PSO-based sink placement and load-balanced anycast routing in multi-sink WSNs considering compressive sensing theory

This paper deals with the sink placement and anycast routing to increase the lifetime of multi-sink wireless sensor networks. Two algorithms are proposed, namely “Multi-sink Placement and Anycast Routing (MPAR)” and “Extended Multi-sink Placement and Anycast Routing (EMPAR)”, to jointly address the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering applications of artificial intelligence Ročník 100; s. 104164
Hlavní autoři: Jari, Anis, Avokh, Avid
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.04.2021
Témata:
ISSN:0952-1976, 1873-6769
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper deals with the sink placement and anycast routing to increase the lifetime of multi-sink wireless sensor networks. Two algorithms are proposed, namely “Multi-sink Placement and Anycast Routing (MPAR)” and “Extended Multi-sink Placement and Anycast Routing (EMPAR)”, to jointly address the problems of clustering, multi-sink placement, and load-balanced anycast routing. MPAR and EMPAR rely on a two-level architecture in which sensors are clustered at the lower level. Each sensor transmits its data to the corresponding Cluster Head (CH) via a load-balanced data aggregation routing tree. At the upper level, both schemes use a modified particle swarm optimization algorithm to determine the best location of sinks. For each sink, a high-level anycast routing tree is developed using the ant colony optimization algorithm. Each anycast tree uses the hybrid Compressive Sensing (CS) method to forward the aggregated data from CHs to sinks. Extensive simulations are conducted to illustrate the efficiency of the proposed algorithms in terms of energy consumption, energy consumption variance, and network lifetime. The results show that EMPAR has a better performance than MPAR due to its CH selection strategy. As an advantage, EMPAR considers both remaining energy and distance criteria along with a rest factor to select the best CH for each cluster. For an average number of clusters, EMPAR reduces the energy consumption by 5.98% and 12.20%, respectively, compared to the MPAR algorithm and the energy-aware CS-based data aggregation algorithm. It also increases the network lifetime in comparison with the aforementioned algorithms by 12.26% and 30.38%, respectively.
AbstractList This paper deals with the sink placement and anycast routing to increase the lifetime of multi-sink wireless sensor networks. Two algorithms are proposed, namely “Multi-sink Placement and Anycast Routing (MPAR)” and “Extended Multi-sink Placement and Anycast Routing (EMPAR)”, to jointly address the problems of clustering, multi-sink placement, and load-balanced anycast routing. MPAR and EMPAR rely on a two-level architecture in which sensors are clustered at the lower level. Each sensor transmits its data to the corresponding Cluster Head (CH) via a load-balanced data aggregation routing tree. At the upper level, both schemes use a modified particle swarm optimization algorithm to determine the best location of sinks. For each sink, a high-level anycast routing tree is developed using the ant colony optimization algorithm. Each anycast tree uses the hybrid Compressive Sensing (CS) method to forward the aggregated data from CHs to sinks. Extensive simulations are conducted to illustrate the efficiency of the proposed algorithms in terms of energy consumption, energy consumption variance, and network lifetime. The results show that EMPAR has a better performance than MPAR due to its CH selection strategy. As an advantage, EMPAR considers both remaining energy and distance criteria along with a rest factor to select the best CH for each cluster. For an average number of clusters, EMPAR reduces the energy consumption by 5.98% and 12.20%, respectively, compared to the MPAR algorithm and the energy-aware CS-based data aggregation algorithm. It also increases the network lifetime in comparison with the aforementioned algorithms by 12.26% and 30.38%, respectively.
ArticleNumber 104164
Author Jari, Anis
Avokh, Avid
Author_xml – sequence: 1
  givenname: Anis
  surname: Jari
  fullname: Jari, Anis
  email: a.jari@sel.iaun.ac.ir
– sequence: 2
  givenname: Avid
  surname: Avokh
  fullname: Avokh, Avid
  email: aavokh@pel.iaun.ac.ir
BookMark eNqFkNtKAzEQhoNUsFZfQfICW5M9ZDfghVI8QbFCFS_DNDtbU7fJkqSFvr1bqzfe9Grgn_l-mO-cDKyzSMgVZ2POuLhejdEuoevAjFOW8j7MuchPyJBXZZaIUsgBGTJZpAmXpTgj5yGsGGNZlYshia_zWbKAgDUNxn7RrgWNa7SRgq1p66Duty1Y3R-A3WkIkXq3icYuqbF0vWmjSX7Ij_lLoNrZYGr0-7V2685jCGaLNGCf91n8ROd3F-S0gTbg5e8ckfeH-7fJUzKdPT5P7qaJzngaE16zWkNTZBLrpmkyzYTUvCxRsnyRZVDkTVFUvMJcpBIXJXC5kMA1po2QvBLZiIhDr_YuBI-N6rxZg98pztTenVqpP3dq704d3PXgzT9QmwjROBs9mPY4fnvAsX9ua9CroA3uHRqPOqramWMV33F0k_0
CitedBy_id crossref_primary_10_1016_j_engappai_2023_105831
crossref_primary_10_1177_09544070251355457
crossref_primary_10_1007_s11276_023_03291_y
crossref_primary_10_1109_JIOT_2023_3303124
crossref_primary_10_1007_s12083_022_01325_4
crossref_primary_10_1155_2021_7059881
crossref_primary_10_1016_j_measen_2024_101057
crossref_primary_10_1016_j_engappai_2022_105305
crossref_primary_10_1007_s00500_024_09809_6
crossref_primary_10_1016_j_adhoc_2021_102770
crossref_primary_10_3390_s23115337
crossref_primary_10_1007_s11235_023_01068_4
crossref_primary_10_1016_j_bspc_2021_103403
crossref_primary_10_1109_JSEN_2022_3152180
crossref_primary_10_1155_2022_8429285
crossref_primary_10_1155_2023_3507600
crossref_primary_10_3390_fi15020075
crossref_primary_10_1007_s12065_023_00847_x
crossref_primary_10_1080_01605682_2025_2551594
crossref_primary_10_1109_ACCESS_2021_3107230
crossref_primary_10_1177_15501329221077165
Cites_doi 10.1007/s11277-018-5653-1
10.1016/j.adhoc.2018.11.005
10.1016/j.adhoc.2020.102182
10.1016/j.asoc.2019.105706
10.1007/s13369-020-04616-1
10.1109/TWC.2014.2332344
10.1016/j.adhoc.2013.12.004
10.1007/s11276-015-1061-6
10.1016/j.jnca.2013.04.009
10.1109/TII.2019.2916300
10.1007/s11277-016-3675-0
10.1007/s11276-019-02095-3
10.1016/j.adhoc.2015.08.014
10.1016/j.comcom.2018.07.026
10.1007/s11277-019-06904-y
10.1007/s11227-018-2582-4
10.1016/j.procs.2020.04.242
10.1016/j.chaos.2019.07.011
10.1177/1550147716676494
10.1016/j.engappai.2016.10.014
10.1016/j.engappai.2017.11.003
10.1007/978-3-319-48959-9_20
10.1016/j.apm.2017.05.001
10.3390/s19030575
10.1007/s11276-015-0975-3
10.1109/LCOMM.2017.2672959
10.1016/j.engappai.2017.01.007
10.1016/j.jnca.2018.01.012
10.1109/ABLAZE.2015.7155032
10.1007/s11277-015-2682-x
10.1049/iet-com.2019.0433
10.1007/s11227-017-2115-6
10.1109/JSEN.2019.2893912
10.1016/j.comnet.2016.06.029
10.1007/s11276-020-02254-x
10.1007/BFb0040810
10.1109/TNET.2013.2262153
10.1016/j.engappai.2015.12.008
10.1007/s11277-016-3758-y
10.1109/JSEN.2018.2828099
10.1016/j.csi.2015.07.002
10.1109/TVT.2014.2361250
10.1007/s12652-019-01186-5
10.1109/TPDS.2013.90
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2021.104164
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2021_104164
S0952197621000117
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-1d0dcaf539edfff3c069c177e904b33a54f55818e4629eb7a19b9a1ce2f691863
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000629354100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 07:08:29 EST 2025
Tue Nov 18 22:41:10 EST 2025
Fri Feb 23 02:45:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ant colony optimization
Wireless sensor networks
Compressive sensing
Sink placement
Anycast routing
Clustering
Particle swarm optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-1d0dcaf539edfff3c069c177e904b33a54f55818e4629eb7a19b9a1ce2f691863
ParticipantIDs crossref_primary_10_1016_j_engappai_2021_104164
crossref_citationtrail_10_1016_j_engappai_2021_104164
elsevier_sciencedirect_doi_10_1016_j_engappai_2021_104164
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Manne, Singh (b21) 2017; 57
Liu, Qiu, Zhou, Yang, Chang (b20) 2019; 16
Zhao, Hou, Zhang, Gao (b46) 2017; 94
Rao, P.C., Banka, H., Jana, P.K., 2016. A gravitational search algorithm for energy efficient multi-sink placement in wireless sensor networks. In: International Conference on Swarm, Evolutionary, and Memetic Computing. pp. 222–234.
Kostin, Fanaeian, Al-Watter (b16) 2015; 22
Pakdaman, Avokh (b25) 2018; 107
Kabakulak (b14) 2019; 81
Veeramani, Mahammad (b38) 2020; 111
Yuan, Liu, Wang, Deng, Liu, Song (b44) 2019; 7
Altan, Karasu, Bekiros (b3) 2019; 126
Lin, Üster (b18) 2014; 22
Sun, Dong, Chen (b37) 2016; 21
Wang, Cao, Sherratt, Park (b39) 2018; 74
Jayarajan, Kanagachidambaresan, Sundararajan, Sakthipandi, Maheswar, Karthikeyan (b13) 2020; 76
Lipare, Edla, Venkatanareshbabu (b19) 2019; 84
Cheng, Xum, Zhou (b6) 2011
Zhao, Zhang, Yang, Yao (b48) 2015; 64
Puneeth, Kulkarni (b28) 2020; 171
Xie, Jia (b42) 2014; 25
Mukherjee, Amin, Biswas (b23) 2019
Gao, Wang, Wu, Sangaiah, Lim (b10) 2019; 19
Hadi, Ahmed, Mindas, Mazyad, Islam, Ahmed, Javaid (b12) 2016; 12
Mohajerani, Gharavian (b22) 2015; 22
Saranya, Shankar, Kanagachidambaresan (b33) 2018; 100
Zhang, Wang, Guo (b45) 2018; 129
Santos, Duhamel, Belisário (b32) 2016; 50
Arora, Sharma, Sachdeva (b5) 2019; 10
Raj, Khedr, Aghbari (b29) 2020; 26
Zhao, Wu, Wang, Ling, Teo, Jung (b47) 2017; 49
Shi, Y., Eberhart, C., 1998. Parameter selection in particle swarm optimization. In: IEEE International Conference on Evolutionary Computation. pp. 69–73.
Singh, Nagaraju (b36) 2020; 107
Gupta, Jha (b11) 2018; 68
Kaur, Kumar (b15) 2018; 18
Pardesi, P., Grover, J., 2015. Improved multiple sink placement strategy in wireless sensor networks. In: 1st International Conference on Futuristic Trends in Computational Analysis and Knowledge Management (ABLAZE). pp. 418–424.
Abbasi, Abouei (b1) 2016; 36
Xie, Zhang, Sun (b43) 2015; 84
Aksa (b2) 2016; 94
Nguyen, Teague, Rahnavard (b24) 2016; 106
Shokouhifar, Jalali (b35) 2017; 60
Deng, He, Chen (b7) 2016; 8
Gao, Lin, Liu (b9) 2016; 43
Wang, Lin, Yang, Zhang (b40) 2019; 19
Wu, Xiong, Yang (b41) 2014; 13
Ebrahimi, Assi (b8) 2014; 16
Leao, Felea (b17) 2018
Safa, El-Hajj (b31) 2014; 39
Arikumar, Natarajan, Satapathy (b4) 2020
Pakdaman, Avokh, Azar (b26) 2020; 14
Mukherjee (10.1016/j.engappai.2021.104164_b23) 2019
Xie (10.1016/j.engappai.2021.104164_b43) 2015; 84
Shokouhifar (10.1016/j.engappai.2021.104164_b35) 2017; 60
10.1016/j.engappai.2021.104164_b30
Aksa (10.1016/j.engappai.2021.104164_b2) 2016; 94
10.1016/j.engappai.2021.104164_b34
Cheng (10.1016/j.engappai.2021.104164_b6) 2011
Mohajerani (10.1016/j.engappai.2021.104164_b22) 2015; 22
Arikumar (10.1016/j.engappai.2021.104164_b4) 2020
Zhao (10.1016/j.engappai.2021.104164_b46) 2017; 94
Kaur (10.1016/j.engappai.2021.104164_b15) 2018; 18
Arora (10.1016/j.engappai.2021.104164_b5) 2019; 10
Xie (10.1016/j.engappai.2021.104164_b42) 2014; 25
Yuan (10.1016/j.engappai.2021.104164_b44) 2019; 7
Gao (10.1016/j.engappai.2021.104164_b10) 2019; 19
Lin (10.1016/j.engappai.2021.104164_b18) 2014; 22
Pakdaman (10.1016/j.engappai.2021.104164_b25) 2018; 107
Puneeth (10.1016/j.engappai.2021.104164_b28) 2020; 171
Deng (10.1016/j.engappai.2021.104164_b7) 2016; 8
Zhang (10.1016/j.engappai.2021.104164_b45) 2018; 129
Zhao (10.1016/j.engappai.2021.104164_b48) 2015; 64
Kabakulak (10.1016/j.engappai.2021.104164_b14) 2019; 81
Gupta (10.1016/j.engappai.2021.104164_b11) 2018; 68
Hadi (10.1016/j.engappai.2021.104164_b12) 2016; 12
Santos (10.1016/j.engappai.2021.104164_b32) 2016; 50
Wu (10.1016/j.engappai.2021.104164_b41) 2014; 13
Leao (10.1016/j.engappai.2021.104164_b17) 2018
Lipare (10.1016/j.engappai.2021.104164_b19) 2019; 84
Liu (10.1016/j.engappai.2021.104164_b20) 2019; 16
Wang (10.1016/j.engappai.2021.104164_b40) 2019; 19
Jayarajan (10.1016/j.engappai.2021.104164_b13) 2020; 76
Veeramani (10.1016/j.engappai.2021.104164_b38) 2020; 111
Pakdaman (10.1016/j.engappai.2021.104164_b26) 2020; 14
Sun (10.1016/j.engappai.2021.104164_b37) 2016; 21
Raj (10.1016/j.engappai.2021.104164_b29) 2020; 26
Altan (10.1016/j.engappai.2021.104164_b3) 2019; 126
Kostin (10.1016/j.engappai.2021.104164_b16) 2015; 22
10.1016/j.engappai.2021.104164_b27
Zhao (10.1016/j.engappai.2021.104164_b47) 2017; 49
Abbasi (10.1016/j.engappai.2021.104164_b1) 2016; 36
Safa (10.1016/j.engappai.2021.104164_b31) 2014; 39
Singh (10.1016/j.engappai.2021.104164_b36) 2020; 107
Ebrahimi (10.1016/j.engappai.2021.104164_b8) 2014; 16
Manne (10.1016/j.engappai.2021.104164_b21) 2017; 57
Saranya (10.1016/j.engappai.2021.104164_b33) 2018; 100
Wang (10.1016/j.engappai.2021.104164_b39) 2018; 74
Nguyen (10.1016/j.engappai.2021.104164_b24) 2016; 106
Gao (10.1016/j.engappai.2021.104164_b9) 2016; 43
References_xml – volume: 129
  start-page: 43
  year: 2018
  end-page: 53
  ident: b45
  article-title: Compressive sensing and random walk based data collection in wireless sensor networks
  publication-title: Comput. Commun.
– volume: 26
  start-page: 2983
  year: 2020
  end-page: 2998
  ident: b29
  article-title: Data gathering via mobile sink in WSNs using game theory and enhanced ant colony optimization
  publication-title: Wirel. Netw.
– start-page: 4331
  year: 2019
  end-page: 4347
  ident: b23
  article-title: Design of routing protocol for multi-sink based wireless sensor networks
  publication-title: Wirel. Netw.
– volume: 19
  start-page: 3950
  year: 2019
  end-page: 3960
  ident: b40
  article-title: An energy-efficient compressive sensing-based clustering routing protocol for WSNs
  publication-title: IEEE Sens. J.
– volume: 10
  start-page: 4963
  year: 2019
  end-page: 4975
  ident: b5
  article-title: ACO optimized self-organized tree-based energy balance algorithm for wireless sensor network
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 76
  start-page: 4543
  year: 2020
  end-page: 4555
  ident: b13
  article-title: An energy-aware buffer management (EABM) routing protocol for WSN
  publication-title: J. Supercomput.
– volume: 126
  start-page: 325
  year: 2019
  end-page: 336
  ident: b3
  article-title: Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques
  publication-title: Chaos Solitons Fractals
– volume: 22
  start-page: 579
  year: 2015
  end-page: 598
  ident: b16
  article-title: Anycast tree-based routing in mobile wireless sensor network with multiple sinks
  publication-title: Wirel. Netw.
– volume: 64
  start-page: 4257
  year: 2015
  end-page: 4267
  ident: b48
  article-title: Treelet-based clustered compressive data aggregation for wireless sensor networks
  publication-title: IEEE Trans. Veh. Technol.
– volume: 107
  start-page: 38
  year: 2018
  end-page: 55
  ident: b25
  article-title: On the performance of sink placement in WSNs considering energy-balanced compressive sensing-based data aggregation
  publication-title: J. Netw. Comput. Appl.
– volume: 7
  year: 2019
  ident: b44
  article-title: Compressive sensing based clustering joint annular routing data gathering scheme for wireless sensor networks
  publication-title: IEEE Access
– start-page: 395
  year: 2011
  end-page: 401
  ident: b6
  article-title: An energy aware ant colony algorithm for the routing of wireless sensor networks
  publication-title: Intell. Comput. Inf. Sci.
– volume: 68
  start-page: 101
  year: 2018
  end-page: 109
  ident: b11
  article-title: Integrated clustering and routing protocol for wireless sensor networks using Cuckoo and harmony search based metaheuristic techniques
  publication-title: Eng. Appl. Artif. Intell.
– volume: 43
  start-page: 12
  year: 2016
  end-page: 20
  ident: b9
  article-title: Routing protocol for
  publication-title: Comput. Stand. Interfaces
– reference: Pardesi, P., Grover, J., 2015. Improved multiple sink placement strategy in wireless sensor networks. In: 1st International Conference on Futuristic Trends in Computational Analysis and Knowledge Management (ABLAZE). pp. 418–424.
– volume: 84
  start-page: 1165
  year: 2015
  end-page: 1196
  ident: b43
  article-title: A clustering routing protocol for WSN based on type-2 fuzzy logic and ant colony optimization
  publication-title: Wirel. Pers. Commun.
– volume: 94
  start-page: 2937
  year: 2017
  end-page: 2948
  ident: b46
  article-title: Multipath routing algorithm based on ant colony optimization and energy awareness
  publication-title: Wirel. Pers. Commun.
– reference: Rao, P.C., Banka, H., Jana, P.K., 2016. A gravitational search algorithm for energy efficient multi-sink placement in wireless sensor networks. In: International Conference on Swarm, Evolutionary, and Memetic Computing. pp. 222–234.
– volume: 106
  start-page: 171
  year: 2016
  end-page: 185
  ident: b24
  article-title: CCS: Energy-efficient data collection in clustered wireless sensor networks utilizing block-wise compressive sensing
  publication-title: Comput. Netw.
– volume: 60
  start-page: 16
  year: 2017
  end-page: 25
  ident: b35
  article-title: Optimized sugeno fuzzy clustering algorithm for wireless sensor networks
  publication-title: Eng. Appl. Artif. Intell.
– volume: 81
  start-page: 83
  year: 2019
  end-page: 102
  ident: b14
  article-title: Sensor and sink placement, scheduling and routing algorithms for connected converge of wireless sensor networks
  publication-title: Ad Hoc Netw.
– volume: 57
  start-page: 142
  year: 2017
  end-page: 152
  ident: b21
  article-title: Improved metaheuristic based energy-efficient clustering protocol for wireless sensor networks
  publication-title: Eng. Appl. Artif. Intell.
– volume: 16
  start-page: 350
  year: 2019
  end-page: 361
  ident: b20
  article-title: Latency-aware path planning for disconnected sensor network with mobile sinks
  publication-title: IEEE Trans. Ind. Inf.
– volume: 107
  year: 2020
  ident: b36
  article-title: Low latency and energy efficient routing-aware network coding-based data transmission in multi-hop and multi-sink WSN
  publication-title: Ad Hoc Netw.
– volume: 19
  start-page: 1
  year: 2019
  end-page: 19
  ident: b10
  article-title: A hybrid method for mobile agent moving trajectory scheduling using ACO and PSO in WSNs
  publication-title: Sensors
– volume: 14
  start-page: 1826
  year: 2020
  end-page: 1837
  ident: b26
  article-title: WDAT-OMS: A two-level scheme for efficient data gathering in mobile-sink wireless sensor networks using compressive sensing theory
  publication-title: IET Commun.
– volume: 36
  start-page: 368
  year: 2016
  end-page: 385
  ident: b1
  article-title: Toward cluster-based weighted compressive data aggregation in wireless sensor networks
  publication-title: Ad Hoc Netw.
– reference: Shi, Y., Eberhart, C., 1998. Parameter selection in particle swarm optimization. In: IEEE International Conference on Evolutionary Computation. pp. 69–73.
– volume: 171
  start-page: 2242
  year: 2020
  end-page: 2251
  ident: b28
  article-title: Data aggregation using compressive sensing for energy efficient routing strategy
  publication-title: Procedia Comput. Sci.
– volume: 8
  start-page: 1
  year: 2016
  end-page: 12
  ident: b7
  article-title: An online algorithm for data collection by multiple sinks in wireless sensor networks
  publication-title: IEEE Trans. Control Netw. Syst.
– volume: 39
  start-page: 70
  year: 2014
  end-page: 82
  ident: b31
  article-title: A robust topology control solution for the sink placement problem in WSNs
  publication-title: J. Netw. Comput. Appl.
– volume: 49
  start-page: 319
  year: 2017
  end-page: 337
  ident: b47
  article-title: Maximizing lifetime of a wireless sensor network via joint optimizing sink placement and sensor-to-sink routing
  publication-title: Appl. Math. Model.
– volume: 22
  start-page: 2637
  year: 2015
  end-page: 2647
  ident: b22
  article-title: An ant colony optimization based routing algorithm for extending network lifetime in wireless sensor networks
  publication-title: Wirel. Netw.
– volume: 94
  start-page: 1147
  year: 2016
  end-page: 1164
  ident: b2
  article-title: Billiardo: A novel virtual coordinates routing protocol based on multiple sinks for wireless sensor network
  publication-title: Wirel. Pers. Commun.
– volume: 18
  start-page: 4614
  year: 2018
  end-page: 4622
  ident: b15
  article-title: Particle swarm optimization based unequal and fault tolerant clustering protocol for wireless sensor networks
  publication-title: IEEE Sens. J.
– volume: 16
  start-page: 105
  year: 2014
  end-page: 119
  ident: b8
  article-title: Compressive data gathering using random projection for energy efficient wireless sensor networks
  publication-title: Ad Hoc Netw.
– volume: 50
  start-page: 20
  year: 2016
  end-page: 31
  ident: b32
  article-title: Heuristics for designing multi-sink clustered WSN topologies
  publication-title: Eng. Appl. Artif. Intell.
– volume: 100
  start-page: 1553
  year: 2018
  end-page: 1567
  ident: b33
  article-title: Energy efficient clustering scheme (EECS) for wireless sensor network with mobile sink
  publication-title: Wirel. Pers. Commun.
– volume: 21
  start-page: 1317
  year: 2016
  end-page: 1320
  ident: b37
  article-title: An improved routing algorithm based on ant colony optimization in wireless sensor networks
  publication-title: IEEE Commun. Lett.
– volume: 12
  start-page: 1
  year: 2016
  end-page: 13
  ident: b12
  article-title: Wireless-powered cooperative energy aware anycast routing in wireless sensor networks
  publication-title: Int. J. Distrib. Sens. Netw.
– volume: 111
  start-page: 1117
  year: 2020
  end-page: 1127
  ident: b38
  article-title: An approach to place sink node in a wireless sensor network (WSN)
  publication-title: Wirel. Pers. Commun.
– volume: 13
  start-page: 5867
  year: 2014
  end-page: 5877
  ident: b41
  article-title: Sparsest random scheduling for compressive data gathering in wireless sensor networks
  publication-title: IEEE Trans. Wireless Commun.
– year: 2020
  ident: b4
  article-title: EELTM: An energy efficient lifetime maximization approach for WSN by PSO and Fuzzy-based unequal clustering
  publication-title: Arab. J. Sci. Eng.
– volume: 25
  start-page: 806
  year: 2014
  end-page: 815
  ident: b42
  article-title: Transmission-efficient clustering method for wireless sensor networks using compressive sensing
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– start-page: 39
  year: 2018
  end-page: 50
  ident: b17
  article-title: Latency and lifetime optimization for k-anycast routing algorithm in wireless sensor networks
  publication-title: Int. Conf. Ad-Hoc Netw. Wirel.
– volume: 22
  start-page: 903
  year: 2014
  end-page: 916
  ident: b18
  article-title: Exact and heuristic algorithms for data-gathering cluster-based wireless sensor network design problem
  publication-title: IEEE/ACM Trans. Netw.
– volume: 74
  start-page: 6633
  year: 2018
  end-page: 6645
  ident: b39
  article-title: An improved ant colony optimization-based approach with mobile sink for wireless sensor networks
  publication-title: J. Supercomput.
– volume: 84
  year: 2019
  ident: b19
  article-title: Energy efficient load balancing approach for avoiding energy hole problem in WSN using grey wolf optimizer with novel fitness function
  publication-title: Appl. Soft Comput.
– volume: 100
  start-page: 1553
  year: 2018
  ident: 10.1016/j.engappai.2021.104164_b33
  article-title: Energy efficient clustering scheme (EECS) for wireless sensor network with mobile sink
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-018-5653-1
– volume: 81
  start-page: 83
  year: 2019
  ident: 10.1016/j.engappai.2021.104164_b14
  article-title: Sensor and sink placement, scheduling and routing algorithms for connected converge of wireless sensor networks
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2018.11.005
– volume: 107
  year: 2020
  ident: 10.1016/j.engappai.2021.104164_b36
  article-title: Low latency and energy efficient routing-aware network coding-based data transmission in multi-hop and multi-sink WSN
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2020.102182
– start-page: 39
  year: 2018
  ident: 10.1016/j.engappai.2021.104164_b17
  article-title: Latency and lifetime optimization for k-anycast routing algorithm in wireless sensor networks
  publication-title: Int. Conf. Ad-Hoc Netw. Wirel.
– volume: 84
  year: 2019
  ident: 10.1016/j.engappai.2021.104164_b19
  article-title: Energy efficient load balancing approach for avoiding energy hole problem in WSN using grey wolf optimizer with novel fitness function
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105706
– year: 2020
  ident: 10.1016/j.engappai.2021.104164_b4
  article-title: EELTM: An energy efficient lifetime maximization approach for WSN by PSO and Fuzzy-based unequal clustering
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-020-04616-1
– volume: 13
  start-page: 5867
  issue: 10
  year: 2014
  ident: 10.1016/j.engappai.2021.104164_b41
  article-title: Sparsest random scheduling for compressive data gathering in wireless sensor networks
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2014.2332344
– start-page: 395
  year: 2011
  ident: 10.1016/j.engappai.2021.104164_b6
  article-title: An energy aware ant colony algorithm for the routing of wireless sensor networks
  publication-title: Intell. Comput. Inf. Sci.
– volume: 16
  start-page: 105
  year: 2014
  ident: 10.1016/j.engappai.2021.104164_b8
  article-title: Compressive data gathering using random projection for energy efficient wireless sensor networks
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2013.12.004
– volume: 22
  start-page: 2637
  issue: 8
  year: 2015
  ident: 10.1016/j.engappai.2021.104164_b22
  article-title: An ant colony optimization based routing algorithm for extending network lifetime in wireless sensor networks
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-015-1061-6
– volume: 39
  start-page: 70
  year: 2014
  ident: 10.1016/j.engappai.2021.104164_b31
  article-title: A robust topology control solution for the sink placement problem in WSNs
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2013.04.009
– volume: 16
  start-page: 350
  issue: 1
  year: 2019
  ident: 10.1016/j.engappai.2021.104164_b20
  article-title: Latency-aware path planning for disconnected sensor network with mobile sinks
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2019.2916300
– volume: 94
  start-page: 1147
  year: 2016
  ident: 10.1016/j.engappai.2021.104164_b2
  article-title: Billiardo: A novel virtual coordinates routing protocol based on multiple sinks for wireless sensor network
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-016-3675-0
– start-page: 4331
  year: 2019
  ident: 10.1016/j.engappai.2021.104164_b23
  article-title: Design of routing protocol for multi-sink based wireless sensor networks
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-019-02095-3
– volume: 36
  start-page: 368
  year: 2016
  ident: 10.1016/j.engappai.2021.104164_b1
  article-title: Toward cluster-based weighted compressive data aggregation in wireless sensor networks
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2015.08.014
– volume: 129
  start-page: 43
  year: 2018
  ident: 10.1016/j.engappai.2021.104164_b45
  article-title: Compressive sensing and random walk based data collection in wireless sensor networks
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2018.07.026
– volume: 111
  start-page: 1117
  year: 2020
  ident: 10.1016/j.engappai.2021.104164_b38
  article-title: An approach to place sink node in a wireless sensor network (WSN)
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-019-06904-y
– volume: 76
  start-page: 4543
  year: 2020
  ident: 10.1016/j.engappai.2021.104164_b13
  article-title: An energy-aware buffer management (EABM) routing protocol for WSN
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-018-2582-4
– volume: 171
  start-page: 2242
  year: 2020
  ident: 10.1016/j.engappai.2021.104164_b28
  article-title: Data aggregation using compressive sensing for energy efficient routing strategy
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.04.242
– volume: 126
  start-page: 325
  year: 2019
  ident: 10.1016/j.engappai.2021.104164_b3
  article-title: Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2019.07.011
– volume: 12
  start-page: 1
  issue: 11
  year: 2016
  ident: 10.1016/j.engappai.2021.104164_b12
  article-title: Wireless-powered cooperative energy aware anycast routing in wireless sensor networks
  publication-title: Int. J. Distrib. Sens. Netw.
  doi: 10.1177/1550147716676494
– volume: 57
  start-page: 142
  year: 2017
  ident: 10.1016/j.engappai.2021.104164_b21
  article-title: Improved metaheuristic based energy-efficient clustering protocol for wireless sensor networks
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2016.10.014
– volume: 68
  start-page: 101
  year: 2018
  ident: 10.1016/j.engappai.2021.104164_b11
  article-title: Integrated clustering and routing protocol for wireless sensor networks using Cuckoo and harmony search based metaheuristic techniques
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.11.003
– ident: 10.1016/j.engappai.2021.104164_b30
  doi: 10.1007/978-3-319-48959-9_20
– volume: 49
  start-page: 319
  year: 2017
  ident: 10.1016/j.engappai.2021.104164_b47
  article-title: Maximizing lifetime of a wireless sensor network via joint optimizing sink placement and sensor-to-sink routing
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2017.05.001
– volume: 19
  start-page: 1
  issue: 3
  year: 2019
  ident: 10.1016/j.engappai.2021.104164_b10
  article-title: A hybrid method for mobile agent moving trajectory scheduling using ACO and PSO in WSNs
  publication-title: Sensors
  doi: 10.3390/s19030575
– volume: 22
  start-page: 579
  year: 2015
  ident: 10.1016/j.engappai.2021.104164_b16
  article-title: Anycast tree-based routing in mobile wireless sensor network with multiple sinks
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-015-0975-3
– volume: 21
  start-page: 1317
  issue: 6
  year: 2016
  ident: 10.1016/j.engappai.2021.104164_b37
  article-title: An improved routing algorithm based on ant colony optimization in wireless sensor networks
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2017.2672959
– volume: 60
  start-page: 16
  year: 2017
  ident: 10.1016/j.engappai.2021.104164_b35
  article-title: Optimized sugeno fuzzy clustering algorithm for wireless sensor networks
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.01.007
– volume: 107
  start-page: 38
  year: 2018
  ident: 10.1016/j.engappai.2021.104164_b25
  article-title: On the performance of sink placement in WSNs considering energy-balanced compressive sensing-based data aggregation
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2018.01.012
– ident: 10.1016/j.engappai.2021.104164_b27
  doi: 10.1109/ABLAZE.2015.7155032
– volume: 8
  start-page: 1
  issue: 99
  year: 2016
  ident: 10.1016/j.engappai.2021.104164_b7
  article-title: An online algorithm for data collection by multiple sinks in wireless sensor networks
  publication-title: IEEE Trans. Control Netw. Syst.
– volume: 84
  start-page: 1165
  issue: 2
  year: 2015
  ident: 10.1016/j.engappai.2021.104164_b43
  article-title: A clustering routing protocol for WSN based on type-2 fuzzy logic and ant colony optimization
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-015-2682-x
– volume: 14
  start-page: 1826
  issue: 11
  year: 2020
  ident: 10.1016/j.engappai.2021.104164_b26
  article-title: WDAT-OMS: A two-level scheme for efficient data gathering in mobile-sink wireless sensor networks using compressive sensing theory
  publication-title: IET Commun.
  doi: 10.1049/iet-com.2019.0433
– volume: 74
  start-page: 6633
  issue: 12
  year: 2018
  ident: 10.1016/j.engappai.2021.104164_b39
  article-title: An improved ant colony optimization-based approach with mobile sink for wireless sensor networks
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-017-2115-6
– volume: 19
  start-page: 3950
  issue: 10
  year: 2019
  ident: 10.1016/j.engappai.2021.104164_b40
  article-title: An energy-efficient compressive sensing-based clustering routing protocol for WSNs
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2893912
– volume: 106
  start-page: 171
  year: 2016
  ident: 10.1016/j.engappai.2021.104164_b24
  article-title: CCS: Energy-efficient data collection in clustered wireless sensor networks utilizing block-wise compressive sensing
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2016.06.029
– volume: 26
  start-page: 2983
  year: 2020
  ident: 10.1016/j.engappai.2021.104164_b29
  article-title: Data gathering via mobile sink in WSNs using game theory and enhanced ant colony optimization
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-020-02254-x
– ident: 10.1016/j.engappai.2021.104164_b34
  doi: 10.1007/BFb0040810
– volume: 22
  start-page: 903
  issue: 3
  year: 2014
  ident: 10.1016/j.engappai.2021.104164_b18
  article-title: Exact and heuristic algorithms for data-gathering cluster-based wireless sensor network design problem
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2013.2262153
– volume: 50
  start-page: 20
  year: 2016
  ident: 10.1016/j.engappai.2021.104164_b32
  article-title: Heuristics for designing multi-sink clustered WSN topologies
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2015.12.008
– volume: 94
  start-page: 2937
  year: 2017
  ident: 10.1016/j.engappai.2021.104164_b46
  article-title: Multipath routing algorithm based on ant colony optimization and energy awareness
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-016-3758-y
– volume: 18
  start-page: 4614
  issue: 11
  year: 2018
  ident: 10.1016/j.engappai.2021.104164_b15
  article-title: Particle swarm optimization based unequal and fault tolerant clustering protocol for wireless sensor networks
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2828099
– volume: 43
  start-page: 12
  year: 2016
  ident: 10.1016/j.engappai.2021.104164_b9
  article-title: Routing protocol for k-anycast communication in rechargeable wireless sensor networks
  publication-title: Comput. Stand. Interfaces
  doi: 10.1016/j.csi.2015.07.002
– volume: 64
  start-page: 4257
  issue: 9
  year: 2015
  ident: 10.1016/j.engappai.2021.104164_b48
  article-title: Treelet-based clustered compressive data aggregation for wireless sensor networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2014.2361250
– volume: 10
  start-page: 4963
  year: 2019
  ident: 10.1016/j.engappai.2021.104164_b5
  article-title: ACO optimized self-organized tree-based energy balance algorithm for wireless sensor network
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-019-01186-5
– volume: 25
  start-page: 806
  issue: 3
  year: 2014
  ident: 10.1016/j.engappai.2021.104164_b42
  article-title: Transmission-efficient clustering method for wireless sensor networks using compressive sensing
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2013.90
– volume: 7
  year: 2019
  ident: 10.1016/j.engappai.2021.104164_b44
  article-title: Compressive sensing based clustering joint annular routing data gathering scheme for wireless sensor networks
  publication-title: IEEE Access
SSID ssj0003846
Score 2.414484
Snippet This paper deals with the sink placement and anycast routing to increase the lifetime of multi-sink wireless sensor networks. Two algorithms are proposed,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104164
SubjectTerms Ant colony optimization
Anycast routing
Clustering
Compressive sensing
Particle swarm optimization
Sink placement
Wireless sensor networks
Title PSO-based sink placement and load-balanced anycast routing in multi-sink WSNs considering compressive sensing theory
URI https://dx.doi.org/10.1016/j.engappai.2021.104164
Volume 100
WOSCitedRecordID wos000629354100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZglwMX3ojlJR-4RV7iPOz4WKFFwKGs1EX0Fjm2g7pbJasmW-3PZ_xImsJKC0JcosqV67Tf18l4_M0MQu-yCmiglSKmkpJkOTdEKslJJWMDDqnOMumbTfD5vFguxWmI6XaunQBvmuL6Wlz-V6hhDMC2qbN_Aff4oTAArwF0uALscP0j4E8XX4l9Numog31m5ERXo5J83UoN7679uT8YAiW7Ptq0V33IbXECQ-Jmfl_MO6tKdw09Q26ul81uTdRZ4bvPtGr3s6onFQ6j6fG4UxxsnDTJNQqZ1AIdZTzS573PfLkTz8Rte-FCP7NBfB9iFAmdSFtc4GxIntkplXwEMiFU8FAJ29vfgqfEqm73DLSrZfq7sfdxh_Nj0_yAryNXx3Zpe2hNfWH0XwppL-yCdr2EOk-Y30WHCc8FmPPD2eeT5ZfxCZ4WPsFruMFJZvnNq93s1EwclbNH6EHYYeCZZ8ZjdMc0T9DDsNvAwZZ3MDQ09BjGnqJ-5A62DMAjdzBwB-9xBwfu4MAdvGrwjjvYcgdPuIMn3MGBO9hz5xn69vHk7MMnEtpyEJXSpCdUx1rJOk-F0XVdpypmQlHOjYizKk1lntV5Dn6gyVgiTMUlFZWQVJmkZoIWLH2ODpq2MS8QNkrUrBCKMZ1kNfhNQsexMalmlOUm5kcoH37XUoWa9bZ1yrocxInn5YBHafEoPR5H6P0479JXbbl1hhhgK4Pv6X3KEth2y9yX_zD3Fbq_-8O8Rgf95sq8QffUtl91m7eBmD8BNFuyiA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PSO-based+sink+placement+and+load-balanced+anycast+routing+in+multi-sink+WSNs+considering+compressive+sensing+theory&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Jari%2C+Anis&rft.au=Avokh%2C+Avid&rft.date=2021-04-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=100&rft_id=info:doi/10.1016%2Fj.engappai.2021.104164&rft.externalDocID=S0952197621000117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon