PSO-based sink placement and load-balanced anycast routing in multi-sink WSNs considering compressive sensing theory
This paper deals with the sink placement and anycast routing to increase the lifetime of multi-sink wireless sensor networks. Two algorithms are proposed, namely “Multi-sink Placement and Anycast Routing (MPAR)” and “Extended Multi-sink Placement and Anycast Routing (EMPAR)”, to jointly address the...
Uloženo v:
| Vydáno v: | Engineering applications of artificial intelligence Ročník 100; s. 104164 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.04.2021
|
| Témata: | |
| ISSN: | 0952-1976, 1873-6769 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper deals with the sink placement and anycast routing to increase the lifetime of multi-sink wireless sensor networks. Two algorithms are proposed, namely “Multi-sink Placement and Anycast Routing (MPAR)” and “Extended Multi-sink Placement and Anycast Routing (EMPAR)”, to jointly address the problems of clustering, multi-sink placement, and load-balanced anycast routing. MPAR and EMPAR rely on a two-level architecture in which sensors are clustered at the lower level. Each sensor transmits its data to the corresponding Cluster Head (CH) via a load-balanced data aggregation routing tree. At the upper level, both schemes use a modified particle swarm optimization algorithm to determine the best location of sinks. For each sink, a high-level anycast routing tree is developed using the ant colony optimization algorithm. Each anycast tree uses the hybrid Compressive Sensing (CS) method to forward the aggregated data from CHs to sinks. Extensive simulations are conducted to illustrate the efficiency of the proposed algorithms in terms of energy consumption, energy consumption variance, and network lifetime. The results show that EMPAR has a better performance than MPAR due to its CH selection strategy. As an advantage, EMPAR considers both remaining energy and distance criteria along with a rest factor to select the best CH for each cluster. For an average number of clusters, EMPAR reduces the energy consumption by 5.98% and 12.20%, respectively, compared to the MPAR algorithm and the energy-aware CS-based data aggregation algorithm. It also increases the network lifetime in comparison with the aforementioned algorithms by 12.26% and 30.38%, respectively. |
|---|---|
| AbstractList | This paper deals with the sink placement and anycast routing to increase the lifetime of multi-sink wireless sensor networks. Two algorithms are proposed, namely “Multi-sink Placement and Anycast Routing (MPAR)” and “Extended Multi-sink Placement and Anycast Routing (EMPAR)”, to jointly address the problems of clustering, multi-sink placement, and load-balanced anycast routing. MPAR and EMPAR rely on a two-level architecture in which sensors are clustered at the lower level. Each sensor transmits its data to the corresponding Cluster Head (CH) via a load-balanced data aggregation routing tree. At the upper level, both schemes use a modified particle swarm optimization algorithm to determine the best location of sinks. For each sink, a high-level anycast routing tree is developed using the ant colony optimization algorithm. Each anycast tree uses the hybrid Compressive Sensing (CS) method to forward the aggregated data from CHs to sinks. Extensive simulations are conducted to illustrate the efficiency of the proposed algorithms in terms of energy consumption, energy consumption variance, and network lifetime. The results show that EMPAR has a better performance than MPAR due to its CH selection strategy. As an advantage, EMPAR considers both remaining energy and distance criteria along with a rest factor to select the best CH for each cluster. For an average number of clusters, EMPAR reduces the energy consumption by 5.98% and 12.20%, respectively, compared to the MPAR algorithm and the energy-aware CS-based data aggregation algorithm. It also increases the network lifetime in comparison with the aforementioned algorithms by 12.26% and 30.38%, respectively. |
| ArticleNumber | 104164 |
| Author | Jari, Anis Avokh, Avid |
| Author_xml | – sequence: 1 givenname: Anis surname: Jari fullname: Jari, Anis email: a.jari@sel.iaun.ac.ir – sequence: 2 givenname: Avid surname: Avokh fullname: Avokh, Avid email: aavokh@pel.iaun.ac.ir |
| BookMark | eNqFkNtKAzEQhoNUsFZfQfICW5M9ZDfghVI8QbFCFS_DNDtbU7fJkqSFvr1bqzfe9Grgn_l-mO-cDKyzSMgVZ2POuLhejdEuoevAjFOW8j7MuchPyJBXZZaIUsgBGTJZpAmXpTgj5yGsGGNZlYshia_zWbKAgDUNxn7RrgWNa7SRgq1p66Duty1Y3R-A3WkIkXq3icYuqbF0vWmjSX7Ij_lLoNrZYGr0-7V2685jCGaLNGCf91n8ROd3F-S0gTbg5e8ckfeH-7fJUzKdPT5P7qaJzngaE16zWkNTZBLrpmkyzYTUvCxRsnyRZVDkTVFUvMJcpBIXJXC5kMA1po2QvBLZiIhDr_YuBI-N6rxZg98pztTenVqpP3dq704d3PXgzT9QmwjROBs9mPY4fnvAsX9ua9CroA3uHRqPOqramWMV33F0k_0 |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2023_105831 crossref_primary_10_1177_09544070251355457 crossref_primary_10_1007_s11276_023_03291_y crossref_primary_10_1109_JIOT_2023_3303124 crossref_primary_10_1007_s12083_022_01325_4 crossref_primary_10_1155_2021_7059881 crossref_primary_10_1016_j_measen_2024_101057 crossref_primary_10_1016_j_engappai_2022_105305 crossref_primary_10_1007_s00500_024_09809_6 crossref_primary_10_1016_j_adhoc_2021_102770 crossref_primary_10_3390_s23115337 crossref_primary_10_1007_s11235_023_01068_4 crossref_primary_10_1016_j_bspc_2021_103403 crossref_primary_10_1109_JSEN_2022_3152180 crossref_primary_10_1155_2022_8429285 crossref_primary_10_1155_2023_3507600 crossref_primary_10_3390_fi15020075 crossref_primary_10_1007_s12065_023_00847_x crossref_primary_10_1080_01605682_2025_2551594 crossref_primary_10_1109_ACCESS_2021_3107230 crossref_primary_10_1177_15501329221077165 |
| Cites_doi | 10.1007/s11277-018-5653-1 10.1016/j.adhoc.2018.11.005 10.1016/j.adhoc.2020.102182 10.1016/j.asoc.2019.105706 10.1007/s13369-020-04616-1 10.1109/TWC.2014.2332344 10.1016/j.adhoc.2013.12.004 10.1007/s11276-015-1061-6 10.1016/j.jnca.2013.04.009 10.1109/TII.2019.2916300 10.1007/s11277-016-3675-0 10.1007/s11276-019-02095-3 10.1016/j.adhoc.2015.08.014 10.1016/j.comcom.2018.07.026 10.1007/s11277-019-06904-y 10.1007/s11227-018-2582-4 10.1016/j.procs.2020.04.242 10.1016/j.chaos.2019.07.011 10.1177/1550147716676494 10.1016/j.engappai.2016.10.014 10.1016/j.engappai.2017.11.003 10.1007/978-3-319-48959-9_20 10.1016/j.apm.2017.05.001 10.3390/s19030575 10.1007/s11276-015-0975-3 10.1109/LCOMM.2017.2672959 10.1016/j.engappai.2017.01.007 10.1016/j.jnca.2018.01.012 10.1109/ABLAZE.2015.7155032 10.1007/s11277-015-2682-x 10.1049/iet-com.2019.0433 10.1007/s11227-017-2115-6 10.1109/JSEN.2019.2893912 10.1016/j.comnet.2016.06.029 10.1007/s11276-020-02254-x 10.1007/BFb0040810 10.1109/TNET.2013.2262153 10.1016/j.engappai.2015.12.008 10.1007/s11277-016-3758-y 10.1109/JSEN.2018.2828099 10.1016/j.csi.2015.07.002 10.1109/TVT.2014.2361250 10.1007/s12652-019-01186-5 10.1109/TPDS.2013.90 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2021.104164 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| ExternalDocumentID | 10_1016_j_engappai_2021_104164 S0952197621000117 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c312t-1d0dcaf539edfff3c069c177e904b33a54f55818e4629eb7a19b9a1ce2f691863 |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000629354100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Sat Nov 29 07:08:29 EST 2025 Tue Nov 18 22:41:10 EST 2025 Fri Feb 23 02:45:08 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Ant colony optimization Wireless sensor networks Compressive sensing Sink placement Anycast routing Clustering Particle swarm optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-1d0dcaf539edfff3c069c177e904b33a54f55818e4629eb7a19b9a1ce2f691863 |
| ParticipantIDs | crossref_primary_10_1016_j_engappai_2021_104164 crossref_citationtrail_10_1016_j_engappai_2021_104164 elsevier_sciencedirect_doi_10_1016_j_engappai_2021_104164 |
| PublicationCentury | 2000 |
| PublicationDate | April 2021 2021-04-00 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Manne, Singh (b21) 2017; 57 Liu, Qiu, Zhou, Yang, Chang (b20) 2019; 16 Zhao, Hou, Zhang, Gao (b46) 2017; 94 Rao, P.C., Banka, H., Jana, P.K., 2016. A gravitational search algorithm for energy efficient multi-sink placement in wireless sensor networks. In: International Conference on Swarm, Evolutionary, and Memetic Computing. pp. 222–234. Kostin, Fanaeian, Al-Watter (b16) 2015; 22 Pakdaman, Avokh (b25) 2018; 107 Kabakulak (b14) 2019; 81 Veeramani, Mahammad (b38) 2020; 111 Yuan, Liu, Wang, Deng, Liu, Song (b44) 2019; 7 Altan, Karasu, Bekiros (b3) 2019; 126 Lin, Üster (b18) 2014; 22 Sun, Dong, Chen (b37) 2016; 21 Wang, Cao, Sherratt, Park (b39) 2018; 74 Jayarajan, Kanagachidambaresan, Sundararajan, Sakthipandi, Maheswar, Karthikeyan (b13) 2020; 76 Lipare, Edla, Venkatanareshbabu (b19) 2019; 84 Cheng, Xum, Zhou (b6) 2011 Zhao, Zhang, Yang, Yao (b48) 2015; 64 Puneeth, Kulkarni (b28) 2020; 171 Xie, Jia (b42) 2014; 25 Mukherjee, Amin, Biswas (b23) 2019 Gao, Wang, Wu, Sangaiah, Lim (b10) 2019; 19 Hadi, Ahmed, Mindas, Mazyad, Islam, Ahmed, Javaid (b12) 2016; 12 Mohajerani, Gharavian (b22) 2015; 22 Saranya, Shankar, Kanagachidambaresan (b33) 2018; 100 Zhang, Wang, Guo (b45) 2018; 129 Santos, Duhamel, Belisário (b32) 2016; 50 Arora, Sharma, Sachdeva (b5) 2019; 10 Raj, Khedr, Aghbari (b29) 2020; 26 Zhao, Wu, Wang, Ling, Teo, Jung (b47) 2017; 49 Shi, Y., Eberhart, C., 1998. Parameter selection in particle swarm optimization. In: IEEE International Conference on Evolutionary Computation. pp. 69–73. Singh, Nagaraju (b36) 2020; 107 Gupta, Jha (b11) 2018; 68 Kaur, Kumar (b15) 2018; 18 Pardesi, P., Grover, J., 2015. Improved multiple sink placement strategy in wireless sensor networks. In: 1st International Conference on Futuristic Trends in Computational Analysis and Knowledge Management (ABLAZE). pp. 418–424. Abbasi, Abouei (b1) 2016; 36 Xie, Zhang, Sun (b43) 2015; 84 Aksa (b2) 2016; 94 Nguyen, Teague, Rahnavard (b24) 2016; 106 Shokouhifar, Jalali (b35) 2017; 60 Deng, He, Chen (b7) 2016; 8 Gao, Lin, Liu (b9) 2016; 43 Wang, Lin, Yang, Zhang (b40) 2019; 19 Wu, Xiong, Yang (b41) 2014; 13 Ebrahimi, Assi (b8) 2014; 16 Leao, Felea (b17) 2018 Safa, El-Hajj (b31) 2014; 39 Arikumar, Natarajan, Satapathy (b4) 2020 Pakdaman, Avokh, Azar (b26) 2020; 14 Mukherjee (10.1016/j.engappai.2021.104164_b23) 2019 Xie (10.1016/j.engappai.2021.104164_b43) 2015; 84 Shokouhifar (10.1016/j.engappai.2021.104164_b35) 2017; 60 10.1016/j.engappai.2021.104164_b30 Aksa (10.1016/j.engappai.2021.104164_b2) 2016; 94 10.1016/j.engappai.2021.104164_b34 Cheng (10.1016/j.engappai.2021.104164_b6) 2011 Mohajerani (10.1016/j.engappai.2021.104164_b22) 2015; 22 Arikumar (10.1016/j.engappai.2021.104164_b4) 2020 Zhao (10.1016/j.engappai.2021.104164_b46) 2017; 94 Kaur (10.1016/j.engappai.2021.104164_b15) 2018; 18 Arora (10.1016/j.engappai.2021.104164_b5) 2019; 10 Xie (10.1016/j.engappai.2021.104164_b42) 2014; 25 Yuan (10.1016/j.engappai.2021.104164_b44) 2019; 7 Gao (10.1016/j.engappai.2021.104164_b10) 2019; 19 Lin (10.1016/j.engappai.2021.104164_b18) 2014; 22 Pakdaman (10.1016/j.engappai.2021.104164_b25) 2018; 107 Puneeth (10.1016/j.engappai.2021.104164_b28) 2020; 171 Deng (10.1016/j.engappai.2021.104164_b7) 2016; 8 Zhang (10.1016/j.engappai.2021.104164_b45) 2018; 129 Zhao (10.1016/j.engappai.2021.104164_b48) 2015; 64 Kabakulak (10.1016/j.engappai.2021.104164_b14) 2019; 81 Gupta (10.1016/j.engappai.2021.104164_b11) 2018; 68 Hadi (10.1016/j.engappai.2021.104164_b12) 2016; 12 Santos (10.1016/j.engappai.2021.104164_b32) 2016; 50 Wu (10.1016/j.engappai.2021.104164_b41) 2014; 13 Leao (10.1016/j.engappai.2021.104164_b17) 2018 Lipare (10.1016/j.engappai.2021.104164_b19) 2019; 84 Liu (10.1016/j.engappai.2021.104164_b20) 2019; 16 Wang (10.1016/j.engappai.2021.104164_b40) 2019; 19 Jayarajan (10.1016/j.engappai.2021.104164_b13) 2020; 76 Veeramani (10.1016/j.engappai.2021.104164_b38) 2020; 111 Pakdaman (10.1016/j.engappai.2021.104164_b26) 2020; 14 Sun (10.1016/j.engappai.2021.104164_b37) 2016; 21 Raj (10.1016/j.engappai.2021.104164_b29) 2020; 26 Altan (10.1016/j.engappai.2021.104164_b3) 2019; 126 Kostin (10.1016/j.engappai.2021.104164_b16) 2015; 22 10.1016/j.engappai.2021.104164_b27 Zhao (10.1016/j.engappai.2021.104164_b47) 2017; 49 Abbasi (10.1016/j.engappai.2021.104164_b1) 2016; 36 Safa (10.1016/j.engappai.2021.104164_b31) 2014; 39 Singh (10.1016/j.engappai.2021.104164_b36) 2020; 107 Ebrahimi (10.1016/j.engappai.2021.104164_b8) 2014; 16 Manne (10.1016/j.engappai.2021.104164_b21) 2017; 57 Saranya (10.1016/j.engappai.2021.104164_b33) 2018; 100 Wang (10.1016/j.engappai.2021.104164_b39) 2018; 74 Nguyen (10.1016/j.engappai.2021.104164_b24) 2016; 106 Gao (10.1016/j.engappai.2021.104164_b9) 2016; 43 |
| References_xml | – volume: 129 start-page: 43 year: 2018 end-page: 53 ident: b45 article-title: Compressive sensing and random walk based data collection in wireless sensor networks publication-title: Comput. Commun. – volume: 26 start-page: 2983 year: 2020 end-page: 2998 ident: b29 article-title: Data gathering via mobile sink in WSNs using game theory and enhanced ant colony optimization publication-title: Wirel. Netw. – start-page: 4331 year: 2019 end-page: 4347 ident: b23 article-title: Design of routing protocol for multi-sink based wireless sensor networks publication-title: Wirel. Netw. – volume: 19 start-page: 3950 year: 2019 end-page: 3960 ident: b40 article-title: An energy-efficient compressive sensing-based clustering routing protocol for WSNs publication-title: IEEE Sens. J. – volume: 10 start-page: 4963 year: 2019 end-page: 4975 ident: b5 article-title: ACO optimized self-organized tree-based energy balance algorithm for wireless sensor network publication-title: J. Ambient Intell. Humaniz. Comput. – volume: 76 start-page: 4543 year: 2020 end-page: 4555 ident: b13 article-title: An energy-aware buffer management (EABM) routing protocol for WSN publication-title: J. Supercomput. – volume: 126 start-page: 325 year: 2019 end-page: 336 ident: b3 article-title: Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques publication-title: Chaos Solitons Fractals – volume: 22 start-page: 579 year: 2015 end-page: 598 ident: b16 article-title: Anycast tree-based routing in mobile wireless sensor network with multiple sinks publication-title: Wirel. Netw. – volume: 64 start-page: 4257 year: 2015 end-page: 4267 ident: b48 article-title: Treelet-based clustered compressive data aggregation for wireless sensor networks publication-title: IEEE Trans. Veh. Technol. – volume: 107 start-page: 38 year: 2018 end-page: 55 ident: b25 article-title: On the performance of sink placement in WSNs considering energy-balanced compressive sensing-based data aggregation publication-title: J. Netw. Comput. Appl. – volume: 7 year: 2019 ident: b44 article-title: Compressive sensing based clustering joint annular routing data gathering scheme for wireless sensor networks publication-title: IEEE Access – start-page: 395 year: 2011 end-page: 401 ident: b6 article-title: An energy aware ant colony algorithm for the routing of wireless sensor networks publication-title: Intell. Comput. Inf. Sci. – volume: 68 start-page: 101 year: 2018 end-page: 109 ident: b11 article-title: Integrated clustering and routing protocol for wireless sensor networks using Cuckoo and harmony search based metaheuristic techniques publication-title: Eng. Appl. Artif. Intell. – volume: 43 start-page: 12 year: 2016 end-page: 20 ident: b9 article-title: Routing protocol for publication-title: Comput. Stand. Interfaces – reference: Pardesi, P., Grover, J., 2015. Improved multiple sink placement strategy in wireless sensor networks. In: 1st International Conference on Futuristic Trends in Computational Analysis and Knowledge Management (ABLAZE). pp. 418–424. – volume: 84 start-page: 1165 year: 2015 end-page: 1196 ident: b43 article-title: A clustering routing protocol for WSN based on type-2 fuzzy logic and ant colony optimization publication-title: Wirel. Pers. Commun. – volume: 94 start-page: 2937 year: 2017 end-page: 2948 ident: b46 article-title: Multipath routing algorithm based on ant colony optimization and energy awareness publication-title: Wirel. Pers. Commun. – reference: Rao, P.C., Banka, H., Jana, P.K., 2016. A gravitational search algorithm for energy efficient multi-sink placement in wireless sensor networks. In: International Conference on Swarm, Evolutionary, and Memetic Computing. pp. 222–234. – volume: 106 start-page: 171 year: 2016 end-page: 185 ident: b24 article-title: CCS: Energy-efficient data collection in clustered wireless sensor networks utilizing block-wise compressive sensing publication-title: Comput. Netw. – volume: 60 start-page: 16 year: 2017 end-page: 25 ident: b35 article-title: Optimized sugeno fuzzy clustering algorithm for wireless sensor networks publication-title: Eng. Appl. Artif. Intell. – volume: 81 start-page: 83 year: 2019 end-page: 102 ident: b14 article-title: Sensor and sink placement, scheduling and routing algorithms for connected converge of wireless sensor networks publication-title: Ad Hoc Netw. – volume: 57 start-page: 142 year: 2017 end-page: 152 ident: b21 article-title: Improved metaheuristic based energy-efficient clustering protocol for wireless sensor networks publication-title: Eng. Appl. Artif. Intell. – volume: 16 start-page: 350 year: 2019 end-page: 361 ident: b20 article-title: Latency-aware path planning for disconnected sensor network with mobile sinks publication-title: IEEE Trans. Ind. Inf. – volume: 107 year: 2020 ident: b36 article-title: Low latency and energy efficient routing-aware network coding-based data transmission in multi-hop and multi-sink WSN publication-title: Ad Hoc Netw. – volume: 19 start-page: 1 year: 2019 end-page: 19 ident: b10 article-title: A hybrid method for mobile agent moving trajectory scheduling using ACO and PSO in WSNs publication-title: Sensors – volume: 14 start-page: 1826 year: 2020 end-page: 1837 ident: b26 article-title: WDAT-OMS: A two-level scheme for efficient data gathering in mobile-sink wireless sensor networks using compressive sensing theory publication-title: IET Commun. – volume: 36 start-page: 368 year: 2016 end-page: 385 ident: b1 article-title: Toward cluster-based weighted compressive data aggregation in wireless sensor networks publication-title: Ad Hoc Netw. – reference: Shi, Y., Eberhart, C., 1998. Parameter selection in particle swarm optimization. In: IEEE International Conference on Evolutionary Computation. pp. 69–73. – volume: 171 start-page: 2242 year: 2020 end-page: 2251 ident: b28 article-title: Data aggregation using compressive sensing for energy efficient routing strategy publication-title: Procedia Comput. Sci. – volume: 8 start-page: 1 year: 2016 end-page: 12 ident: b7 article-title: An online algorithm for data collection by multiple sinks in wireless sensor networks publication-title: IEEE Trans. Control Netw. Syst. – volume: 39 start-page: 70 year: 2014 end-page: 82 ident: b31 article-title: A robust topology control solution for the sink placement problem in WSNs publication-title: J. Netw. Comput. Appl. – volume: 49 start-page: 319 year: 2017 end-page: 337 ident: b47 article-title: Maximizing lifetime of a wireless sensor network via joint optimizing sink placement and sensor-to-sink routing publication-title: Appl. Math. Model. – volume: 22 start-page: 2637 year: 2015 end-page: 2647 ident: b22 article-title: An ant colony optimization based routing algorithm for extending network lifetime in wireless sensor networks publication-title: Wirel. Netw. – volume: 94 start-page: 1147 year: 2016 end-page: 1164 ident: b2 article-title: Billiardo: A novel virtual coordinates routing protocol based on multiple sinks for wireless sensor network publication-title: Wirel. Pers. Commun. – volume: 18 start-page: 4614 year: 2018 end-page: 4622 ident: b15 article-title: Particle swarm optimization based unequal and fault tolerant clustering protocol for wireless sensor networks publication-title: IEEE Sens. J. – volume: 16 start-page: 105 year: 2014 end-page: 119 ident: b8 article-title: Compressive data gathering using random projection for energy efficient wireless sensor networks publication-title: Ad Hoc Netw. – volume: 50 start-page: 20 year: 2016 end-page: 31 ident: b32 article-title: Heuristics for designing multi-sink clustered WSN topologies publication-title: Eng. Appl. Artif. Intell. – volume: 100 start-page: 1553 year: 2018 end-page: 1567 ident: b33 article-title: Energy efficient clustering scheme (EECS) for wireless sensor network with mobile sink publication-title: Wirel. Pers. Commun. – volume: 21 start-page: 1317 year: 2016 end-page: 1320 ident: b37 article-title: An improved routing algorithm based on ant colony optimization in wireless sensor networks publication-title: IEEE Commun. Lett. – volume: 12 start-page: 1 year: 2016 end-page: 13 ident: b12 article-title: Wireless-powered cooperative energy aware anycast routing in wireless sensor networks publication-title: Int. J. Distrib. Sens. Netw. – volume: 111 start-page: 1117 year: 2020 end-page: 1127 ident: b38 article-title: An approach to place sink node in a wireless sensor network (WSN) publication-title: Wirel. Pers. Commun. – volume: 13 start-page: 5867 year: 2014 end-page: 5877 ident: b41 article-title: Sparsest random scheduling for compressive data gathering in wireless sensor networks publication-title: IEEE Trans. Wireless Commun. – year: 2020 ident: b4 article-title: EELTM: An energy efficient lifetime maximization approach for WSN by PSO and Fuzzy-based unequal clustering publication-title: Arab. J. Sci. Eng. – volume: 25 start-page: 806 year: 2014 end-page: 815 ident: b42 article-title: Transmission-efficient clustering method for wireless sensor networks using compressive sensing publication-title: IEEE Trans. Parallel Distrib. Syst. – start-page: 39 year: 2018 end-page: 50 ident: b17 article-title: Latency and lifetime optimization for k-anycast routing algorithm in wireless sensor networks publication-title: Int. Conf. Ad-Hoc Netw. Wirel. – volume: 22 start-page: 903 year: 2014 end-page: 916 ident: b18 article-title: Exact and heuristic algorithms for data-gathering cluster-based wireless sensor network design problem publication-title: IEEE/ACM Trans. Netw. – volume: 74 start-page: 6633 year: 2018 end-page: 6645 ident: b39 article-title: An improved ant colony optimization-based approach with mobile sink for wireless sensor networks publication-title: J. Supercomput. – volume: 84 year: 2019 ident: b19 article-title: Energy efficient load balancing approach for avoiding energy hole problem in WSN using grey wolf optimizer with novel fitness function publication-title: Appl. Soft Comput. – volume: 100 start-page: 1553 year: 2018 ident: 10.1016/j.engappai.2021.104164_b33 article-title: Energy efficient clustering scheme (EECS) for wireless sensor network with mobile sink publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-018-5653-1 – volume: 81 start-page: 83 year: 2019 ident: 10.1016/j.engappai.2021.104164_b14 article-title: Sensor and sink placement, scheduling and routing algorithms for connected converge of wireless sensor networks publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2018.11.005 – volume: 107 year: 2020 ident: 10.1016/j.engappai.2021.104164_b36 article-title: Low latency and energy efficient routing-aware network coding-based data transmission in multi-hop and multi-sink WSN publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2020.102182 – start-page: 39 year: 2018 ident: 10.1016/j.engappai.2021.104164_b17 article-title: Latency and lifetime optimization for k-anycast routing algorithm in wireless sensor networks publication-title: Int. Conf. Ad-Hoc Netw. Wirel. – volume: 84 year: 2019 ident: 10.1016/j.engappai.2021.104164_b19 article-title: Energy efficient load balancing approach for avoiding energy hole problem in WSN using grey wolf optimizer with novel fitness function publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105706 – year: 2020 ident: 10.1016/j.engappai.2021.104164_b4 article-title: EELTM: An energy efficient lifetime maximization approach for WSN by PSO and Fuzzy-based unequal clustering publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-020-04616-1 – volume: 13 start-page: 5867 issue: 10 year: 2014 ident: 10.1016/j.engappai.2021.104164_b41 article-title: Sparsest random scheduling for compressive data gathering in wireless sensor networks publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2014.2332344 – start-page: 395 year: 2011 ident: 10.1016/j.engappai.2021.104164_b6 article-title: An energy aware ant colony algorithm for the routing of wireless sensor networks publication-title: Intell. Comput. Inf. Sci. – volume: 16 start-page: 105 year: 2014 ident: 10.1016/j.engappai.2021.104164_b8 article-title: Compressive data gathering using random projection for energy efficient wireless sensor networks publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2013.12.004 – volume: 22 start-page: 2637 issue: 8 year: 2015 ident: 10.1016/j.engappai.2021.104164_b22 article-title: An ant colony optimization based routing algorithm for extending network lifetime in wireless sensor networks publication-title: Wirel. Netw. doi: 10.1007/s11276-015-1061-6 – volume: 39 start-page: 70 year: 2014 ident: 10.1016/j.engappai.2021.104164_b31 article-title: A robust topology control solution for the sink placement problem in WSNs publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2013.04.009 – volume: 16 start-page: 350 issue: 1 year: 2019 ident: 10.1016/j.engappai.2021.104164_b20 article-title: Latency-aware path planning for disconnected sensor network with mobile sinks publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2019.2916300 – volume: 94 start-page: 1147 year: 2016 ident: 10.1016/j.engappai.2021.104164_b2 article-title: Billiardo: A novel virtual coordinates routing protocol based on multiple sinks for wireless sensor network publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-016-3675-0 – start-page: 4331 year: 2019 ident: 10.1016/j.engappai.2021.104164_b23 article-title: Design of routing protocol for multi-sink based wireless sensor networks publication-title: Wirel. Netw. doi: 10.1007/s11276-019-02095-3 – volume: 36 start-page: 368 year: 2016 ident: 10.1016/j.engappai.2021.104164_b1 article-title: Toward cluster-based weighted compressive data aggregation in wireless sensor networks publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2015.08.014 – volume: 129 start-page: 43 year: 2018 ident: 10.1016/j.engappai.2021.104164_b45 article-title: Compressive sensing and random walk based data collection in wireless sensor networks publication-title: Comput. Commun. doi: 10.1016/j.comcom.2018.07.026 – volume: 111 start-page: 1117 year: 2020 ident: 10.1016/j.engappai.2021.104164_b38 article-title: An approach to place sink node in a wireless sensor network (WSN) publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-019-06904-y – volume: 76 start-page: 4543 year: 2020 ident: 10.1016/j.engappai.2021.104164_b13 article-title: An energy-aware buffer management (EABM) routing protocol for WSN publication-title: J. Supercomput. doi: 10.1007/s11227-018-2582-4 – volume: 171 start-page: 2242 year: 2020 ident: 10.1016/j.engappai.2021.104164_b28 article-title: Data aggregation using compressive sensing for energy efficient routing strategy publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.04.242 – volume: 126 start-page: 325 year: 2019 ident: 10.1016/j.engappai.2021.104164_b3 article-title: Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2019.07.011 – volume: 12 start-page: 1 issue: 11 year: 2016 ident: 10.1016/j.engappai.2021.104164_b12 article-title: Wireless-powered cooperative energy aware anycast routing in wireless sensor networks publication-title: Int. J. Distrib. Sens. Netw. doi: 10.1177/1550147716676494 – volume: 57 start-page: 142 year: 2017 ident: 10.1016/j.engappai.2021.104164_b21 article-title: Improved metaheuristic based energy-efficient clustering protocol for wireless sensor networks publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2016.10.014 – volume: 68 start-page: 101 year: 2018 ident: 10.1016/j.engappai.2021.104164_b11 article-title: Integrated clustering and routing protocol for wireless sensor networks using Cuckoo and harmony search based metaheuristic techniques publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.11.003 – ident: 10.1016/j.engappai.2021.104164_b30 doi: 10.1007/978-3-319-48959-9_20 – volume: 49 start-page: 319 year: 2017 ident: 10.1016/j.engappai.2021.104164_b47 article-title: Maximizing lifetime of a wireless sensor network via joint optimizing sink placement and sensor-to-sink routing publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2017.05.001 – volume: 19 start-page: 1 issue: 3 year: 2019 ident: 10.1016/j.engappai.2021.104164_b10 article-title: A hybrid method for mobile agent moving trajectory scheduling using ACO and PSO in WSNs publication-title: Sensors doi: 10.3390/s19030575 – volume: 22 start-page: 579 year: 2015 ident: 10.1016/j.engappai.2021.104164_b16 article-title: Anycast tree-based routing in mobile wireless sensor network with multiple sinks publication-title: Wirel. Netw. doi: 10.1007/s11276-015-0975-3 – volume: 21 start-page: 1317 issue: 6 year: 2016 ident: 10.1016/j.engappai.2021.104164_b37 article-title: An improved routing algorithm based on ant colony optimization in wireless sensor networks publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2017.2672959 – volume: 60 start-page: 16 year: 2017 ident: 10.1016/j.engappai.2021.104164_b35 article-title: Optimized sugeno fuzzy clustering algorithm for wireless sensor networks publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.01.007 – volume: 107 start-page: 38 year: 2018 ident: 10.1016/j.engappai.2021.104164_b25 article-title: On the performance of sink placement in WSNs considering energy-balanced compressive sensing-based data aggregation publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2018.01.012 – ident: 10.1016/j.engappai.2021.104164_b27 doi: 10.1109/ABLAZE.2015.7155032 – volume: 8 start-page: 1 issue: 99 year: 2016 ident: 10.1016/j.engappai.2021.104164_b7 article-title: An online algorithm for data collection by multiple sinks in wireless sensor networks publication-title: IEEE Trans. Control Netw. Syst. – volume: 84 start-page: 1165 issue: 2 year: 2015 ident: 10.1016/j.engappai.2021.104164_b43 article-title: A clustering routing protocol for WSN based on type-2 fuzzy logic and ant colony optimization publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-015-2682-x – volume: 14 start-page: 1826 issue: 11 year: 2020 ident: 10.1016/j.engappai.2021.104164_b26 article-title: WDAT-OMS: A two-level scheme for efficient data gathering in mobile-sink wireless sensor networks using compressive sensing theory publication-title: IET Commun. doi: 10.1049/iet-com.2019.0433 – volume: 74 start-page: 6633 issue: 12 year: 2018 ident: 10.1016/j.engappai.2021.104164_b39 article-title: An improved ant colony optimization-based approach with mobile sink for wireless sensor networks publication-title: J. Supercomput. doi: 10.1007/s11227-017-2115-6 – volume: 19 start-page: 3950 issue: 10 year: 2019 ident: 10.1016/j.engappai.2021.104164_b40 article-title: An energy-efficient compressive sensing-based clustering routing protocol for WSNs publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2893912 – volume: 106 start-page: 171 year: 2016 ident: 10.1016/j.engappai.2021.104164_b24 article-title: CCS: Energy-efficient data collection in clustered wireless sensor networks utilizing block-wise compressive sensing publication-title: Comput. Netw. doi: 10.1016/j.comnet.2016.06.029 – volume: 26 start-page: 2983 year: 2020 ident: 10.1016/j.engappai.2021.104164_b29 article-title: Data gathering via mobile sink in WSNs using game theory and enhanced ant colony optimization publication-title: Wirel. Netw. doi: 10.1007/s11276-020-02254-x – ident: 10.1016/j.engappai.2021.104164_b34 doi: 10.1007/BFb0040810 – volume: 22 start-page: 903 issue: 3 year: 2014 ident: 10.1016/j.engappai.2021.104164_b18 article-title: Exact and heuristic algorithms for data-gathering cluster-based wireless sensor network design problem publication-title: IEEE/ACM Trans. Netw. doi: 10.1109/TNET.2013.2262153 – volume: 50 start-page: 20 year: 2016 ident: 10.1016/j.engappai.2021.104164_b32 article-title: Heuristics for designing multi-sink clustered WSN topologies publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2015.12.008 – volume: 94 start-page: 2937 year: 2017 ident: 10.1016/j.engappai.2021.104164_b46 article-title: Multipath routing algorithm based on ant colony optimization and energy awareness publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-016-3758-y – volume: 18 start-page: 4614 issue: 11 year: 2018 ident: 10.1016/j.engappai.2021.104164_b15 article-title: Particle swarm optimization based unequal and fault tolerant clustering protocol for wireless sensor networks publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2828099 – volume: 43 start-page: 12 year: 2016 ident: 10.1016/j.engappai.2021.104164_b9 article-title: Routing protocol for k-anycast communication in rechargeable wireless sensor networks publication-title: Comput. Stand. Interfaces doi: 10.1016/j.csi.2015.07.002 – volume: 64 start-page: 4257 issue: 9 year: 2015 ident: 10.1016/j.engappai.2021.104164_b48 article-title: Treelet-based clustered compressive data aggregation for wireless sensor networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2014.2361250 – volume: 10 start-page: 4963 year: 2019 ident: 10.1016/j.engappai.2021.104164_b5 article-title: ACO optimized self-organized tree-based energy balance algorithm for wireless sensor network publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-019-01186-5 – volume: 25 start-page: 806 issue: 3 year: 2014 ident: 10.1016/j.engappai.2021.104164_b42 article-title: Transmission-efficient clustering method for wireless sensor networks using compressive sensing publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2013.90 – volume: 7 year: 2019 ident: 10.1016/j.engappai.2021.104164_b44 article-title: Compressive sensing based clustering joint annular routing data gathering scheme for wireless sensor networks publication-title: IEEE Access |
| SSID | ssj0003846 |
| Score | 2.414484 |
| Snippet | This paper deals with the sink placement and anycast routing to increase the lifetime of multi-sink wireless sensor networks. Two algorithms are proposed,... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104164 |
| SubjectTerms | Ant colony optimization Anycast routing Clustering Compressive sensing Particle swarm optimization Sink placement Wireless sensor networks |
| Title | PSO-based sink placement and load-balanced anycast routing in multi-sink WSNs considering compressive sensing theory |
| URI | https://dx.doi.org/10.1016/j.engappai.2021.104164 |
| Volume | 100 |
| WOSCitedRecordID | wos000629354100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZglwMX3ojlJR-4RV7iPOz4WKFFwKGs1EX0Fjm2g7pbJasmW-3PZ_xImsJKC0JcosqV67Tf18l4_M0MQu-yCmiglSKmkpJkOTdEKslJJWMDDqnOMumbTfD5vFguxWmI6XaunQBvmuL6Wlz-V6hhDMC2qbN_Aff4oTAArwF0uALscP0j4E8XX4l9Numog31m5ERXo5J83UoN7679uT8YAiW7Ptq0V33IbXECQ-Jmfl_MO6tKdw09Q26ul81uTdRZ4bvPtGr3s6onFQ6j6fG4UxxsnDTJNQqZ1AIdZTzS573PfLkTz8Rte-FCP7NBfB9iFAmdSFtc4GxIntkplXwEMiFU8FAJ29vfgqfEqm73DLSrZfq7sfdxh_Nj0_yAryNXx3Zpe2hNfWH0XwppL-yCdr2EOk-Y30WHCc8FmPPD2eeT5ZfxCZ4WPsFruMFJZvnNq93s1EwclbNH6EHYYeCZZ8ZjdMc0T9DDsNvAwZZ3MDQ09BjGnqJ-5A62DMAjdzBwB-9xBwfu4MAdvGrwjjvYcgdPuIMn3MGBO9hz5xn69vHk7MMnEtpyEJXSpCdUx1rJOk-F0XVdpypmQlHOjYizKk1lntV5Dn6gyVgiTMUlFZWQVJmkZoIWLH2ODpq2MS8QNkrUrBCKMZ1kNfhNQsexMalmlOUm5kcoH37XUoWa9bZ1yrocxInn5YBHafEoPR5H6P0479JXbbl1hhhgK4Pv6X3KEth2y9yX_zD3Fbq_-8O8Rgf95sq8QffUtl91m7eBmD8BNFuyiA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PSO-based+sink+placement+and+load-balanced+anycast+routing+in+multi-sink+WSNs+considering+compressive+sensing+theory&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Jari%2C+Anis&rft.au=Avokh%2C+Avid&rft.date=2021-04-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=100&rft_id=info:doi/10.1016%2Fj.engappai.2021.104164&rft.externalDocID=S0952197621000117 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |