_bib47) 2020; 141
Ren (10.1016/j.engappai.2023.107034_bib46) 2016; vol. 367
Suo (10.1016/j.engappai.2023.107034_bib50) 2023; 276
Wan (10.1016/j.engappai.2023.107034_bib52) 2014; 29
Liu (10.1016/j.engappai.2023.107034_bib29) 2012; 48
Men (10.1016/j.engappai.2023.107034_bib36) 2016; 87
Zhang (10.1016/j.engappai.2023.107034_bib65) 2022; 197
Bengio (10.1016/j.engappai.2023.107034_bib3) 2007; 19
Elsheikh (10.1016/j.engappai.2023.107034_bib11) 2021; 14
Elsheikh (10.1016/j.engappai.2023.107034_bib14) 2023; 15
Nix (10.1016/j.engappai.2023.107034_bib42) 1994; 1
Kavousi-Fard (10.1016/j.engappai.2023.107034_bib24) 2015; 31
Al-Qaness (10.1016/j.engappai.2023.107034_bib1) 2021; 149
Elsheikh (10.1016/j.engappai.2023.107034_bib12) 2022; 49
Bhaskar (10.1016/j.engappai.2023.107034_bib4) 2012; 3
Wang (10.1016/j.engappai.2023.107034_bib53) 2016; 182
Elsheikh (10.1016/j.engappai.2023.107034_bib13) 2022
Li (10.1016/j.engappai.2023.107034_bib28) 2018; 228
Liu (10.1016/j.engappai.2023.107034_bib33) 2021; 177
Shrivastava (10.1016/j.engappai.2023.107034_bib49) 2015; 99
Lu (10.1016/j.engappai.2023.107034_bib34) 2009; 45
Luh (10.1016/j.engappai.2023.107034_bib35) 2004; 82
An (10.1016/j.engappai.2023.107034_bib2) 2011; 38
Wang (10.1016/j.engappai.2023.107034_bib54) 2017; 74
Winkler (10.1016/j.engappai.2023.107034_bib57) 1972; 67
References_xml – volume: 49
  year: 2022
  ident: bib12
  article-title: Low-cost bilayered structure for improving the performance of solar stills: performance/cost analysis and water yield prediction using machine learning
  publication-title: Sustain. Energy Technol. Assessments
– volume: 48
  start-page: 1136
  year: 2012
  end-page: 1141
  ident: bib29
  article-title: Short-term wind-power prediction based on wavelet transform support vector machine and statistic-characteristics analysis
  publication-title: IEEE Trans. Ind. Appl.
– volume: 180
  start-page: 213
  year: 2016
  end-page: 233
  ident: bib59
  article-title: Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting
  publication-title: Appl. Energy
– volume: 141
  start-page: 1
  year: 2020
  end-page: 8
  ident: bib47
  article-title: Forecasting the prevalence of COVID-19 outbreak in Egypt using nonlinear autoregressive artificial neural networks
  publication-title: Process Saf. Environ. Protect.
– volume: 19
  start-page: 153
  year: 2007
  ident: bib3
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 146
  start-page: 149
  year: 2020
  end-page: 165
  ident: bib58
  article-title: A novel hybrid system based on multi-objective optimization for wind speed forecasting
  publication-title: Renew. Energy
– volume: 205
  start-page: 53
  year: 2016
  end-page: 63
  ident: bib63
  article-title: “ Direct interval forecasting of wind speed using radial basis function neural networks in a multi-objective optimization framework”
  publication-title: Neurocomputing
– start-page: 51
  year: 2009
  end-page: 62
  ident: bib44
  article-title: From Probabilistic Forecasts to Statistical Scenarios of Short-Term Wind Power Production”
– volume: 29
  start-page: 1033
  year: 2014
  end-page: 1044
  ident: bib52
  article-title: Probabilistic forecasting of windpower generation using extreme learning machine
  publication-title: IEEE Trans. Power Syst.
– volume: 208
  start-page: 344
  year: 2017
  end-page: 360
  ident: bib56
  article-title: A novel hybrid system based on a new proposed algorithm-Multi-Objective Whale Optimization Algorithm for wind speed forecasting
  publication-title: Appl. Energy
– volume: 209
  year: 2020
  ident: bib21
  article-title: Day-ahead spatiotemporal wind speed forecasting using robust design-based deep learning neural network
  publication-title: Energy
– volume: 180
  start-page: 213
  year: 2016
  end-page: 233
  ident: bib60
  article-title: Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting
  publication-title: Appl. Energy
– volume: 12
  start-page: 537
  year: 2011
  end-page: 547
  ident: bib26
  article-title: Prediction intervals to account for uncertainties in travel time prediction
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 15
  start-page: 66
  year: 2018
  end-page: 83
  ident: bib38
  article-title: Short term wind speed prediction using multiple kernel pseudo inverse neural network
  publication-title: Int. J. Autom. Comput.
– volume: 22
  start-page: 337
  year: 2011
  end-page: 346
  ident: bib27
  article-title: Lower upper bound estimation method for construction of neural network-based prediction intervals
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
– volume: 48
  start-page: 545
  year: 2012
  end-page: 556
  ident: bib30
  article-title: A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks
  publication-title: Renew. Energy
– volume: 159
  start-page: 54
  year: 2018
  end-page: 64
  ident: bib32
  article-title: Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM
  publication-title: Energy Convers. Manag.
– volume: 38
  start-page: 11280
  year: 2011
  end-page: 11285
  ident: bib2
  article-title: Wind farm power prediction based on wavelet decomposition and chaotic time series
  publication-title: Expert Syst. Appl.
– volume: 177
  year: 2021
  ident: bib33
  article-title: Ensemble forecasting system for short-term wind speed forecasting based on optimal sub-model selection and multi-objective version of mayfly optimization algorithm
  publication-title: Expert Syst. Appl.
– volume: 67
  start-page: 187
  year: 1972
  end-page: 191
  ident: bib57
  article-title: A decision-theoretic approach to interval estimation
  publication-title: J. Am. Stat. Assoc.
– year: 1881
  ident: bib7
  article-title: Mathematical Physics
– volume: 99
  year: 2015
  ident: bib49
  article-title: Prediction interval estimation ofelectricity prices using PSO tuned support vector machines
  publication-title: IEEE Trans. Ind. Inf.
– volume: 149
  start-page: 399
  year: 2021
  end-page: 409
  ident: bib1
  article-title: Efficient artificial intelligence forecasting models for COVID-19 outbreak in Russia and Brazil
  publication-title: Process Saf. Environ. Protect.
– volume: 12
  start-page: 2579
  year: 2021
  end-page: 2590
  ident: bib5
  article-title: A stochastic sensitivity-based multi-objective optimization method for short-term wind speed interval prediction
  publication-title: International Journal of Machine Learning and Cybernetics
– volume: 16
  start-page: 865
  year: 2015
  end-page: 873
  ident: bib61
  article-title: Traffic flow prediction with big data: a deep learning approach
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: vol. 136
  start-page: 701
  year: 2019
  end-page: 731
  ident: bib41
  publication-title: A Multi-Objective Wind Speed and Wind Power Prediction Interval Forecasting Using Variational Modes Decomposition Based Multi-Kernel Robust Ridge Regression”
– volume: 76
  start-page: 717
  year: 2019
  end-page: 740
  ident: bib17
  article-title: A novel wind speed forecasting model based on moving window and multi-objective particle swarm optimization algorithm
  publication-title: Appl. Math. Model.
– volume: vol. 1
  year: 1964
  ident: bib43
  publication-title: Coursd'economiepolitique
– volume: 11
  start-page: 1476
  year: 2021
  ident: bib25
  article-title: An optimized multilayer perceptrons model using grey wolf optimizer to predict mechanical and microstructural properties of friction stir processed aluminum alloy reinforced by nanoparticles
  publication-title: Coatings
– start-page: 1249
  year: 2007
  end-page: 1256
  ident: bib48
  article-title: Using deep belief nets to learn covariance kernels for Gaussian processes
  publication-title: Proc. 20th Int. Conf. Neural Inf.Process. Syst.
– volume: 3
  start-page: 306
  year: 2012
  end-page: 315
  ident: bib4
  article-title: AWNN-assisted wind power forecasting using feed-forward neural network
  publication-title: IEEE Trans. Sustain. Syst.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib6
  article-title: A fast and elitist multiobjectivegenetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 70
  start-page: 1167
  year: 2018
  end-page: 1188
  ident: bib40
  article-title: Short-term wind speed and wind power prediction using hybrid empirical mode decomposition and kernel ridge regression
  publication-title: Appl. Soft Comput.
– volume: 35
  start-page: 2549
  year: 2020
  end-page: 2560
  ident: bib64
  article-title: Improved deep mixture density network for regional wind power probabilistic forecasting
  publication-title: IEEE Trans. Power Syst.
– volume: 276
  year: 2023
  ident: bib50
  article-title: Wind speed prediction by a swarm intelligence based deep learning model via signal decomposition and parameter optimization using improved chimp optimization algorithm
  publication-title: Energy
– volume: 182
  start-page: 80
  year: 2016
  end-page: 93
  ident: bib53
  article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach
  publication-title: Appl. Energy
– volume: 82
  start-page: 829
  year: 2004
  end-page: 844
  ident: bib35
  article-title: Multi-objective optimal design of truss structure with immune Algorithm
  publication-title: Comput. Struct.
– volume: 125
  start-page: 591
  year: 2017
  end-page: 613
  ident: bib55
  article-title: Research and application of a combined modelbased on multi-objective optimization for multi-step ahead wind speed forecasting
  publication-title: Energy
– year: 2023
  ident: bib15
  article-title: Water distillation tower: experimental investigation, economic assessment, and performance prediction using optimized machine-learning model
  publication-title: J. Clean. Prod.
– volume: 149
  start-page: 223
  year: 2021
  end-page: 233
  ident: bib10
  article-title: Deep learning-based forecasting model for COVID-19 outbreak in Saudi Arabia
  publication-title: Process Saf. Environ. Protect.
– volume: 1
  start-page: 55
  year: 1994
  end-page: 60
  ident: bib42
  article-title: Estimating the mean and variance of the target probability distribution, in: neural Networks
  publication-title: IEEE World Congress on Computational Intelligence
– volume: 87
  start-page: 203
  year: 2016
  end-page: 211
  ident: bib36
  article-title: Short-term wind speed and power forecasting using an ensemble of mixture density neural networks
  publication-title: Renew. Energy
– volume: 14
  start-page: 1771
  year: 2002
  end-page: 1800
  ident: bib19
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Comput.
– volume: 14
  start-page: 1771
  year: 2002
  end-page: 1800
  ident: bib18
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Comput.
– start-page: 33
  year: 2007
  end-page: 57
  ident: bib45
  article-title: Particle swarm optimization
  publication-title: Swarm Intell
– volume: 6
  start-page: 1416
  year: 2015
  end-page: 1425
  ident: bib62
  article-title: Predictive deep Boltzmann machine for multiperiod wind speed forecasting
  publication-title: IEEE Trans. Sustain. Energy
– volume: vol. 367
  start-page: 1028
  year: 2016
  end-page: 1093
  ident: bib46
  publication-title: Random Vector Functional Link Network for Short-Term Electricity Load Demand Forecasting”
– volume: 197
  start-page: 668
  year: 2022
  end-page: 682
  ident: bib65
  article-title: ““Evolutionary quantile regression gated recurrent unit network based on variational mode decomposition, improved whale optimization algorithm for probabilistic short-term wind speed prediction “
  publication-title: Renew. Energy
– volume: 155
  start-page: 1060
  year: 2020
  end-page: 1069
  ident: bib16
  article-title: Theoretical energy storage system sizing method and performance analysis for wind power forecast uncertainty management
  publication-title: Renew. Energy
– volume: 41
  start-page: 49
  year: 2018
  end-page: 68
  ident: bib51
  article-title: “MPSO: modified particle swarm optimization and its applications”
  publication-title: Swarmand evolutionary computation
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: bib20
  article-title: A fast learning algorithm for deep belief Nets
  publication-title: Neural Comput.
– volume: 15
  start-page: 3622
  year: 2023
  end-page: 3634
  ident: bib14
  article-title: Fine-tuned artificial intelligence model using pigeon optimizer for prediction of residual stresses during turning of Inconel 718
  publication-title: J. Mater. Res. Technol.
– volume: 14
  start-page: 1893
  year: 2021
  ident: bib8
  article-title: Bistable morphing composites for energy-harvesting applications
  publication-title: Polymers
– volume: 14
  start-page: 298
  year: 2021
  end-page: 311
  ident: bib11
  article-title: Modeling of drilling process of GFRP composite using a hybrid random vector functional link network/parasitism-predation algorithm
  publication-title: J. Mater. Res. Technol.
– volume: 45
  start-page: 1072
  year: 2009
  end-page: 1075
  ident: bib34
  article-title: Multi-objective optimization in high frequency electromagnetics-an effective technique for smart mobile terminal antenna (SMTA) design
  publication-title: IEEE Trans. Magn.
– volume: 15
  start-page: 233
  year: 2023
  ident: bib39
  article-title: Predicting characteristics of dissimilar laser welded polymeric joints using a multi-layer perceptrons model coupled with Archimedes optimizer
  publication-title: Polymers
– volume: 74
  start-page: 96
  year: 2017
  end-page: 104
  ident: bib54
  article-title: Multi-objective optimization: a methodfor selecting the optimal solution from Pareto non-inferior solutions
  publication-title: Expert Syst. Appl.
– volume: 252
  year: 2022
  ident: bib22
  article-title: “Integrated framework of extreme learning machine (ELM) based on improved atom search optimization for short-term wind speed prediction “
  publication-title: Energy Convers. Manag.
– volume: 28
  year: 2021
  ident: bib9
  article-title: Productivity forecasting of solar distiller integrated with evacuated tubes and external condenser using artificial intelligence model and moth-flame optimizer
  publication-title: Case Stud. Therm. Eng.
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: bib37
  article-title: SCA: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl. Base Syst.
– volume: 31
  start-page: 18
  year: 2015
  end-page: 26
  ident: bib24
  article-title: A new fuzzy-based combined prediction interval for wind power forecasting
  publication-title: IEEE Trans. Power Syst.
– volume: 228
  start-page: 2207
  year: 2018
  end-page: 2220
  ident: bib28
  article-title: ” A wind speed interval prediction system based on multi-objective optimization for machine learning method”
  publication-title: Appl. Energy
– volume: 31
  start-page: 762
  year: 2014
  end-page: 777
  ident: bib23
  article-title: Current status and future advances for windspeed and power forecasting
  publication-title: Renew. Sustain. Energy Rev.
– start-page: 1
  year: 2022
  end-page: 18
  ident: bib13
  article-title: Modeling ultrasonic welding of polymers using an optimized artificial intelligence model using a gradient-based optimizer
  publication-title: Weld. World
– volume: 83
  start-page: 66
  year: 2015
  end-page: 1075
  ident: bib31
  article-title: New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, mind evolutionary algorithm and artificial neural networks
  publication-title: Renew. Energy
– start-page: 1
  year: 2022
  ident: 10.1016/j.engappai.2023.107034_bib13
  article-title: Modeling ultrasonic welding of polymers using an optimized artificial intelligence model using a gradient-based optimizer
  publication-title: Weld. World
– volume: 15
  start-page: 233
  issue: 1
  year: 2023
  ident: 10.1016/j.engappai.2023.107034_bib39
  article-title: Predicting characteristics of dissimilar laser welded polymeric joints using a multi-layer perceptrons model coupled with Archimedes optimizer
  publication-title: Polymers
  doi: 10.3390/polym15010233
– year: 2023
  ident: 10.1016/j.engappai.2023.107034_bib15
  article-title: Water distillation tower: experimental investigation, economic assessment, and performance prediction using optimized machine-learning model
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2023.135896
– volume: 14
  start-page: 1771
  issue: 8
  year: 2002
  ident: 10.1016/j.engappai.2023.107034_bib18
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Comput.
  doi: 10.1162/089976602760128018
– start-page: 1249
  year: 2007
  ident: 10.1016/j.engappai.2023.107034_bib48
  article-title: Using deep belief nets to learn covariance kernels for Gaussian processes
  publication-title: Proc. 20th Int. Conf. Neural Inf.Process. Syst.
– volume: 16
  start-page: 865
  issue: 2
  year: 2015
  ident: 10.1016/j.engappai.2023.107034_bib61
  article-title: Traffic flow prediction with big data: a deep learning approach
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: vol. 1
  year: 1964
  ident: 10.1016/j.engappai.2023.107034_bib43
– volume: 209
  year: 2020
  ident: 10.1016/j.engappai.2023.107034_bib21
  article-title: Day-ahead spatiotemporal wind speed forecasting using robust design-based deep learning neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118441
– volume: 31
  start-page: 762
  year: 2014
  ident: 10.1016/j.engappai.2023.107034_bib23
  article-title: Current status and future advances for windspeed and power forecasting
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.12.054
– volume: 76
  start-page: 717
  year: 2019
  ident: 10.1016/j.engappai.2023.107034_bib17
  article-title: A novel wind speed forecasting model based on moving window and multi-objective particle swarm optimization algorithm
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.07.001
– volume: 41
  start-page: 49
  year: 2018
  ident: 10.1016/j.engappai.2023.107034_bib51
  article-title: “MPSO: modified particle swarm optimization and its applications”
  publication-title: Swarmand evolutionary computation
  doi: 10.1016/j.swevo.2018.01.011
– start-page: 33
  year: 2007
  ident: 10.1016/j.engappai.2023.107034_bib45
  article-title: Particle swarm optimization
  publication-title: Swarm Intell
  doi: 10.1007/s11721-007-0002-0
– volume: 125
  start-page: 591
  year: 2017
  ident: 10.1016/j.engappai.2023.107034_bib55
  article-title: Research and application of a combined modelbased on multi-objective optimization for multi-step ahead wind speed forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2017.02.150
– volume: 252
  year: 2022
  ident: 10.1016/j.engappai.2023.107034_bib22
  article-title: “Integrated framework of extreme learning machine (ELM) based on improved atom search optimization for short-term wind speed prediction “
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.115102
– year: 1881
  ident: 10.1016/j.engappai.2023.107034_bib7
– volume: 1
  start-page: 55
  year: 1994
  ident: 10.1016/j.engappai.2023.107034_bib42
  article-title: Estimating the mean and variance of the target probability distribution, in: neural Networks
  publication-title: IEEE World Congress on Computational Intelligence
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.engappai.2023.107034_bib6
  article-title: A fast and elitist multiobjectivegenetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 149
  start-page: 223
  year: 2021
  ident: 10.1016/j.engappai.2023.107034_bib10
  article-title: Deep learning-based forecasting model for COVID-19 outbreak in Saudi Arabia
  publication-title: Process Saf. Environ. Protect.
  doi: 10.1016/j.psep.2020.10.048
– volume: 19
  start-page: 153
  year: 2007
  ident: 10.1016/j.engappai.2023.107034_bib3
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 15
  start-page: 3622
  year: 2023
  ident: 10.1016/j.engappai.2023.107034_bib14
  article-title: Fine-tuned artificial intelligence model using pigeon optimizer for prediction of residual stresses during turning of Inconel 718
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2021.09.119
– volume: 48
  start-page: 545
  year: 2012
  ident: 10.1016/j.engappai.2023.107034_bib30
  article-title: A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.06.012
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.engappai.2023.107034_bib37
  article-title: SCA: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2015.12.022
– volume: 82
  start-page: 829
  year: 2004
  ident: 10.1016/j.engappai.2023.107034_bib35
  article-title: Multi-objective optimal design of truss structure with immune Algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2004.03.003
– volume: 74
  start-page: 96
  year: 2017
  ident: 10.1016/j.engappai.2023.107034_bib54
  article-title: Multi-objective optimization: a methodfor selecting the optimal solution from Pareto non-inferior solutions
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.01.004
– volume: 29
  start-page: 1033
  issue: 3
  year: 2014
  ident: 10.1016/j.engappai.2023.107034_bib52
  article-title: Probabilistic forecasting of windpower generation using extreme learning machine
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2013.2287871
– volume: 14
  start-page: 298
  year: 2021
  ident: 10.1016/j.engappai.2023.107034_bib11
  article-title: Modeling of drilling process of GFRP composite using a hybrid random vector functional link network/parasitism-predation algorithm
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2021.06.033
– volume: 45
  start-page: 1072
  issue: 3
  year: 2009
  ident: 10.1016/j.engappai.2023.107034_bib34
  article-title: Multi-objective optimization in high frequency electromagnetics-an effective technique for smart mobile terminal antenna (SMTA) design
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2009.2012586
– volume: vol. 367
  start-page: 1028
  year: 2016
  ident: 10.1016/j.engappai.2023.107034_bib46
– volume: 197
  start-page: 668
  year: 2022
  ident: 10.1016/j.engappai.2023.107034_bib65
  article-title: ““Evolutionary quantile regression gated recurrent unit network based on variational mode decomposition, improved whale optimization algorithm for probabilistic short-term wind speed prediction “
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.07.123
– volume: 155
  start-page: 1060
  year: 2020
  ident: 10.1016/j.engappai.2023.107034_bib16
  article-title: Theoretical energy storage system sizing method and performance analysis for wind power forecast uncertainty management
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.03.170
– volume: 35
  start-page: 2549
  issue: 4
  year: 2020
  ident: 10.1016/j.engappai.2023.107034_bib64
  article-title: Improved deep mixture density network for regional wind power probabilistic forecasting
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2020.2971607
– volume: 83
  start-page: 66
  year: 2015
  ident: 10.1016/j.engappai.2023.107034_bib31
  article-title: New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, mind evolutionary algorithm and artificial neural networks
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.06.004
– volume: 67
  start-page: 187
  issue: 337
  year: 1972
  ident: 10.1016/j.engappai.2023.107034_bib57
  article-title: A decision-theoretic approach to interval estimation
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1972.10481224
– volume: 180
  start-page: 213
  year: 2016
  ident: 10.1016/j.engappai.2023.107034_bib59
  article-title: Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.07.113
– volume: 182
  start-page: 80
  year: 2016
  ident: 10.1016/j.engappai.2023.107034_bib53
  article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.08.108
– volume: 146
  start-page: 149
  year: 2020
  ident: 10.1016/j.engappai.2023.107034_bib58
  article-title: A novel hybrid system based on multi-objective optimization for wind speed forecasting
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.04.157
– volume: 18
  start-page: 1527
  year: 2006
  ident: 10.1016/j.engappai.2023.107034_bib20
  article-title: A fast learning algorithm for deep belief Nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 14
  start-page: 1771
  issue: 8
  year: 2002
  ident: 10.1016/j.engappai.2023.107034_bib19
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Comput.
  doi: 10.1162/089976602760128018
– volume: 31
  start-page: 18
  issue: 1
  year: 2015
  ident: 10.1016/j.engappai.2023.107034_bib24
  article-title: A new fuzzy-based combined prediction interval for wind power forecasting
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2015.2393880
– volume: 12
  start-page: 537
  issue: 2
  year: 2011
  ident: 10.1016/j.engappai.2023.107034_bib26
  article-title: Prediction intervals to account for uncertainties in travel time prediction
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2011.2106209
– volume: 12
  start-page: 2579
  issue: 9
  year: 2021
  ident: 10.1016/j.engappai.2023.107034_bib5
  article-title: A stochastic sensitivity-based multi-objective optimization method for short-term wind speed interval prediction
  publication-title: International Journal of Machine Learning and Cybernetics
  doi: 10.1007/s13042-021-01340-6
– volume: 177
  year: 2021
  ident: 10.1016/j.engappai.2023.107034_bib33
  article-title: Ensemble forecasting system for short-term wind speed forecasting based on optimal sub-model selection and multi-objective version of mayfly optimization algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114974
– volume: vol. 136
  start-page: 701
  year: 2019
  ident: 10.1016/j.engappai.2023.107034_bib41
– volume: 208
  start-page: 344
  year: 2017
  ident: 10.1016/j.engappai.2023.107034_bib56
  article-title: A novel hybrid system based on a new proposed algorithm-Multi-Objective Whale Optimization Algorithm for wind speed forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.10.031
– volume: 180
  start-page: 213
  year: 2016
  ident: 10.1016/j.engappai.2023.107034_bib60
  article-title: Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.07.113
– volume: 38
  start-page: 11280
  issue: 9
  year: 2011
  ident: 10.1016/j.engappai.2023.107034_bib2
  article-title: Wind farm power prediction based on wavelet decomposition and chaotic time series
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.176
– volume: 6
  start-page: 1416
  year: 2015
  ident: 10.1016/j.engappai.2023.107034_bib62
  article-title: Predictive deep Boltzmann machine for multiperiod wind speed forecasting
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2015.2434387
– volume: 11
  start-page: 1476
  issue: 12
  year: 2021
  ident: 10.1016/j.engappai.2023.107034_bib25
  article-title: An optimized multilayer perceptrons model using grey wolf optimizer to predict mechanical and microstructural properties of friction stir processed aluminum alloy reinforced by nanoparticles
  publication-title: Coatings
  doi: 10.3390/coatings11121476
– volume: 14
  start-page: 1893
  issue: 9
  year: 2021
  ident: 10.1016/j.engappai.2023.107034_bib8
  article-title: Bistable morphing composites for energy-harvesting applications
  publication-title: Polymers
  doi: 10.3390/polym14091893
– volume: 15
  start-page: 66
  year: 2018
  ident: 10.1016/j.engappai.2023.107034_bib38
  article-title: Short term wind speed prediction using multiple kernel pseudo inverse neural network
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-017-1086-7
– volume: 159
  start-page: 54
  year: 2018
  ident: 10.1016/j.engappai.2023.107034_bib32
  article-title: Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.01.010
– volume: 149
  start-page: 399
  year: 2021
  ident: 10.1016/j.engappai.2023.107034_bib1
  article-title: Efficient artificial intelligence forecasting models for COVID-19 outbreak in Russia and Brazil
  publication-title: Process Saf. Environ. Protect.
  doi: 10.1016/j.psep.2020.11.007
– volume: 28
  year: 2021
  ident: 10.1016/j.engappai.2023.107034_bib9
  article-title: Productivity forecasting of solar distiller integrated with evacuated tubes and external condenser using artificial intelligence model and moth-flame optimizer
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2021.101671
– start-page: 51
  year: 2009
  ident: 10.1016/j.engappai.2023.107034_bib44
– volume: 3
  start-page: 306
  issue: 2
  year: 2012
  ident: 10.1016/j.engappai.2023.107034_bib4
  article-title: AWNN-assisted wind power forecasting using feed-forward neural network
  publication-title: IEEE Trans. Sustain. Syst.
  doi: 10.1109/TSTE.2011.2182215
– volume: 141
  start-page: 1
  year: 2020
  ident: 10.1016/j.engappai.2023.107034_bib47
  article-title: Forecasting the prevalence of COVID-19 outbreak in Egypt using nonlinear autoregressive artificial neural networks
  publication-title: Process Saf. Environ. Protect.
  doi: 10.1016/j.psep.2020.05.029
– volume: 276
  year: 2023
  ident: 10.1016/j.engappai.2023.107034_bib50
  article-title: Wind speed prediction by a swarm intelligence based deep learning model via signal decomposition and parameter optimization using improved chimp optimization algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127526
– volume: 22
  start-page: 337
  issue: 3
  year: 2011
  ident: 10.1016/j.engappai.2023.107034_bib27
  article-title: Lower upper bound estimation method for construction of neural network-based prediction intervals
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
  doi: 10.1109/TNN.2010.2096824
– volume: 70
  start-page: 1167
  year: 2018
  ident: 10.1016/j.engappai.2023.107034_bib40
  article-title: Short-term wind speed and wind power prediction using hybrid empirical mode decomposition and kernel ridge regression
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.12.010
– volume: 49
  year: 2022
  ident: 10.1016/j.engappai.2023.107034_bib12
  article-title: Low-cost bilayered structure for improving the performance of solar stills: performance/cost analysis and water yield prediction using machine learning
  publication-title: Sustain. Energy Technol. Assessments
– volume: 87
  start-page: 203
  year: 2016
  ident: 10.1016/j.engappai.2023.107034_bib36
  article-title: Short-term wind speed and power forecasting using an ensemble of mixture density neural networks
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.10.014
– volume: 228
  start-page: 2207
  year: 2018
  ident: 10.1016/j.engappai.2023.107034_bib28
  article-title: ” A wind speed interval prediction system based on multi-objective optimization for machine learning method”
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.07.032
– volume: 99
  year: 2015
  ident: 10.1016/j.engappai.2023.107034_bib49
  article-title: Prediction interval estimation ofelectricity prices using PSO tuned support vector machines
  publication-title: IEEE Trans. Ind. Inf.
– volume: 48
  start-page: 1136
  issue: 4
  year: 2012
  ident: 10.1016/j.engappai.2023.107034_bib29
  article-title: Short-term wind-power prediction based on wavelet transform support vector machine and statistic-characteristics analysis
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2012.2199449
– volume: 205
  start-page: 53
  year: 2016
  ident: 10.1016/j.engappai.2023.107034_bib63
  article-title: “ Direct interval forecasting of wind speed using radial basis function neural networks in a multi-objective optimization framework”
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.061
SSID ssj0003846
Score 2.4781091
Snippet An improvement in wind speed prediction is highly necessary for estimating the accuracy as well as stability of wind power. In this work, we proposed...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107034
SubjectTerms Deep belief network
Multi-kernel-random-vector-functional-link-network
Multi-objective sine-cosine particle-swarm-optimization
Prediction IntervalsPrediction interval nominal confidence
Variational mode decomposition
Wind speed prediction
Title Probabilistic prediction of wind speed using an integrated deep belief network optimized by a hybrid multi-objective particle swarm algorithm
URI https://dx.doi.org/10.1016/j.engappai.2023.107034
Volume 126
WOSCitedRecordID wos001077157000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0003846
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMX3qjlpT1ws1yctVN7jwWKeEhVRYuUmzX7cOIosSM7ffEf-BX8UWa9XjuFSgUhLpa10q4dz7czs5NvZgh5BSECQwXgA2fCjxjgltKx9oVSgeJKMB7IptlEfHiYTCb8aDD44XJhzhZxUSQXF3z1X0WNYyhskzr7F-LuFsUBvEeh4xXFjtc_EvxRhVvUUF5NBWZTA0Dl0rmF57kJk6_QYnmntU1P7AtGKE9pbZhb6JZmXmH54V6JOmWZf7OOKnizS5PiZXmIfinmVl96q_ZFvPocqqUHi2lZ5evZ8krgvy996G3-b95QEaqGs9R0ENkoEtrFfwBN6rQhHhwX-VTNOmPyDmobGKpAofoD73Nez8qe0fsmr8tm3hco5lqvYTPMwcI236-Lvbn8m57sZIOYzB9x20Gm0-c2Bf8322DDFPNdXUzxR0K-ax6Dw6jzot4adhzFY7O4WRsPaSPTuesW2WLxmCdDsrX_8WDyqTP4YWLzwdzLbCSiX_-0632gDb_m5D652x5I6L6V3wMy0MVDcq89nNBW9dc45Pp_uLFH5PsVqNEearTMqIEabaBGG6hRKGgPNWqgRi3UaAs12kGNiksK1EKN_gI16qBGG6jRDmqPydf3BydvP_htew9fhiO29lksYz2KRyLbi4ApqZJsT3Op4xj1RJiEUkEATI-l0JFSiRBZJLgMM0N0AsM_eEKGRVnobUKjIMnQLx8DM4X3OSSBZKCkQP9WxHhi2SFj98FT2da-Ny1YFqkjOc5TJ6jUCCq1gtohr7t5K1v95cYZ3MkzbX1Y65umCMMb5j79h7nPyJ1-1zwnw3V1ql-Q2_JsndfVyxaxPwHPhdFU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+prediction+of+wind+speed+using+an+integrated+deep+belief+network+optimized+by+a+hybrid+multi-objective+particle+swarm+algorithm&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Sarangi%2C+Snigdha&rft.au=Dash%2C+Pradipta+Kishore&rft.au=Bisoi%2C+Ranjeeta&rft.date=2023-11-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.volume=126&rft_id=info:doi/10.1016%2Fj.engappai.2023.107034&rft.externalDocID=S0952197623012186
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon