ED-DQN: An event-driven deep reinforcement learning control method for multi-zone residential buildings

Residential Heating, Ventilation, and Air conditioning (HVAC) systems are responsible for a significant amount of energy consumption, but their management is challenging due to the complexities of building thermodynamics and human activities. Reinforcement learning (RL) has been adopted to tackle th...

Full description

Saved in:
Bibliographic Details
Published in:Building and environment Vol. 242; p. 110546
Main Authors: Fu, Qiming, Li, Zhu, Ding, Zhengkai, Chen, Jianping, Luo, Jun, Wang, Yunzhe, Lu, You
Format: Journal Article
Language:English
Published: Elsevier Ltd 15.08.2023
Subjects:
ISSN:0360-1323
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Residential Heating, Ventilation, and Air conditioning (HVAC) systems are responsible for a significant amount of energy consumption, but their management is challenging due to the complexities of building thermodynamics and human activities. Reinforcement learning (RL) has been adopted to tackle this issue, but traditional RL methods require massive training data, long learning periods, and frequent equipment adjustments. To address these issues, we construct a new event-driven Markov decision process (ED-MDP) framework, which enables adjustments of control policies triggered by events, reducing unnecessary operations. Moreover, we propose an event-driven deep Q network (ED-DQN) method, which optimizes the action selection based on the triggered events. In the HVAC control problem, the proposed ED-DQN can effectively capture dynamic non-linear features of thermal comfort, and reduce the equipment damage caused by frequent adjustments. Our experimental results show that compared to three benchmark methods and three RL methods, our ED-DQN achieved state-of-the-art performance in both energy saving and thermal comfort violations. Moreover, our method demonstrates promising performance when applied to new test thermal environments, indicating its robustness and adaptability for optimizing residential HVAC controls. •An event-driven Markov decision processes framework for optimal HVAC control.•Two types of events capture factors impacting performance.•Event-driven Deep Q network improves learning speed and minimizes decisions.•Comprehensive experiments show the superiority of the proposed method.
AbstractList Residential Heating, Ventilation, and Air conditioning (HVAC) systems are responsible for a significant amount of energy consumption, but their management is challenging due to the complexities of building thermodynamics and human activities. Reinforcement learning (RL) has been adopted to tackle this issue, but traditional RL methods require massive training data, long learning periods, and frequent equipment adjustments. To address these issues, we construct a new event-driven Markov decision process (ED-MDP) framework, which enables adjustments of control policies triggered by events, reducing unnecessary operations. Moreover, we propose an event-driven deep Q network (ED-DQN) method, which optimizes the action selection based on the triggered events. In the HVAC control problem, the proposed ED-DQN can effectively capture dynamic non-linear features of thermal comfort, and reduce the equipment damage caused by frequent adjustments. Our experimental results show that compared to three benchmark methods and three RL methods, our ED-DQN achieved state-of-the-art performance in both energy saving and thermal comfort violations. Moreover, our method demonstrates promising performance when applied to new test thermal environments, indicating its robustness and adaptability for optimizing residential HVAC controls. •An event-driven Markov decision processes framework for optimal HVAC control.•Two types of events capture factors impacting performance.•Event-driven Deep Q network improves learning speed and minimizes decisions.•Comprehensive experiments show the superiority of the proposed method.
ArticleNumber 110546
Author Luo, Jun
Wang, Yunzhe
Ding, Zhengkai
Li, Zhu
Fu, Qiming
Chen, Jianping
Lu, You
Author_xml – sequence: 1
  givenname: Qiming
  surname: Fu
  fullname: Fu, Qiming
  organization: School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
– sequence: 2
  givenname: Zhu
  surname: Li
  fullname: Li, Zhu
  organization: School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
– sequence: 3
  givenname: Zhengkai
  surname: Ding
  fullname: Ding, Zhengkai
  organization: School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
– sequence: 4
  givenname: Jianping
  orcidid: 0000-0002-2109-5761
  surname: Chen
  fullname: Chen, Jianping
  email: alanjpchen@aliyun.com
  organization: School of Architecture and Environment, Sichuan University, Chengdu, Sichuan, 610065, China
– sequence: 5
  givenname: Jun
  surname: Luo
  fullname: Luo, Jun
  organization: School of Architecture and Environment, Sichuan University, Chengdu, Sichuan, 610065, China
– sequence: 6
  givenname: Yunzhe
  surname: Wang
  fullname: Wang, Yunzhe
  organization: School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
– sequence: 7
  givenname: You
  surname: Lu
  fullname: Lu, You
  organization: School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
BookMark eNqFkM1OwzAQhH0oEm3hFZBfIME_qZsgDlRt-ZEqEBKcLcdeF1eJUzluJXh6XAoXLj2tVjvfaHZGaOA7DwhdUZJTQsX1Jq93rjHg9zkjjOeUkkkhBmhIuCAZ5Yyfo1Hfb0gSV7wYovVykS1en2_wzGPYg4-ZCS5NbAC2OIDztgsa2nTBDajgnV9j3fkYuga3ED86g5MCt7smuuwrpUlQ71KC6FSDf9IkpL9AZ1Y1PVz-zjF6v1--zR-z1cvD03y2yjSnLGbUCtDMKltaLQqjCltPyooZWxtiKmtIWq1ihoI2JTCgNQMxVZxMKzCiLPkY3R59dej6PoCV2kUV3SGxco2kRB6Kkhv5V5Q8FCWPRSVc_MO3wbUqfJ4G744gpOf2DoLstQOvwbgAOkrTuVMW31JAjqI
CitedBy_id crossref_primary_10_3390_axioms12100908
crossref_primary_10_1016_j_enbuild_2024_114808
crossref_primary_10_1016_j_jobe_2024_110411
crossref_primary_10_1007_s10668_024_04968_w
crossref_primary_10_1016_j_heliyon_2024_e25848
crossref_primary_10_1016_j_jclepro_2024_142507
crossref_primary_10_3390_s25092904
crossref_primary_10_1016_j_conbuildmat_2023_133522
crossref_primary_10_3390_en17010083
crossref_primary_10_1063_5_0276384
crossref_primary_10_1007_s00500_024_09637_8
crossref_primary_10_1016_j_energy_2024_132740
crossref_primary_10_1007_s00521_023_09236_y
crossref_primary_10_1016_j_jobe_2023_108044
crossref_primary_10_1016_j_jobe_2024_109031
crossref_primary_10_1016_j_seta_2023_103502
crossref_primary_10_1016_j_energy_2023_128960
crossref_primary_10_1007_s10723_023_09701_x
crossref_primary_10_1016_j_applthermaleng_2024_124987
crossref_primary_10_3390_en18061408
crossref_primary_10_1007_s10723_023_09704_8
crossref_primary_10_1016_j_applthermaleng_2025_126106
crossref_primary_10_1007_s10723_024_09749_3
crossref_primary_10_1016_j_resourpol_2023_104220
crossref_primary_10_1007_s11356_023_30118_2
crossref_primary_10_1016_j_enbuild_2024_115105
crossref_primary_10_1016_j_engappai_2023_107794
crossref_primary_10_3390_app131910717
crossref_primary_10_1016_j_enbuild_2025_116496
crossref_primary_10_1063_5_0179190
crossref_primary_10_3390_app14188479
crossref_primary_10_1016_j_rser_2023_114101
crossref_primary_10_1016_j_jobe_2025_113026
crossref_primary_10_1007_s11630_023_1933_5
crossref_primary_10_1016_j_phycom_2023_102188
crossref_primary_10_3390_pr12010156
crossref_primary_10_1016_j_enbuild_2025_115954
crossref_primary_10_1016_j_jobe_2024_110085
crossref_primary_10_1016_j_enbuild_2025_116045
crossref_primary_10_1016_j_comnet_2023_110105
crossref_primary_10_1016_j_eurpolymj_2024_112777
crossref_primary_10_1016_j_jobe_2023_108340
crossref_primary_10_1002_cpe_7995
crossref_primary_10_1002_sd_3073
crossref_primary_10_1016_j_applthermaleng_2024_123318
crossref_primary_10_1002_ett_70102
crossref_primary_10_3390_math11234744
crossref_primary_10_1016_j_enbuild_2025_115789
crossref_primary_10_1016_j_enbuild_2025_116037
crossref_primary_10_1016_j_buildenv_2024_111197
crossref_primary_10_1007_s12273_025_1231_0
crossref_primary_10_1016_j_enbuild_2024_115241
crossref_primary_10_1016_j_jobe_2024_111080
Cites_doi 10.1016/j.enbuild.2018.03.051
10.1016/j.apenergy.2018.09.188
10.1016/j.applthermaleng.2022.118552
10.1016/j.cie.2023.109112
10.1016/j.scitotenv.2020.138778
10.1016/j.enbuild.2022.112284
10.1109/JIOT.2020.2992117
10.3390/app112311162
10.1016/j.energy.2021.120741
10.1007/s12273-008-8118-8
10.1016/j.enbuild.2011.10.021
10.1016/j.apenergy.2020.116223
10.1016/j.buildenv.2022.109104
10.1016/j.enbuild.2017.07.008
10.1016/j.buildenv.2019.03.038
10.1016/j.engappai.2022.105485
10.1109/JIOT.2021.3078462
10.1109/ACCESS.2021.3054909
10.1038/nature14236
10.1016/j.apenergy.2020.116117
10.1016/j.enbuild.2019.02.029
10.1016/j.applthermaleng.2022.118442
10.1016/j.enbuild.2022.112269
10.1109/TASE.2018.2844258
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.buildenv.2023.110546
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_buildenv_2023_110546
S0360132323005735
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~G-
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SAC
SET
SEW
VH1
WUQ
ZMT
~HD
ID FETCH-LOGICAL-c312t-1f6ec2faf8fc64da4fb5892dfbd0d9fd0b58fa2d1ecd8e2e1b2e67a3079ed6883
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001028981200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-1323
IngestDate Sat Nov 29 07:25:21 EST 2025
Tue Nov 18 21:19:42 EST 2025
Tue Dec 03 03:45:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep reinforcement learning
Multi-zone residential buildings
HVAC systems
Event-driven
Thermal comfort control
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-1f6ec2faf8fc64da4fb5892dfbd0d9fd0b58fa2d1ecd8e2e1b2e67a3079ed6883
ORCID 0000-0002-2109-5761
ParticipantIDs crossref_citationtrail_10_1016_j_buildenv_2023_110546
crossref_primary_10_1016_j_buildenv_2023_110546
elsevier_sciencedirect_doi_10_1016_j_buildenv_2023_110546
PublicationCentury 2000
PublicationDate 2023-08-15
PublicationDateYYYYMMDD 2023-08-15
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-15
  day: 15
PublicationDecade 2020
PublicationTitle Building and environment
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mozer, House (bib14) 1988
Fu, Han, Chen, Lu, Wu, Wang (bib7) 2022; 50
Ambroziak, Chojecki (bib5) 2023; 117
Yan, Xia, Tang, Song, Zhang, Jiang (bib33) 2008; 1
Wu, Jia, Guan (bib36) 2015
Qi, Xiao, Shi, Ward, Chen, Tu, Zhang (bib3) 2020; 728
Wang, Wang (bib10) 2021; 230
Bird, Daveau, O'Dwyer, Acha, Shah (bib11) 2022; 270
Chen, Norford, Samuelson, Malkawi (bib15) 2018; 169
Iqbal, Tham, Chang (bib29) 2021; 9
Yu, Qin, Zhang, Shen, Jiang, Guan (bib13) 2021; 8
Zeng, Barooah (bib12) 2021
Hamilton, Rapf, Kockat, Zuhaib, Abergel, Oppermann, Steurer (bib1) 2020
(bib31) 2005
Delač, Pavković, Lenić, Mađerić (bib4) 2022; 211
Jia, Wu, Wu, Guan (bib22) 2018; 15
Luo, Zhao, Zhu, Sun (bib28) 2023
Wang, Zhao (bib21) 2022; 218
Li, Gong, Fan, Peng, Chun, Fang (bib2) 2021; 282
Du, Zandi, Kotevska, Kurte, Munk, Amasyali, Li (bib19) 2021; 281
Sutton, Barto (bib24) 1998
Wemhoff (bib8) 2012; 45
Gao, Li, Wen (bib17) 2020; 7
Baldi, Korkas, Lv, Kosmatopoulos (bib9) 2018; 231
Fu, Chen, Ma, Ma, Fang, Xing, Chen (bib6) 2022; 270
Fang, Gong, Li, Chun, Peng, Li, Chen (bib18) 2022; 212
Wang, Hou, Chen, Fu, Huang (bib20) 2021; 39
Gu, Sung (bib27) 2021; 11
Wang, Huang, Sun, Liu (bib34) 2016; 133
Xu, Hu, Spanos, Schiavon (bib35) 2017; 152
Jin, Fu, Chen, Wang, Liu, Lu, Wu (bib26) 2023; 63
Valladares, Galindo, Gutiérrez, Wu, Liao, Liao, Wang (bib16) 2019; 155
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Hassabis (bib25) 2015; 518
Jiang (bib32) 1982; 88
Deng, Yao, Yu, Zhang, Li (bib30) 2019; 190
Jiang (10.1016/j.buildenv.2023.110546_bib32) 1982; 88
Zeng (10.1016/j.buildenv.2023.110546_bib12) 2021
Fang (10.1016/j.buildenv.2023.110546_bib18) 2022; 212
Yan (10.1016/j.buildenv.2023.110546_bib33) 2008; 1
Delač (10.1016/j.buildenv.2023.110546_bib4) 2022; 211
Valladares (10.1016/j.buildenv.2023.110546_bib16) 2019; 155
Wang (10.1016/j.buildenv.2023.110546_bib34) 2016; 133
Du (10.1016/j.buildenv.2023.110546_bib19) 2021; 281
Wang (10.1016/j.buildenv.2023.110546_bib21) 2022; 218
Mnih (10.1016/j.buildenv.2023.110546_bib25) 2015; 518
Fu (10.1016/j.buildenv.2023.110546_bib7) 2022; 50
Hamilton (10.1016/j.buildenv.2023.110546_bib1) 2020
Baldi (10.1016/j.buildenv.2023.110546_bib9) 2018; 231
Mozer (10.1016/j.buildenv.2023.110546_bib14) 1988
Luo (10.1016/j.buildenv.2023.110546_bib28) 2023
Fu (10.1016/j.buildenv.2023.110546_bib6) 2022; 270
Wu (10.1016/j.buildenv.2023.110546_bib36) 2015
Deng (10.1016/j.buildenv.2023.110546_bib30) 2019; 190
Ambroziak (10.1016/j.buildenv.2023.110546_bib5) 2023; 117
Li (10.1016/j.buildenv.2023.110546_bib2) 2021; 282
Bird (10.1016/j.buildenv.2023.110546_bib11) 2022; 270
Jin (10.1016/j.buildenv.2023.110546_bib26) 2023; 63
Wemhoff (10.1016/j.buildenv.2023.110546_bib8) 2012; 45
Jia (10.1016/j.buildenv.2023.110546_bib22) 2018; 15
Gao (10.1016/j.buildenv.2023.110546_bib17) 2020; 7
Wang (10.1016/j.buildenv.2023.110546_bib20) 2021; 39
Gu (10.1016/j.buildenv.2023.110546_bib27) 2021; 11
Chen (10.1016/j.buildenv.2023.110546_bib15) 2018; 169
Yu (10.1016/j.buildenv.2023.110546_bib13) 2021; 8
(10.1016/j.buildenv.2023.110546_bib31) 2005
Qi (10.1016/j.buildenv.2023.110546_bib3) 2020; 728
Wang (10.1016/j.buildenv.2023.110546_bib10) 2021; 230
Xu (10.1016/j.buildenv.2023.110546_bib35) 2017; 152
Sutton (10.1016/j.buildenv.2023.110546_bib24) 1998
Iqbal (10.1016/j.buildenv.2023.110546_bib29) 2021; 9
References_xml – volume: 231
  start-page: 1246
  year: 2018
  end-page: 1258
  ident: bib9
  article-title: Automating occupant-building interaction via smart zoning of thermostatic loads: a switched self-tuning approach[J]
  publication-title: Appl. Energy
– volume: 211
  year: 2022
  ident: bib4
  article-title: Integrated optimization of the building envelope and the HVAC system in nZEB refurbishment[J]
  publication-title: Appl. Therm. Eng.
– year: 2021
  ident: bib12
  article-title: An Adaptive MPC Scheme for Energy-Efficient Control of Building HVAC Systems
– volume: 270
  year: 2022
  ident: bib11
  article-title: Real-world implementation and cost of a cloud-based MPC retrofit for HVAC control systems in commercial buildings[J]
  publication-title: Energy Build.
– year: 2005
  ident: bib31
  article-title: China Standard Weather Data for Analyzing Building Thermal conditions[S]
– year: 2020
  ident: bib1
  article-title: Global Status Report for Buildings and construction[J]
– volume: 281
  year: 2021
  ident: bib19
  article-title: Intelligent multi-zone residential HVAC control strategy based on deep reinforcement learning[J]
  publication-title: Appl. Energy
– volume: 1
  start-page: 95
  year: 2008
  end-page: 110
  ident: bib33
  article-title: DeST — an integrated building simulation toolkit Part I: fundamentals[J]
  publication-title: Build. Simulat.
– volume: 9
  start-page: 20440
  year: 2021
  end-page: 20449
  ident: bib29
  article-title: Double deep Q-network-based energy-efficient resource allocation in cloud radio access network[J]
  publication-title: IEEE Access
– volume: 117
  year: 2023
  ident: bib5
  article-title: The PID controller optimisation module using Fuzzy Self-Tuning PSO for Air Handling Unit in continuous operation[J]
  publication-title: Eng. Appl. Artif. Intell.
– volume: 50
  year: 2022
  ident: bib7
  article-title: Applications of reinforcement learning for building energy efficiency control: a review[J]
  publication-title: J. Build. Eng.
– volume: 8
  start-page: 12046
  year: 2021
  end-page: 12063
  ident: bib13
  article-title: A review of deep reinforcement learning for smart building energy management[J]
  publication-title: IEEE Internet Things J.
– volume: 133
  start-page: 79
  year: 2016
  end-page: 87
  ident: bib34
  article-title: Event-driven optimization of complex HVAC systems[J]
  publication-title: Energy Build.
– volume: 155
  start-page: 105
  year: 2019
  end-page: 117
  ident: bib16
  article-title: Energy optimization associated with thermal comfort and indoor air control via a deep reinforcement learning algorithm[J]
  publication-title: Building and Environment
– volume: 45
  start-page: 60
  year: 2012
  end-page: 66
  ident: bib8
  article-title: Calibration of HVAC equipment PID coefficients for energy conservation[J]
  publication-title: Energy Build.
– volume: 152
  start-page: 73
  year: 2017
  end-page: 85
  ident: bib35
  article-title: PMV-based event-triggered mechanism for building energy management under uncertainties[J]
  publication-title: Energy Build.
– volume: 7
  start-page: 8472
  year: 2020
  end-page: 8484
  ident: bib17
  article-title: Deepcomfort: energy-efficient thermal comfort control in buildings via reinforcement learning[J]
  publication-title: IEEE Internet Things J.
– year: 1998
  ident: bib24
  article-title: Reinforcement Learning: an Introduction
– volume: 169
  start-page: 195
  year: 2018
  end-page: 205
  ident: bib15
  article-title: Optimal control of HVAC and window systems for natural ventilation through reinforcement learning[J]
  publication-title: Energy Build.
– volume: 190
  start-page: 155
  year: 2019
  end-page: 171
  ident: bib30
  article-title: Effectiveness of the thermal mass of external walls on residential buildings for part-time part-space heating and cooling using the state-space method[J]
  publication-title: Energy Build.
– volume: 282
  year: 2021
  ident: bib2
  article-title: A clustering-based approach for “cross-scale” load prediction on building level in HVAC systems[J]
  publication-title: Appl. Energy
– volume: 88
  start-page: 122
  year: 1982
  end-page: 141
  ident: bib32
  article-title: State-space method for the calculation of air-conditioning loads and the simulation of thermal behavior of the room[J]
  publication-title: Build. Eng.
– volume: 518
  start-page: 529
  year: 2015
  end-page: 533
  ident: bib25
  article-title: Human-level control through deep reinforcement learning[J]
  publication-title: Nature
– volume: 218
  year: 2022
  ident: bib21
  article-title: Event-driven online decoupling control mechanism for the variable flow rate HVAC system based on the medium response properties[J]
  publication-title: Build. Environ.
– volume: 15
  start-page: 1909
  year: 2018
  end-page: 1919
  ident: bib22
  article-title: Event-based HVAC control—a complexity-based approach[J]
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 230
  year: 2021
  ident: bib10
  article-title: A hierarchical optimal control strategy for continuous demand response of building HVAC systems to provide frequency regulation service to smart power grids
  publication-title: J. Energy
– volume: 11
  year: 2021
  ident: bib27
  article-title: Enhanced DQN framework for selecting actions and updating replay memory considering massive non-executable actions[J]
  publication-title: Appl. Sci.
– volume: 39
  year: 2021
  ident: bib20
  article-title: Data mining approach for improving the optimal control of HVAC systems: an event-driven strategy[J]
  publication-title: J. Build. Eng.
– volume: 212
  year: 2022
  ident: bib18
  article-title: Deep reinforcement learning optimal control strategy for temperature setpoint real-time reset in multi-zone building HVAC system[J]
  publication-title: Appl. Therm. Eng.
– volume: 728
  year: 2020
  ident: bib3
  article-title: COVID-19 transmission in Mainland China is associated with temperature and humidity: a time-series analysis[J]
  publication-title: Sci. Total Environ.
– start-page: 10
  year: 1988
  end-page: 11
  ident: bib14
  article-title: An Environment that Adapts to its Inhabitants[C]//AAAI Spring Symposium on Intelligent Environments
– volume: 270
  year: 2022
  ident: bib6
  article-title: Optimal control method of HVAC based on multi-agent deep reinforcement learning[J]
  publication-title: Energy Build.
– year: 2023
  ident: bib28
  article-title: A* guiding DQN algorithm for automated guided vehicle pathfinding problem of robotic mobile fulfillment systems[J]
  publication-title: Comput. Ind. Eng.
– year: 2015
  ident: bib36
  article-title: Optimal Control of Multiroom HVAC System: an Event-Based Approach[J]
– volume: 63
  year: 2023
  ident: bib26
  article-title: A novel building energy consumption prediction method using deep reinforcement learning with consideration of fluctuation points[J]
  publication-title: J. Build. Eng.
– volume: 63
  year: 2023
  ident: 10.1016/j.buildenv.2023.110546_bib26
  article-title: A novel building energy consumption prediction method using deep reinforcement learning with consideration of fluctuation points[J]
  publication-title: J. Build. Eng.
– volume: 169
  start-page: 195
  year: 2018
  ident: 10.1016/j.buildenv.2023.110546_bib15
  article-title: Optimal control of HVAC and window systems for natural ventilation through reinforcement learning[J]
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.03.051
– volume: 231
  start-page: 1246
  year: 2018
  ident: 10.1016/j.buildenv.2023.110546_bib9
  article-title: Automating occupant-building interaction via smart zoning of thermostatic loads: a switched self-tuning approach[J]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.188
– volume: 212
  year: 2022
  ident: 10.1016/j.buildenv.2023.110546_bib18
  article-title: Deep reinforcement learning optimal control strategy for temperature setpoint real-time reset in multi-zone building HVAC system[J]
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.118552
– year: 2023
  ident: 10.1016/j.buildenv.2023.110546_bib28
  article-title: A* guiding DQN algorithm for automated guided vehicle pathfinding problem of robotic mobile fulfillment systems[J]
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2023.109112
– volume: 728
  year: 2020
  ident: 10.1016/j.buildenv.2023.110546_bib3
  article-title: COVID-19 transmission in Mainland China is associated with temperature and humidity: a time-series analysis[J]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.138778
– volume: 270
  year: 2022
  ident: 10.1016/j.buildenv.2023.110546_bib6
  article-title: Optimal control method of HVAC based on multi-agent deep reinforcement learning[J]
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2022.112284
– year: 2005
  ident: 10.1016/j.buildenv.2023.110546_bib31
– volume: 7
  start-page: 8472
  issue: 9
  year: 2020
  ident: 10.1016/j.buildenv.2023.110546_bib17
  article-title: Deepcomfort: energy-efficient thermal comfort control in buildings via reinforcement learning[J]
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2992117
– volume: 88
  start-page: 122
  year: 1982
  ident: 10.1016/j.buildenv.2023.110546_bib32
  article-title: State-space method for the calculation of air-conditioning loads and the simulation of thermal behavior of the room[J]
  publication-title: Build. Eng.
– volume: 11
  issue: 23
  year: 2021
  ident: 10.1016/j.buildenv.2023.110546_bib27
  article-title: Enhanced DQN framework for selecting actions and updating replay memory considering massive non-executable actions[J]
  publication-title: Appl. Sci.
  doi: 10.3390/app112311162
– volume: 230
  year: 2021
  ident: 10.1016/j.buildenv.2023.110546_bib10
  article-title: A hierarchical optimal control strategy for continuous demand response of building HVAC systems to provide frequency regulation service to smart power grids
  publication-title: J. Energy
  doi: 10.1016/j.energy.2021.120741
– volume: 1
  start-page: 95
  issue: 2
  year: 2008
  ident: 10.1016/j.buildenv.2023.110546_bib33
  article-title: DeST — an integrated building simulation toolkit Part I: fundamentals[J]
  publication-title: Build. Simulat.
  doi: 10.1007/s12273-008-8118-8
– volume: 39
  year: 2021
  ident: 10.1016/j.buildenv.2023.110546_bib20
  article-title: Data mining approach for improving the optimal control of HVAC systems: an event-driven strategy[J]
  publication-title: J. Build. Eng.
– volume: 45
  start-page: 60
  year: 2012
  ident: 10.1016/j.buildenv.2023.110546_bib8
  article-title: Calibration of HVAC equipment PID coefficients for energy conservation[J]
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.10.021
– volume: 282
  year: 2021
  ident: 10.1016/j.buildenv.2023.110546_bib2
  article-title: A clustering-based approach for “cross-scale” load prediction on building level in HVAC systems[J]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.116223
– volume: 218
  year: 2022
  ident: 10.1016/j.buildenv.2023.110546_bib21
  article-title: Event-driven online decoupling control mechanism for the variable flow rate HVAC system based on the medium response properties[J]
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.109104
– volume: 50
  year: 2022
  ident: 10.1016/j.buildenv.2023.110546_bib7
  article-title: Applications of reinforcement learning for building energy efficiency control: a review[J]
  publication-title: J. Build. Eng.
– volume: 152
  start-page: 73
  year: 2017
  ident: 10.1016/j.buildenv.2023.110546_bib35
  article-title: PMV-based event-triggered mechanism for building energy management under uncertainties[J]
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.07.008
– year: 2021
  ident: 10.1016/j.buildenv.2023.110546_bib12
– volume: 155
  start-page: 105
  year: 2019
  ident: 10.1016/j.buildenv.2023.110546_bib16
  article-title: Energy optimization associated with thermal comfort and indoor air control via a deep reinforcement learning algorithm[J]
  publication-title: Building and Environment
  doi: 10.1016/j.buildenv.2019.03.038
– volume: 117
  year: 2023
  ident: 10.1016/j.buildenv.2023.110546_bib5
  article-title: The PID controller optimisation module using Fuzzy Self-Tuning PSO for Air Handling Unit in continuous operation[J]
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105485
– volume: 8
  start-page: 12046
  issue: 15
  year: 2021
  ident: 10.1016/j.buildenv.2023.110546_bib13
  article-title: A review of deep reinforcement learning for smart building energy management[J]
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3078462
– year: 2020
  ident: 10.1016/j.buildenv.2023.110546_bib1
– start-page: 10
  year: 1988
  ident: 10.1016/j.buildenv.2023.110546_bib14
– volume: 9
  start-page: 20440
  year: 2021
  ident: 10.1016/j.buildenv.2023.110546_bib29
  article-title: Double deep Q-network-based energy-efficient resource allocation in cloud radio access network[J]
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3054909
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 10.1016/j.buildenv.2023.110546_bib25
  article-title: Human-level control through deep reinforcement learning[J]
  publication-title: Nature
  doi: 10.1038/nature14236
– year: 2015
  ident: 10.1016/j.buildenv.2023.110546_bib36
– volume: 281
  year: 2021
  ident: 10.1016/j.buildenv.2023.110546_bib19
  article-title: Intelligent multi-zone residential HVAC control strategy based on deep reinforcement learning[J]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.116117
– year: 1998
  ident: 10.1016/j.buildenv.2023.110546_bib24
– volume: 190
  start-page: 155
  year: 2019
  ident: 10.1016/j.buildenv.2023.110546_bib30
  article-title: Effectiveness of the thermal mass of external walls on residential buildings for part-time part-space heating and cooling using the state-space method[J]
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.02.029
– volume: 211
  year: 2022
  ident: 10.1016/j.buildenv.2023.110546_bib4
  article-title: Integrated optimization of the building envelope and the HVAC system in nZEB refurbishment[J]
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.118442
– volume: 133
  start-page: 79
  issue: DEC
  year: 2016
  ident: 10.1016/j.buildenv.2023.110546_bib34
  article-title: Event-driven optimization of complex HVAC systems[J]
  publication-title: Energy Build.
– volume: 270
  year: 2022
  ident: 10.1016/j.buildenv.2023.110546_bib11
  article-title: Real-world implementation and cost of a cloud-based MPC retrofit for HVAC control systems in commercial buildings[J]
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2022.112269
– volume: 15
  start-page: 1909
  issue: 4
  year: 2018
  ident: 10.1016/j.buildenv.2023.110546_bib22
  article-title: Event-based HVAC control—a complexity-based approach[J]
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2018.2844258
SSID ssj0016934
Score 2.5998018
Snippet Residential Heating, Ventilation, and Air conditioning (HVAC) systems are responsible for a significant amount of energy consumption, but their management is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110546
SubjectTerms Deep reinforcement learning
Event-driven
HVAC systems
Multi-zone residential buildings
Thermal comfort control
Title ED-DQN: An event-driven deep reinforcement learning control method for multi-zone residential buildings
URI https://dx.doi.org/10.1016/j.buildenv.2023.110546
Volume 242
WOSCitedRecordID wos001028981200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-1323
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016934
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZC2gMcEJSilpd84Fa53dj7sLlFNAgQiqhapKiX1a4f6UvbKE2qil_P-LXZQqVSIS6rXSu2s57P3vF45huE3itTGcWKhFSpqQloxDDnpJSkSnidSUYT7SnzvxXjMZ9MxPdez8RYmOuLomn4zY2Y_VdRQxkI24bOPkDcbaNQAPcgdLiC2OH6V4If7ZP9g3Ew-Dl-JqLmdk3bUVrPdubacaVKZxaMSSOmrcu6zyjtnA-dryH5ednYzCo2q2ezsOb1OiTSvrp1HhwK3VlEJ3iuhcfSyvLAphCbtj5AzpHg-GTZKtMhv8rxiW6m59XpyvUgRJAAlGexgWCpoMyaXn2spjefxRCalb-SD9tKCGyJWXdJpp5x64_l3Vsaznbdm8LL7NpubCRDlv7Gp-2-0Ie2cds2ZY74MXuE1miRCd5Ha8Mvo8nX9rwpFywQjfk_04klv7u3u9WYjmpy9Aw9DXsKPPRYeI56utlATzpMky_Q1KPiAx42uIsJbDGBb2ECR0zggAnsMYHhF3iFCdzBBG4xsYl-fBodffxMQo4NItmALsjA5FpSmLDcyDxVdsZmXFBlapUoYVQCj6aiaqCl4prqQU11XlTwZRBa5Zyzl6jfQKdbCEtWJ4LnUtRFmhqe1dyy-dEiSWGTIKtsG2VxyEoZCOhtHpSLMnoanpVxqEs71KUf6m2019abeQqWe2uIKJEyKJJeQSwBSPfUffUPdV-jxyvcv0H9xXyp36J1eb04vZq_C5j7BWpbn80
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ED-DQN%3A+An+event-driven+deep+reinforcement+learning+control+method+for+multi-zone+residential+buildings&rft.jtitle=Building+and+environment&rft.au=Fu%2C+Qiming&rft.au=Li%2C+Zhu&rft.au=Ding%2C+Zhengkai&rft.au=Chen%2C+Jianping&rft.date=2023-08-15&rft.pub=Elsevier+Ltd&rft.issn=0360-1323&rft.volume=242&rft_id=info:doi/10.1016%2Fj.buildenv.2023.110546&rft.externalDocID=S0360132323005735
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon