Detecting failed tethers in submerged floating tunnels using an LSTM autoencoder and DNN algorithms
This study proposes a two-step approach for detecting damaged tethers in submerged floating tunnels. The proposed method employs two different artificial neural network algorithms. First, the long short-term memory (LSTM) autoencoder model trained using response datasets under intact conditions was...
Uloženo v:
| Vydáno v: | Ocean engineering Ročník 312; s. 119105 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
15.11.2024
|
| Témata: | |
| ISSN: | 0029-8018 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!