Detecting failed tethers in submerged floating tunnels using an LSTM autoencoder and DNN algorithms
This study proposes a two-step approach for detecting damaged tethers in submerged floating tunnels. The proposed method employs two different artificial neural network algorithms. First, the long short-term memory (LSTM) autoencoder model trained using response datasets under intact conditions was...
Gespeichert in:
| Veröffentlicht in: | Ocean engineering Jg. 312; S. 119105 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
15.11.2024
|
| Schlagworte: | |
| ISSN: | 0029-8018 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This study proposes a two-step approach for detecting damaged tethers in submerged floating tunnels. The proposed method employs two different artificial neural network algorithms. First, the long short-term memory (LSTM) autoencoder model trained using response datasets under intact conditions was used to reconstruct the measured acceleration data of the target structure. Further, the data reconstruction error was used as the input for the deep neural network algorithm trained in advance using the reconstruction error pattern in various tether damage cases. The proposed method was verified by conducting a well-validated simulation based on hydrodynamics. The damage-detection accuracy of the proposed method was directly compared with that of a conventional supervised learning algorithm-based approach. In addition, the case study results confirmed that the proposed approach was applicable to other submerged floating tunnel (SFT) structures by retraining the LSTM autoencoder and deep neural network algorithms with intact datasets only. Thus, this approach does not require a large amount of training data or simulation model updates for other SFT structures.
•A two-step approach for detecting damaged tethers in SFTs is proposed, combining unsupervised and supervised ANN algorithms.•The LSTM autoencoder is used to recognize changes in structural conditions from the tunnel's acceleration data.•The DNN is employed to localize failed tethers through the analysis of response data reconstruction error patterns.•Case studies validate the effectiveness and applicability of the proposed method compared to a conventional approach. |
|---|---|
| AbstractList | This study proposes a two-step approach for detecting damaged tethers in submerged floating tunnels. The proposed method employs two different artificial neural network algorithms. First, the long short-term memory (LSTM) autoencoder model trained using response datasets under intact conditions was used to reconstruct the measured acceleration data of the target structure. Further, the data reconstruction error was used as the input for the deep neural network algorithm trained in advance using the reconstruction error pattern in various tether damage cases. The proposed method was verified by conducting a well-validated simulation based on hydrodynamics. The damage-detection accuracy of the proposed method was directly compared with that of a conventional supervised learning algorithm-based approach. In addition, the case study results confirmed that the proposed approach was applicable to other submerged floating tunnel (SFT) structures by retraining the LSTM autoencoder and deep neural network algorithms with intact datasets only. Thus, this approach does not require a large amount of training data or simulation model updates for other SFT structures.
•A two-step approach for detecting damaged tethers in SFTs is proposed, combining unsupervised and supervised ANN algorithms.•The LSTM autoencoder is used to recognize changes in structural conditions from the tunnel's acceleration data.•The DNN is employed to localize failed tethers through the analysis of response data reconstruction error patterns.•Case studies validate the effectiveness and applicability of the proposed method compared to a conventional approach. |
| ArticleNumber | 119105 |
| Author | Min, Seongi Kim, Seungjun Jeong, Kiwon |
| Author_xml | – sequence: 1 givenname: Seongi surname: Min fullname: Min, Seongi – sequence: 2 givenname: Kiwon surname: Jeong fullname: Jeong, Kiwon – sequence: 3 givenname: Seungjun orcidid: 0000-0001-8247-8451 surname: Kim fullname: Kim, Seungjun email: rocksmell@korea.ac.kr |
| BookMark | eNqFkMtOwzAQRb0oEm3hF5B_IMF2nJfEAtTykkpZUNaW40xSV6mNbAeJv8elsGHT1eiO5lxpzgxNjDWA0BUlKSW0uN6lVoE0YPqUEcZTSmtK8gmaEsLqpCK0Okcz73eEkKIg2RSpJQRQQZsed1IP0OIAYQvOY22wH5s9uD4uu8HKn6MwGgODx6M_JGnw6m3zguUYLBhlW3Bx1-Lleo3l0Funw3bvL9BZJwcPl79zjt4f7jeLp2T1-vi8uFslKqMsJIxnWVsr4FlXElYxDnlRc6hLRaCRueRdDLmUrC5LoHnLm7apJckLzrKKRHiOimOvctZ7B534cHov3ZegRBz0iJ340yMOesRRTwRv_oFKh_ivNcFFKafx2yMexcCnBie80lEHtNpFt6K1-lTFN4xKilQ |
| CitedBy_id | crossref_primary_10_1016_j_oceaneng_2024_120097 crossref_primary_10_1080_19386362_2025_2559040 crossref_primary_10_1016_j_oceaneng_2025_121442 |
| Cites_doi | 10.12989/ose.2015.5.2.109 10.4028/www.scientific.net/AMR.718-720.703 10.1016/j.marstruc.2023.103508 10.1016/j.oceaneng.2018.08.023 10.1016/j.engappai.2023.106774 10.1016/j.proeng.2010.08.006 10.1016/j.marstruc.2011.05.003 10.1016/j.oceaneng.2021.110402 10.1016/j.proeng.2010.08.009 10.1016/j.marstruc.2021.103045 10.1016/j.apor.2023.103525 10.1016/j.proeng.2010.08.003 10.1162/neco.1997.9.8.1735 10.1016/j.proeng.2010.08.004 10.1016/j.proeng.2010.08.012 10.1016/j.proeng.2016.11.530 10.1016/j.apacoust.2018.04.034 10.3390/app9112187 10.1016/j.marstruc.2018.01.009 10.3390/app9245494 10.1016/j.oceaneng.2023.114284 10.1016/j.prostr.2017.07.119 10.1016/j.oceaneng.2016.08.009 10.1016/j.engstruct.2007.04.001 10.9753/icce.v37.structures.62 10.3390/jmse8020123 10.1016/j.oceaneng.2020.107522 10.1016/j.oceaneng.2022.111048 10.3390/jmse10111623 10.1016/j.apor.2023.103861 10.1016/j.oceaneng.2020.108490 10.1007/s13296-018-0102-2 10.1016/j.oceaneng.2021.108898 10.1016/j.oceaneng.2021.109663 10.3390/app10186591 10.1016/j.apacoust.2017.01.033 10.1016/j.oceaneng.2022.112587 10.1016/j.oceaneng.2016.09.033 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.oceaneng.2024.119105 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Oceanography |
| ExternalDocumentID | 10_1016_j_oceaneng_2024_119105 S0029801824024430 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ 9DU AAQXK AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SET WUQ ~HD |
| ID | FETCH-LOGICAL-c312t-2433d9ce43f702824e5694e97c0eba5a4f4e95aa2977e15d4bdb9a05642380433 |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001304934200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-8018 |
| IngestDate | Sat Nov 29 03:33:01 EST 2025 Tue Nov 18 21:53:11 EST 2025 Sat Oct 26 15:42:19 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Submerged floating tunnel Deep neural networks Measured motion response data Damage detection and localization Tether LSTM autoencoder |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-2433d9ce43f702824e5694e97c0eba5a4f4e95aa2977e15d4bdb9a05642380433 |
| ORCID | 0000-0001-8247-8451 |
| ParticipantIDs | crossref_primary_10_1016_j_oceaneng_2024_119105 crossref_citationtrail_10_1016_j_oceaneng_2024_119105 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2024_119105 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-15 |
| PublicationDateYYYYMMDD | 2024-11-15 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Ocean engineering |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Won, Kim (bib37) 2018; 18 Jamalkia, Ettefagh, Mojtahedi (bib14) 2016; 125 Min, Jeong, Lee, Kim (bib27) 2023; 277 Won, Park, Kim (bib42) 2021; 79 Min, Jeong, Noh, Won, Kim (bib29) 2022; 250 Jakobsen (bib13) 2010; 4 Hong, Ge (bib12) 2010; 4 Min, Jeong, Lee, Jung, Kim (bib26) 2023; 31 Hall, Trower (bib10) 2011 Faggiano, Panduro, Mendoza Rosas, Mazzolani (bib9) 2016; 166 Kwon, Jin, Kim, Koo (bib20) 2020; 10 Min, Jeong, Noh, Won, Kim (bib28) 2022; 2022 Cifuentes, Kim, Kim, Park (bib5) 2015; 5 Xu, Ma, Liu, Li, Li, Jia, He, Du (bib44) 2023; 134 Kanie (bib17) 2010; 4 Hochreiter, Schmidhuber (bib11) 1997; 9 Yang, Li, Zhang, Yuan, Yang (bib45) 2020; 8 Chung, Kim, Lee, Shin (bib4) 2020; 209 Kunisu (bib18) 2010; 4 Jeong, Kim (bib16) 2024; 143 Won, Park, Kang, Kim (bib38) 2021; 237 Won, Seo, Kim (bib39) 2023; 37 Du, Wu, Yue (bib8) 2013; 718–720 Angulo, Allwright, Mares, Gan, Soua (bib1) 2017; 5 Di Pilato, Perotti, Fogazzi (bib6) 2008; 30 Won, Seo, Park, Kim (bib41) 2021; 220 Won, Seo, Kim, Park (bib40) 2019; 9 Wang, Li, Huang, Cheng, Ding (bib36) 2022; 10 Martire (bib25) 2010 Lee, Seo, Mun (bib21) 2016; 127 Lee, Chung, Kim, Shin (bib22) 2021; 227 Kwon, Jin, Kim (bib19) 2022; 244 Rivera, Edwards, Eren, Soua (bib34) 2018; 139 Xiang, Chen, Yang, Lin, Zhu (bib43) 2018; 59 Rebel, Chaplin, Groves-Kirkby, Ridge (bib33) 2000; 42 Ryu, Min, Kang, Kim (bib46) 2024 Min, Lee, Byun, Kang, Kim (bib30) 2023; 125 Jeong, Min, Jang, Won, Kim (bib15) 2022; 265 Lu, Ge, Wang, Wu, Hong (bib24) 2011; 24 (bib31) 2011 Lin, Xiang, Yang, Chen (bib23) 2018; 166 Angulo, Tang, Khadimallah, Soua, Mares, Gan (bib2) 2019; 9 Bashir, Walsh, Thies, Weller, Blondel, Johanning (bib3) 2017; 121 Ding, Huang, Cheng, Li, Ren (bib7) 2024; 93 Østlid (bib32) 2010; 4 Sidarta, O'Sullivan, Lim (bib35) 2018 Angulo (10.1016/j.oceaneng.2024.119105_bib2) 2019; 9 Martire (10.1016/j.oceaneng.2024.119105_bib25) 2010 Du (10.1016/j.oceaneng.2024.119105_bib8) 2013; 718–720 Østlid (10.1016/j.oceaneng.2024.119105_bib32) 2010; 4 Lin (10.1016/j.oceaneng.2024.119105_bib23) 2018; 166 Rivera (10.1016/j.oceaneng.2024.119105_bib34) 2018; 139 Faggiano (10.1016/j.oceaneng.2024.119105_bib9) 2016; 166 Min (10.1016/j.oceaneng.2024.119105_bib30) 2023; 125 Rebel (10.1016/j.oceaneng.2024.119105_bib33) 2000; 42 Bashir (10.1016/j.oceaneng.2024.119105_bib3) 2017; 121 Di Pilato (10.1016/j.oceaneng.2024.119105_bib6) 2008; 30 Jeong (10.1016/j.oceaneng.2024.119105_bib16) 2024; 143 Wang (10.1016/j.oceaneng.2024.119105_bib36) 2022; 10 Hong (10.1016/j.oceaneng.2024.119105_bib12) 2010; 4 Jeong (10.1016/j.oceaneng.2024.119105_bib15) 2022; 265 Min (10.1016/j.oceaneng.2024.119105_bib26) 2023; 31 Min (10.1016/j.oceaneng.2024.119105_bib29) 2022; 250 Lu (10.1016/j.oceaneng.2024.119105_bib24) 2011; 24 Xu (10.1016/j.oceaneng.2024.119105_bib44) 2023; 134 Xiang (10.1016/j.oceaneng.2024.119105_bib43) 2018; 59 Jakobsen (10.1016/j.oceaneng.2024.119105_bib13) 2010; 4 Angulo (10.1016/j.oceaneng.2024.119105_bib1) 2017; 5 Kunisu (10.1016/j.oceaneng.2024.119105_bib18) 2010; 4 Sidarta (10.1016/j.oceaneng.2024.119105_bib35) 2018 Ding (10.1016/j.oceaneng.2024.119105_bib7) 2024; 93 Kanie (10.1016/j.oceaneng.2024.119105_bib17) 2010; 4 Kwon (10.1016/j.oceaneng.2024.119105_bib19) 2022; 244 Min (10.1016/j.oceaneng.2024.119105_bib27) 2023; 277 Hall (10.1016/j.oceaneng.2024.119105_bib10) 2011 Won (10.1016/j.oceaneng.2024.119105_bib41) 2021; 220 Lee (10.1016/j.oceaneng.2024.119105_bib21) 2016; 127 Won (10.1016/j.oceaneng.2024.119105_bib40) 2019; 9 Cifuentes (10.1016/j.oceaneng.2024.119105_bib5) 2015; 5 (10.1016/j.oceaneng.2024.119105_bib31) 2011 Ryu (10.1016/j.oceaneng.2024.119105_bib46) 2024 Lee (10.1016/j.oceaneng.2024.119105_bib22) 2021; 227 Won (10.1016/j.oceaneng.2024.119105_bib39) 2023; 37 Won (10.1016/j.oceaneng.2024.119105_bib42) 2021; 79 Min (10.1016/j.oceaneng.2024.119105_bib28) 2022; 2022 Chung (10.1016/j.oceaneng.2024.119105_bib4) 2020; 209 Won (10.1016/j.oceaneng.2024.119105_bib37) 2018; 18 Jamalkia (10.1016/j.oceaneng.2024.119105_bib14) 2016; 125 Yang (10.1016/j.oceaneng.2024.119105_bib45) 2020; 8 Hochreiter (10.1016/j.oceaneng.2024.119105_bib11) 1997; 9 Won (10.1016/j.oceaneng.2024.119105_bib38) 2021; 237 Kwon (10.1016/j.oceaneng.2024.119105_bib20) 2020; 10 |
| References_xml | – volume: 121 start-page: 95 year: 2017 end-page: 103 ident: bib3 article-title: Underwater acoustic emission monitoring: experimental investigations and acoustic signature recognition of synthetic mooring ropes publication-title: Appl. Acoust. – volume: 30 start-page: 268 year: 2008 end-page: 281 ident: bib6 article-title: 3D dynamic response of submerged floating tunnels under seismic and hydrodynamic excitation publication-title: Eng. Struct. – year: 2011 ident: bib10 article-title: Mooring system integrity: deteriorative mechanisms on mooring systems and appropriate inspection techniques publication-title: Proceedings of the Annual Offshore Technology Conference – volume: 209 year: 2020 ident: bib4 article-title: Detection of damaged mooring line based on deep neural networks publication-title: Ocean Eng. – volume: 166 start-page: 3 year: 2016 end-page: 12 ident: bib9 article-title: The conceptual design of a roadway SFT in Baja California, Mexico publication-title: Procedia Eng. – volume: 220 year: 2021 ident: bib41 article-title: Torsional behavior of precast segment module joints for a submerged floating tunnels publication-title: Ocean Eng. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bib11 article-title: Long short-term memory publication-title: Neural Comput. – volume: 4 start-page: 71 year: 2010 end-page: 79 ident: bib13 article-title: Design of the submerged floating tunnel operating under various conditions publication-title: Procedia Eng. – volume: 4 start-page: 13 year: 2010 end-page: 20 ident: bib17 article-title: Feasibility studies on various SFT in Japan and their technological evaluation publication-title: Procedia Eng. – volume: 125 start-page: 191 year: 2016 end-page: 202 ident: bib14 article-title: Damage detection of TLP and SPAR floating wind turbine using dynamic response of the structure publication-title: Ocean Eng. – volume: 139 start-page: 156 year: 2018 end-page: 164 ident: bib34 article-title: Acoustic emission technique to monitor crack growth in a mooring chain publication-title: Appl. Acoust. – volume: 5 start-page: 217 year: 2017 end-page: 224 ident: bib1 article-title: Finite element analysis of crack growth for structural health monitoring of mooring chains using ultrasonic guided waves and acoustic emission publication-title: Procedia Struct. Integr. – volume: 42 year: 2000 ident: bib33 article-title: Condition monitoring techniques for fibre mooring ropes publication-title: Insight: Non-Destr. Test. Cond. Monit. – volume: 237 year: 2021 ident: bib38 article-title: Dynamic behavior of the submerged floating tunnel moored by inclined tethers attached to fixed towers publication-title: Ocean Eng. – volume: 127 start-page: 32 year: 2016 end-page: 47 ident: bib21 article-title: Seismic behaviors of a floating submerged tunnel with a rectangular cross-section publication-title: Ocean Eng. – volume: 31 start-page: 405 year: 2023 end-page: 417 ident: bib26 article-title: Estimation of reaction forces at the seabed anchor of the submerged floating tunnel using structural pattern recognition publication-title: Comput. Concr. – volume: 79 year: 2021 ident: bib42 article-title: Cyclic bending performance of joint on precast composite hollow RC for submerged floating tunnels publication-title: Mar. Struct. – volume: 277 year: 2023 ident: bib27 article-title: Estimation of unmeasured structural responses of submerged floating tunnels using pattern model trained via long short-term memory publication-title: Ocean Eng. – volume: 18 start-page: 1191 year: 2018 end-page: 1199 ident: bib37 article-title: Feasibility study of submerged floating tunnels moored by an inclined tendon system publication-title: Int. J. Steel Struct – volume: 134 year: 2023 ident: bib44 article-title: A review of research on tether-type submerged floating tunnels publication-title: Appl. Ocean Res. – year: 2011 ident: bib31 article-title: A feasibility study – how to cross the wide and deep Sognefjord publication-title: Summary report – volume: 8 start-page: 123 year: 2020 ident: bib45 article-title: Experimental study on 2D motion characteristics of submerged floating tunnel in waves publication-title: J. Mar. Sci. Eng. – volume: 9 start-page: 2187 year: 2019 ident: bib2 article-title: Acoustic emission monitoring of fatigue crack growth in mooring chains publication-title: Appl. Sci. – volume: 24 start-page: 358 year: 2011 end-page: 376 ident: bib24 article-title: On the slack phenomena and snap force in tethers of submerged floating tunnels under wave conditions publication-title: Mar. Struct. – volume: 4 start-page: 35 year: 2010 end-page: 50 ident: bib12 article-title: Dynamic response and structural integrity of submerged floating tunnel due to hydrodynamic load and accidental load publication-title: Procedia Eng. – year: 2024 ident: bib46 article-title: LSTM-based structural pattern recognition for floating bridges publication-title: Proc. Int. Conf. Bridge Maint. Saf. Mgmt. IAMBAS. – volume: 10 start-page: 6591 year: 2020 ident: bib20 article-title: Mooring-failure monitoring of submerged floating tunnel using deep neural network publication-title: Appl. Sci. – volume: 718–720 start-page: 703 year: 2013 end-page: 708 ident: bib8 article-title: Method for tensile measurement of stud-less mooring chain publication-title: Adv. Mater. Res. – volume: 4 start-page: 99 year: 2010 end-page: 105 ident: bib18 article-title: Evaluation of wave force acting on submerged floating tunnels publication-title: Procedia Eng. – volume: 59 start-page: 179 year: 2018 end-page: 191 ident: bib43 article-title: Dynamic response analysis for submerged floating tunnel with anchor-cables subjected to sudden cable breakage publication-title: Mar. Struct. – volume: 93 year: 2024 ident: bib7 article-title: Hydrodynamic experiment of submerged floating tunnel under regular wave and current actions during construction period publication-title: Mar. Struct. – volume: 227 year: 2021 ident: bib22 article-title: Damage detection of catenary mooring line based on recurrent neural networks publication-title: Ocean Eng. – volume: 250 year: 2022 ident: bib29 article-title: Damage detection for tethers of submerged floating tunnels based on convolutional neural networks publication-title: Ocean Eng. – volume: 265 year: 2022 ident: bib15 article-title: Feasibility study of submerged floating tunnels with vertical and inclined combined tethers publication-title: Ocean Eng. – volume: 166 start-page: 290 year: 2018 end-page: 301 ident: bib23 article-title: Dynamic response analysis for submerged floating tunnel due to fluid-vehicle-tunnel interaction publication-title: Ocean Eng. – year: 2018 ident: bib35 article-title: Damage detection of offshore platform mooring line using artificial neural network publication-title: Proc. Int. Conf. Offshore Mech. Arct. Eng. OMAE – year: 2010 ident: bib25 article-title: The Development of Submerged Floating Tunnels as an Innovative Solution for Waterway Crossings (Ph.D. Thesis) – volume: 2022 start-page: 1170 year: 2022 end-page: 1177 ident: bib28 article-title: Convolutional neural network-based damage detection of the tethers of submerged floating tunnels using structural response data under various incident waves publication-title: Bridge Safety, Maintenance, Management, Life-Cycle, Resilience and Sustainability – volume: 143 year: 2024 ident: bib16 article-title: Structural response of submerged floating tunnels with free-end boundary condition based on an analytical approach publication-title: Appl. Ocean Res. – volume: 9 start-page: 5404 year: 2019 ident: bib40 article-title: Hydrodynamic behavior of submerged floating tunnels with suspension cables and towers under irregular waves publication-title: Appl. Sci. – volume: 5 start-page: 109 year: 2015 end-page: 123 ident: bib5 article-title: Numerical simulation of the coupled dynamic response of a submerged floating tunnel with mooring lines in regular waves publication-title: Ocean Syst. Eng – volume: 125 year: 2023 ident: bib30 article-title: Merged LSTM-based pattern recognition of structural behavior of cable-supported bridges publication-title: Eng. Appl. Artif. Intell. – volume: 37 start-page: 62 year: 2023 ident: bib39 article-title: Hydrodynamic behavior of submerged floating bridge with suspension support after cable failure publication-title: Eng. Int. Conf. Coastal – volume: 10 start-page: 1623 year: 2022 ident: bib36 article-title: Experimental investigation of the dynamic behavior of submerged floating tunnels under regular wave conditions publication-title: J. Mar. Sci. Eng. – volume: 4 start-page: 3 year: 2010 end-page: 11 ident: bib32 article-title: When is SFT competitive? publication-title: Procedia Eng. – volume: 244 year: 2022 ident: bib19 article-title: Prediction of dynamic and structural responses of submerged floating tunnel using artificial neural network and minimum sensors publication-title: Ocean Eng. – volume: 5 start-page: 109 year: 2015 ident: 10.1016/j.oceaneng.2024.119105_bib5 article-title: Numerical simulation of the coupled dynamic response of a submerged floating tunnel with mooring lines in regular waves publication-title: Ocean Syst. Eng doi: 10.12989/ose.2015.5.2.109 – volume: 718–720 start-page: 703 year: 2013 ident: 10.1016/j.oceaneng.2024.119105_bib8 article-title: Method for tensile measurement of stud-less mooring chain publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.718-720.703 – volume: 93 year: 2024 ident: 10.1016/j.oceaneng.2024.119105_bib7 article-title: Hydrodynamic experiment of submerged floating tunnel under regular wave and current actions during construction period publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2023.103508 – volume: 166 start-page: 290 year: 2018 ident: 10.1016/j.oceaneng.2024.119105_bib23 article-title: Dynamic response analysis for submerged floating tunnel due to fluid-vehicle-tunnel interaction publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.08.023 – volume: 2022 start-page: 1170 year: 2022 ident: 10.1016/j.oceaneng.2024.119105_bib28 article-title: Convolutional neural network-based damage detection of the tethers of submerged floating tunnels using structural response data under various incident waves – volume: 125 year: 2023 ident: 10.1016/j.oceaneng.2024.119105_bib30 article-title: Merged LSTM-based pattern recognition of structural behavior of cable-supported bridges publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106774 – year: 2018 ident: 10.1016/j.oceaneng.2024.119105_bib35 article-title: Damage detection of offshore platform mooring line using artificial neural network – volume: 4 start-page: 35 year: 2010 ident: 10.1016/j.oceaneng.2024.119105_bib12 article-title: Dynamic response and structural integrity of submerged floating tunnel due to hydrodynamic load and accidental load publication-title: Procedia Eng. doi: 10.1016/j.proeng.2010.08.006 – volume: 24 start-page: 358 year: 2011 ident: 10.1016/j.oceaneng.2024.119105_bib24 article-title: On the slack phenomena and snap force in tethers of submerged floating tunnels under wave conditions publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2011.05.003 – year: 2011 ident: 10.1016/j.oceaneng.2024.119105_bib10 article-title: Mooring system integrity: deteriorative mechanisms on mooring systems and appropriate inspection techniques – volume: 244 year: 2022 ident: 10.1016/j.oceaneng.2024.119105_bib19 article-title: Prediction of dynamic and structural responses of submerged floating tunnel using artificial neural network and minimum sensors publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.110402 – volume: 4 start-page: 71 year: 2010 ident: 10.1016/j.oceaneng.2024.119105_bib13 article-title: Design of the submerged floating tunnel operating under various conditions publication-title: Procedia Eng. doi: 10.1016/j.proeng.2010.08.009 – year: 2010 ident: 10.1016/j.oceaneng.2024.119105_bib25 – volume: 79 year: 2021 ident: 10.1016/j.oceaneng.2024.119105_bib42 article-title: Cyclic bending performance of joint on precast composite hollow RC for submerged floating tunnels publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2021.103045 – volume: 134 year: 2023 ident: 10.1016/j.oceaneng.2024.119105_bib44 article-title: A review of research on tether-type submerged floating tunnels publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2023.103525 – volume: 4 start-page: 3 year: 2010 ident: 10.1016/j.oceaneng.2024.119105_bib32 article-title: When is SFT competitive? publication-title: Procedia Eng. doi: 10.1016/j.proeng.2010.08.003 – volume: 9 start-page: 1735 year: 1997 ident: 10.1016/j.oceaneng.2024.119105_bib11 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 4 start-page: 13 year: 2010 ident: 10.1016/j.oceaneng.2024.119105_bib17 article-title: Feasibility studies on various SFT in Japan and their technological evaluation publication-title: Procedia Eng. doi: 10.1016/j.proeng.2010.08.004 – volume: 4 start-page: 99 year: 2010 ident: 10.1016/j.oceaneng.2024.119105_bib18 article-title: Evaluation of wave force acting on submerged floating tunnels publication-title: Procedia Eng. doi: 10.1016/j.proeng.2010.08.012 – volume: 166 start-page: 3 year: 2016 ident: 10.1016/j.oceaneng.2024.119105_bib9 article-title: The conceptual design of a roadway SFT in Baja California, Mexico publication-title: Procedia Eng. doi: 10.1016/j.proeng.2016.11.530 – volume: 139 start-page: 156 year: 2018 ident: 10.1016/j.oceaneng.2024.119105_bib34 article-title: Acoustic emission technique to monitor crack growth in a mooring chain publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2018.04.034 – volume: 9 start-page: 2187 year: 2019 ident: 10.1016/j.oceaneng.2024.119105_bib2 article-title: Acoustic emission monitoring of fatigue crack growth in mooring chains publication-title: Appl. Sci. doi: 10.3390/app9112187 – volume: 59 start-page: 179 year: 2018 ident: 10.1016/j.oceaneng.2024.119105_bib43 article-title: Dynamic response analysis for submerged floating tunnel with anchor-cables subjected to sudden cable breakage publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2018.01.009 – year: 2011 ident: 10.1016/j.oceaneng.2024.119105_bib31 article-title: A feasibility study – how to cross the wide and deep Sognefjord publication-title: Summary report – volume: 9 start-page: 5404 year: 2019 ident: 10.1016/j.oceaneng.2024.119105_bib40 article-title: Hydrodynamic behavior of submerged floating tunnels with suspension cables and towers under irregular waves publication-title: Appl. Sci. doi: 10.3390/app9245494 – volume: 277 year: 2023 ident: 10.1016/j.oceaneng.2024.119105_bib27 article-title: Estimation of unmeasured structural responses of submerged floating tunnels using pattern model trained via long short-term memory publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.114284 – volume: 5 start-page: 217 year: 2017 ident: 10.1016/j.oceaneng.2024.119105_bib1 article-title: Finite element analysis of crack growth for structural health monitoring of mooring chains using ultrasonic guided waves and acoustic emission publication-title: Procedia Struct. Integr. doi: 10.1016/j.prostr.2017.07.119 – volume: 125 start-page: 191 year: 2016 ident: 10.1016/j.oceaneng.2024.119105_bib14 article-title: Damage detection of TLP and SPAR floating wind turbine using dynamic response of the structure publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2016.08.009 – volume: 30 start-page: 268 year: 2008 ident: 10.1016/j.oceaneng.2024.119105_bib6 article-title: 3D dynamic response of submerged floating tunnels under seismic and hydrodynamic excitation publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2007.04.001 – year: 2024 ident: 10.1016/j.oceaneng.2024.119105_bib46 article-title: LSTM-based structural pattern recognition for floating bridges publication-title: Proc. Int. Conf. Bridge Maint. Saf. Mgmt. IAMBAS. – volume: 37 start-page: 62 issue: structures year: 2023 ident: 10.1016/j.oceaneng.2024.119105_bib39 article-title: Hydrodynamic behavior of submerged floating bridge with suspension support after cable failure publication-title: Eng. Int. Conf. Coastal doi: 10.9753/icce.v37.structures.62 – volume: 42 year: 2000 ident: 10.1016/j.oceaneng.2024.119105_bib33 article-title: Condition monitoring techniques for fibre mooring ropes publication-title: Insight: Non-Destr. Test. Cond. Monit. – volume: 8 start-page: 123 issue: 2 year: 2020 ident: 10.1016/j.oceaneng.2024.119105_bib45 article-title: Experimental study on 2D motion characteristics of submerged floating tunnel in waves publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse8020123 – volume: 209 year: 2020 ident: 10.1016/j.oceaneng.2024.119105_bib4 article-title: Detection of damaged mooring line based on deep neural networks publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107522 – volume: 250 year: 2022 ident: 10.1016/j.oceaneng.2024.119105_bib29 article-title: Damage detection for tethers of submerged floating tunnels based on convolutional neural networks publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.111048 – volume: 31 start-page: 405 year: 2023 ident: 10.1016/j.oceaneng.2024.119105_bib26 article-title: Estimation of reaction forces at the seabed anchor of the submerged floating tunnel using structural pattern recognition publication-title: Comput. Concr. – volume: 10 start-page: 1623 issue: 11 year: 2022 ident: 10.1016/j.oceaneng.2024.119105_bib36 article-title: Experimental investigation of the dynamic behavior of submerged floating tunnels under regular wave conditions publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse10111623 – volume: 143 year: 2024 ident: 10.1016/j.oceaneng.2024.119105_bib16 article-title: Structural response of submerged floating tunnels with free-end boundary condition based on an analytical approach publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2023.103861 – volume: 220 year: 2021 ident: 10.1016/j.oceaneng.2024.119105_bib41 article-title: Torsional behavior of precast segment module joints for a submerged floating tunnels publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.108490 – volume: 18 start-page: 1191 year: 2018 ident: 10.1016/j.oceaneng.2024.119105_bib37 article-title: Feasibility study of submerged floating tunnels moored by an inclined tendon system publication-title: Int. J. Steel Struct doi: 10.1007/s13296-018-0102-2 – volume: 227 year: 2021 ident: 10.1016/j.oceaneng.2024.119105_bib22 article-title: Damage detection of catenary mooring line based on recurrent neural networks publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.108898 – volume: 237 year: 2021 ident: 10.1016/j.oceaneng.2024.119105_bib38 article-title: Dynamic behavior of the submerged floating tunnel moored by inclined tethers attached to fixed towers publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109663 – volume: 10 start-page: 6591 year: 2020 ident: 10.1016/j.oceaneng.2024.119105_bib20 article-title: Mooring-failure monitoring of submerged floating tunnel using deep neural network publication-title: Appl. Sci. doi: 10.3390/app10186591 – volume: 121 start-page: 95 year: 2017 ident: 10.1016/j.oceaneng.2024.119105_bib3 article-title: Underwater acoustic emission monitoring: experimental investigations and acoustic signature recognition of synthetic mooring ropes publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2017.01.033 – volume: 265 year: 2022 ident: 10.1016/j.oceaneng.2024.119105_bib15 article-title: Feasibility study of submerged floating tunnels with vertical and inclined combined tethers publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.112587 – volume: 127 start-page: 32 year: 2016 ident: 10.1016/j.oceaneng.2024.119105_bib21 article-title: Seismic behaviors of a floating submerged tunnel with a rectangular cross-section publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2016.09.033 |
| SSID | ssj0006603 |
| Score | 2.4363747 |
| Snippet | This study proposes a two-step approach for detecting damaged tethers in submerged floating tunnels. The proposed method employs two different artificial... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 119105 |
| SubjectTerms | Damage detection and localization Deep neural networks LSTM autoencoder Measured motion response data Submerged floating tunnel Tether |
| Title | Detecting failed tethers in submerged floating tunnels using an LSTM autoencoder and DNN algorithms |
| URI | https://dx.doi.org/10.1016/j.oceaneng.2024.119105 |
| Volume | 312 |
| WOSCitedRecordID | wos001304934200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0029-8018 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006603 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZg44EhIRggxk1-4C1KyRK7iR8nGOJakFqkvkWu7YxWJZmaZOznc47tXCQmDYR4iVq3TiKfLz7Hzne-Q8jLIs7A72kRRlKwkKmIhyKNilAzKQ2LTaZjZYtNpLNZtlyKr75-Z23LCaRlmV1eivP_ampoA2Nj6uxfmLs_KTTAZzA6HMHscPwjw78x-F7AEiQlPPI6aGxOr-W91uj9dmfQWGwr6WpEtMh0qYO2dumKwaf54nMg26ZCiUtUmrBk5dkskNuzarduvnt9cx_RflG4l28GWcPehE6dYG4q-K0n6hhPAf64_jkmAPxwf4WZZ9OW452ImGFKnsvFdNtjXYrMwEdy6QIC3WA2nnITR53-bfp2OwmbSYW3Dnc-wctMUIMu4oPD6mmEcysgD-fGV0SMJdFNsh-nXMAEvX_y_nT5offJ02mUdGQf7DDKFb_6aleHKaPQY3GP3PVrBnribH2f3DDlITkYKUkekjvWDF5-_AFRPQioAwH1IKDrkvYgoB0IqAcBtSCgsqQIAjoCAbRpCiCgAwgekm9vTxev34W-nEaoYLybMGZJooUyLClSXGkzw6eCGZGqyKwkl6yAL1zKGJYE5phrttIrISFAhog7Q527R2SvrErzmNC00LDw5prjcpoxKY5lGqsUomGNck3REeHd6OXKa81jyZNt3pEKN3k36jmOeu5G_Yi86vudO7WVa3uIzji5jxldLJgDpq7p--Qf-j4lt4dH4BnZa3ateU5uqYtmXe9eePj9An5vlLk |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+failed+tethers+in+submerged+floating+tunnels+using+an+LSTM+autoencoder+and+DNN+algorithms&rft.jtitle=Ocean+engineering&rft.au=Min%2C+Seongi&rft.au=Jeong%2C+Kiwon&rft.au=Kim%2C+Seungjun&rft.date=2024-11-15&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.volume=312&rft_id=info:doi/10.1016%2Fj.oceaneng.2024.119105&rft.externalDocID=S0029801824024430 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |