A fast algorithm for the measurement of stimulus-frequency otoacoustic emission suppression tuning curves based on multi-level swept suppressor tones

•Based on the swept suppressor tones, we propose a novel fast algorithm for measuring stimulus-frequency otoacoustic emission (SFOAE) suppression tuning curves (STCs) in human ears.•The obtained SFOAE STCs are consistently reproduced in repeated measures and are nearly equivalent to those obtained b...

Full description

Saved in:
Bibliographic Details
Published in:Applied acoustics Vol. 211; p. 109494
Main Authors: Xu, Runyi, Liu, Yin, Gong, Qin
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.08.2023
Subjects:
ISSN:0003-682X, 1872-910X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Based on the swept suppressor tones, we propose a novel fast algorithm for measuring stimulus-frequency otoacoustic emission (SFOAE) suppression tuning curves (STCs) in human ears.•The obtained SFOAE STCs are consistently reproduced in repeated measures and are nearly equivalent to those obtained by the traditional one.•The obtained SFOAE STCs are with more than twice the frequency resolution, while their test time is nearly the half compared with traditional one. Algorithms for measuring stimulus-frequency otoacoustic emission (SFOAE) suppression tuning curves (STCs) typically use pure tones as suppressors, leading to procedures which are time-consuming and difficult to apply in clinical settings. A fast algorithm based on multi-level swept suppressor tones (MLSST) is proposed in this study. Taking advantage of the time-varying frequencies of swept tones, the suppression effects on SFOAE produced by swept suppressor tones are obtained within a single test. Further, a SFOAE STC may be extracted by interpolation from a set of suppression-effect functions at multiple suppressor levels. In the present study, SFOAE STCs were obtained in twenty-six normal-hearing subjects using the fast MLSST and the traditional pure-tone algorithms. SFOAE STCs were measured with high test–retest repeatability using the MLSST algorithm (average mean absolute errors of 2.12 dB) and were nearly consistent with the SFOAE STCs obtained by the pure-tone algorithm (average mean absolute errors of 3.13 dB). In addition, with>1.8 times frequency solution of the acquired curves, the measurement speed of our MLSST algorithm was approximately 2.14 times faster than the traditional one.
AbstractList •Based on the swept suppressor tones, we propose a novel fast algorithm for measuring stimulus-frequency otoacoustic emission (SFOAE) suppression tuning curves (STCs) in human ears.•The obtained SFOAE STCs are consistently reproduced in repeated measures and are nearly equivalent to those obtained by the traditional one.•The obtained SFOAE STCs are with more than twice the frequency resolution, while their test time is nearly the half compared with traditional one. Algorithms for measuring stimulus-frequency otoacoustic emission (SFOAE) suppression tuning curves (STCs) typically use pure tones as suppressors, leading to procedures which are time-consuming and difficult to apply in clinical settings. A fast algorithm based on multi-level swept suppressor tones (MLSST) is proposed in this study. Taking advantage of the time-varying frequencies of swept tones, the suppression effects on SFOAE produced by swept suppressor tones are obtained within a single test. Further, a SFOAE STC may be extracted by interpolation from a set of suppression-effect functions at multiple suppressor levels. In the present study, SFOAE STCs were obtained in twenty-six normal-hearing subjects using the fast MLSST and the traditional pure-tone algorithms. SFOAE STCs were measured with high test–retest repeatability using the MLSST algorithm (average mean absolute errors of 2.12 dB) and were nearly consistent with the SFOAE STCs obtained by the pure-tone algorithm (average mean absolute errors of 3.13 dB). In addition, with>1.8 times frequency solution of the acquired curves, the measurement speed of our MLSST algorithm was approximately 2.14 times faster than the traditional one.
ArticleNumber 109494
Author Liu, Yin
Gong, Qin
Xu, Runyi
Author_xml – sequence: 1
  givenname: Runyi
  surname: Xu
  fullname: Xu, Runyi
  organization: Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
– sequence: 2
  givenname: Yin
  surname: Liu
  fullname: Liu, Yin
  organization: Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
– sequence: 3
  givenname: Qin
  surname: Gong
  fullname: Gong, Qin
  email: gongqin@mail.tsinghua.edu.cn
  organization: Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
BookMark eNqFkM1KAzEQx4Mo2FZfQfICW5P9ahc8KMUvELwo9BayyaRN2d2smWzFB_F9TVn14MXTZAZ-_8n8puS4cx0QcsHZnDNeXu7mspfKDRjmKUuzOKzyKj8iE75cpEnF2fqYTBhjWVIu0_UpmSLuYsvSopiQzxtqJAYqm43zNmxbapynYQu0BYmDhxa6QJ2hGGw7NAMmxsPbAJ36oC64ca9VFFqLaF1Hceh7D-M7DJ3tNlQNfg9Ia4mgaRzHnGCTBvbQUHyHPvxCh9XxODwjJ0Y2COffdUZe725fVg_J0_P94-rmKVEZT0PClVpwzhaGcV0YXtU1L4q6LBQvocqXRoPWJjd1XZisXGZpynPItDSlVlAxnmUzcjXmKu8QPRihbJAh_j14aRvBmTgoFjvxo1gcFItRccTLP3jvbSv9x__g9QhCPG5vwQtUNjoFbT2oILSz_0V8AcXNo0I
CitedBy_id crossref_primary_10_1016_j_heares_2025_109349
Cites_doi 10.1121/1.4807505
10.1016/j.apacoust.2017.06.017
10.1007/s10162-020-00747-2
10.1177/2331216520960053
10.1016/j.bpj.2020.06.011
10.1121/1.3531864
10.1016/j.neuron.2008.02.028
10.1016/j.bpj.2019.12.031
10.1121/1.3523287
10.1016/j.heares.2020.108079
10.1007/s10162-015-0513-0
10.3109/14992027.2014.941074
10.5152/iao.2021.8477
10.1016/j.bpj.2020.10.005
10.1038/s42003-020-0762-2
10.1007/s10162-021-00813-3
10.1007/s10162-022-00857-z
10.1121/1.1557211
10.1523/JNEUROSCI.11-04-01057.1991
10.1121/1.2828209
10.1016/j.heares.2020.108100
10.1016/j.heares.2013.09.016
10.1016/S0378-5955(98)00073-2
10.1080/14992027.2021.1886352
10.1186/1475-925X-13-171
10.1111/ejn.13837
10.1007/s10162-021-00788-1
10.1016/j.heares.2017.11.006
10.1121/1.4774279
10.1044/2020_JSLHR-20-00152
10.1121/1.5020275
10.1007/s10162-016-0588-2
10.1121/1.2949505
10.1121/1.392378
10.1177/23312165211059628
10.1121/10.0013998
10.1121/1.4996859
10.1016/j.heares.2016.02.012
10.1080/14992020600753189
10.1177/2331216519889226
10.1044/2020_JSLHR-19-00386
10.1121/10.0017835
10.1121/10.0009278
10.1121/1.5139660
10.1007/s10162-021-00814-2
10.1016/j.heares.2022.108500
10.1016/j.heares.2007.10.005
10.1007/s10162-014-0487-3
10.1007/s10162-013-0412-1
10.1121/1.426948
10.1016/j.apacoust.2022.108905
10.1007/s10162-010-0240-5
10.1121/1.1416198
10.1080/14992027.2020.1821252
10.1121/1.1426372
10.1121/1.2902184
10.1121/1.1321012
10.1121/1.405453
10.1126/science.3966153
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.apacoust.2023.109494
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1872-910X
ExternalDocumentID 10_1016_j_apacoust_2023_109494
S0003682X2300292X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-1cc71107f01d5f19bb155b65c16e948fdeddf4fbb5f36832214e3daf6dce90133
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001029016000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0003-682X
IngestDate Tue Nov 18 20:53:26 EST 2025
Sat Nov 29 07:32:51 EST 2025
Fri Feb 23 02:35:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Stimulus frequency otoacoustic emission
Swept suppressor tone
Fast algorithm
Suppression tuning curve
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-1cc71107f01d5f19bb155b65c16e948fdeddf4fbb5f36832214e3daf6dce90133
ParticipantIDs crossref_citationtrail_10_1016_j_apacoust_2023_109494
crossref_primary_10_1016_j_apacoust_2023_109494
elsevier_sciencedirect_doi_10_1016_j_apacoust_2023_109494
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Applied acoustics
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Murakami, Fuji (b0100) 2022; 2
Bidelman, Nelms, Bhagat (b0110) 2016; 335
Jedrzejczak, Smurzynski, Blinowska (b0135) 2008; 235
Engler, Gaudrain, De Kleine, Van Dijk (b0095) 2022; 151
Long, Talmadge, Lee (b0215) 2008; 124
Gorga, Neely, Kopun, Tan (b0310) 2011; 129
Verhey, Par (b0010) 2020; 51
Dewey, Dhar (b0190) 2017; 18
Rhode, Recio (b0130) 2001; 110
Abdala, Kalluri (b0185) 2017; 142
Evans (b0030) 2001
Charaziak, Dong, Altoè, Shera (b0245) 2020; 21
Wilson, Browning-Kamins, Durante, Boothalingam, Moleti, Sisto (b0035) 2021; 60
Brownell, Bader, Bertrand, de Ribaupierre (b0050) 1985; 227
Wang, Zhu, He, Liu, Huang, Pan (b0210) 2022; 16
Strimbu, Wang, Olson (b0065) 2020; 119
Mishra, Talmadge (b0270) 2018; 358
Gorga, Neely, Dorn, Konrad-Martin (b0080) 2002; 111
Dallos, Wu, Cheatham, Gao, Zheng, Anderson (b0055) 2008; 58
Liu, Neely (b0120) 2013; 133
Charaziak, Siegel (b0145) 2015; 16
Brass, Kemp (b0240) 1993; 93
Gong, Wang, Xian (b0285) 2014; 13
Gong Q, Liu Y, Peng Z. Estimating Hearing Thresholds From Stimulus-Frequency Otoacoustic Emissions. Trends in Hearing 2020;24:233121652096005. https://doi.org/10.1177/2331216520960053.
Stelmachowicz, Jesteadt, Gorga, Mott (b0305) 1985; 77
Charaziak, Shera (b0160) 2021; 22
Stiepan S, Shera CA, Abdala C. Characterizing the Joint-Otoacoustic Emission Profile in Endolymphatic Hydrops 2022.
Altoè, Charaziak, Dewey, Moleti, Sisto, Oghalai (b0045) 2021; 22
Charaziak, Souza, Siegel (b0180) 2015; 54
Ren, He (b0250) 2020; 3
Vashishtha, Kumar (b0260) 2023
Leschke, Rodriguez Orellana, Shera, Oxenham (b0015) 2022; 420
Abdala, Luo, Shera (b0200) 2022; 23
Choi, Lee, Parham, Neely, Kim (b0220) 2008; 123
Abdala, Guardia, Shera (b0275) 2018; 143
Kluk, Moore (b0300) 2006; 45
Ruggero, Rich (b0060) 1991; 11
Kalluri, Shera (b0230) 2013; 134
Mills, Shen, Withnell (b0255) 2021; 22
Charaziak, Siegel (b0090) 2014; 15
Abdala C, Luo P, Guardia Y. Swept-Tone Stimulus-Frequency Otoacoustic Emissions in Human Newborns. Trends in Hearing 2019;23:233121651988922. https://doi.org/10.1177/2331216519889226.
Parker (b0325) 2020; 398
Rasetshwane, Bosen, Kopun, Neely (b0290) 2019; 146
Department of Audiology and Speech-Language Pathology, Samvaad Institute of Speech and Hearing, Bengaluru, Karnataka, India, Kakar K, Bhat JP, Department of Audiology, Samvaad Institute of Speech and Hearing, Bengaluru, Karnataka, India, Thontadarya S, Department of Audiology and Speech-Language Pathology, Dr. S.R Chandrashekhar Institute of Speech and Hearing, Bengaluru, Karnataka, India. Effect of Musical Experience on Cochlear Frequency Resolution: An Estimation of PTCs, DLF and SOAEs. Int Adv Otol 2021;17:313–8. https://doi.org/10.5152/iao.2021.8477.
Charaziak, Souza, Siegel (b0105) 2013; 14
Cheatham, Naik, Dallos (b0170) 2011; 12
Engler, de Kleine, Avan, van Dijk (b0125) 2020; 398
Kemp (b0165) 1980
Gong Q, Liu Y, Xu R, Liang D, Peng Z, Yang H. Objective Assessment System for Hearing Prediction Based on Stimulus-Frequency Otoacoustic Emissions. Trends in Hearing 2021;25:233121652110596. https://doi.org/10.1177/23312165211059628.
Gorga, Neely, Kopun, Tan (b0315) 2011; 129
Liu, Xu, Gong (b0115) 2020; 63
Moore (b0005) 2004
Vashishtha, Chauhan, Yadav, Kumar, Kumar (b0265) 2022; 197
Xing, Gong (b0175) 2018; 129
Keefe, Ellison, Fitzpatrick, Gorga (b0085) 2008; 123
Jabeen, Holt, Becker, Nam (b0070) 2020; 119
Liu, Xu, Gong (b0150) 2021; 60
Regev, Zaar, Relaño-Iborra, Dau (b0025) 2023; 153
Shera, Guinan (b0280) 2003; 113
Abdala (b0075) 1998; 121
Chen, Deng, Bian, Li (b0225) 2013; 306
Moore BC. Masking, frequency selectivity and basilar membrane nonlinearity. Cochlear Hearing Loss, 2nd ed. Chichester, UK: John Wiley & Sons; 2008.
Shera, Guinan (b0235) 1999; 105
Goodman, Lee, Guinan, Lichtenhan (b0320) 2020; 118
Talmadge, Tubis, Long, Tong (b0140) 2000; 108
Wilson, Browning-Kamins, Boothalingam, Moleti, Sisto, Dhar (b0330) 2020; 63
10.1016/j.apacoust.2023.109494_b0020
Altoè (10.1016/j.apacoust.2023.109494_b0045) 2021; 22
Wang (10.1016/j.apacoust.2023.109494_b0210) 2022; 16
Liu (10.1016/j.apacoust.2023.109494_b0150) 2021; 60
Chen (10.1016/j.apacoust.2023.109494_b0225) 2013; 306
Cheatham (10.1016/j.apacoust.2023.109494_b0170) 2011; 12
Ruggero (10.1016/j.apacoust.2023.109494_b0060) 1991; 11
Shera (10.1016/j.apacoust.2023.109494_b0235) 1999; 105
Gorga (10.1016/j.apacoust.2023.109494_b0310) 2011; 129
Xing (10.1016/j.apacoust.2023.109494_b0175) 2018; 129
Jedrzejczak (10.1016/j.apacoust.2023.109494_b0135) 2008; 235
Gong (10.1016/j.apacoust.2023.109494_b0285) 2014; 13
Jabeen (10.1016/j.apacoust.2023.109494_b0070) 2020; 119
Verhey (10.1016/j.apacoust.2023.109494_b0010) 2020; 51
Regev (10.1016/j.apacoust.2023.109494_b0025) 2023; 153
Charaziak (10.1016/j.apacoust.2023.109494_b0180) 2015; 54
10.1016/j.apacoust.2023.109494_b0195
Abdala (10.1016/j.apacoust.2023.109494_b0185) 2017; 142
Choi (10.1016/j.apacoust.2023.109494_b0220) 2008; 123
Wilson (10.1016/j.apacoust.2023.109494_b0330) 2020; 63
Mishra (10.1016/j.apacoust.2023.109494_b0270) 2018; 358
Engler (10.1016/j.apacoust.2023.109494_b0095) 2022; 151
Kalluri (10.1016/j.apacoust.2023.109494_b0230) 2013; 134
Ren (10.1016/j.apacoust.2023.109494_b0250) 2020; 3
Parker (10.1016/j.apacoust.2023.109494_b0325) 2020; 398
Shera (10.1016/j.apacoust.2023.109494_b0280) 2003; 113
Rasetshwane (10.1016/j.apacoust.2023.109494_b0290) 2019; 146
10.1016/j.apacoust.2023.109494_b0155
10.1016/j.apacoust.2023.109494_b0040
Keefe (10.1016/j.apacoust.2023.109494_b0085) 2008; 123
Long (10.1016/j.apacoust.2023.109494_b0215) 2008; 124
Mills (10.1016/j.apacoust.2023.109494_b0255) 2021; 22
Kluk (10.1016/j.apacoust.2023.109494_b0300) 2006; 45
Brass (10.1016/j.apacoust.2023.109494_b0240) 1993; 93
Kemp (10.1016/j.apacoust.2023.109494_b0165) 1980
Brownell (10.1016/j.apacoust.2023.109494_b0050) 1985; 227
10.1016/j.apacoust.2023.109494_b0205
Dallos (10.1016/j.apacoust.2023.109494_b0055) 2008; 58
Dewey (10.1016/j.apacoust.2023.109494_b0190) 2017; 18
Charaziak (10.1016/j.apacoust.2023.109494_b0090) 2014; 15
Moore (10.1016/j.apacoust.2023.109494_b0005) 2004
Gorga (10.1016/j.apacoust.2023.109494_b0080) 2002; 111
Charaziak (10.1016/j.apacoust.2023.109494_b0145) 2015; 16
10.1016/j.apacoust.2023.109494_b0295
Liu (10.1016/j.apacoust.2023.109494_b0115) 2020; 63
Liu (10.1016/j.apacoust.2023.109494_b0120) 2013; 133
Evans (10.1016/j.apacoust.2023.109494_b0030) 2001
Leschke (10.1016/j.apacoust.2023.109494_b0015) 2022; 420
Bidelman (10.1016/j.apacoust.2023.109494_b0110) 2016; 335
Talmadge (10.1016/j.apacoust.2023.109494_b0140) 2000; 108
Vashishtha (10.1016/j.apacoust.2023.109494_b0260) 2023
Vashishtha (10.1016/j.apacoust.2023.109494_b0265) 2022; 197
Stelmachowicz (10.1016/j.apacoust.2023.109494_b0305) 1985; 77
Wilson (10.1016/j.apacoust.2023.109494_b0035) 2021; 60
Abdala (10.1016/j.apacoust.2023.109494_b0075) 1998; 121
Rhode (10.1016/j.apacoust.2023.109494_b0130) 2001; 110
Murakami (10.1016/j.apacoust.2023.109494_b0100) 2022; 2
Abdala (10.1016/j.apacoust.2023.109494_b0275) 2018; 143
Charaziak (10.1016/j.apacoust.2023.109494_b0160) 2021; 22
Strimbu (10.1016/j.apacoust.2023.109494_b0065) 2020; 119
Engler (10.1016/j.apacoust.2023.109494_b0125) 2020; 398
Gorga (10.1016/j.apacoust.2023.109494_b0315) 2011; 129
Charaziak (10.1016/j.apacoust.2023.109494_b0105) 2013; 14
Goodman (10.1016/j.apacoust.2023.109494_b0320) 2020; 118
Charaziak (10.1016/j.apacoust.2023.109494_b0245) 2020; 21
Abdala (10.1016/j.apacoust.2023.109494_b0200) 2022; 23
References_xml – volume: 227
  start-page: 194
  year: 1985
  end-page: 196
  ident: b0050
  article-title: Evoked mechanical responses of isolated cochlear outer hair cells
  publication-title: Science
– volume: 118
  start-page: 1183
  year: 2020
  end-page: 1195
  ident: b0320
  article-title: The spatial origins of cochlear amplification assessed by stimulus-frequency otoacoustic emissions
  publication-title: Biophys J
– volume: 2
  start-page: 094402
  year: 2022
  ident: b0100
  article-title: Difference between frequency and suppression tuning curves in a two-dimensional cochlear model
  publication-title: JASA Express Letters
– reference: Abdala C, Luo P, Guardia Y. Swept-Tone Stimulus-Frequency Otoacoustic Emissions in Human Newborns. Trends in Hearing 2019;23:233121651988922. https://doi.org/10.1177/2331216519889226.
– year: 1980
  ident: b0165
  article-title: Observations on the generator mechanism of stimulus frequency acoustic emissions–two tone suppression
  publication-title: Psychophysical, physiological and behavioral studies in hearing
– reference: Gong Q, Liu Y, Peng Z. Estimating Hearing Thresholds From Stimulus-Frequency Otoacoustic Emissions. Trends in Hearing 2020;24:233121652096005. https://doi.org/10.1177/2331216520960053.
– volume: 58
  start-page: 333
  year: 2008
  end-page: 339
  ident: b0055
  article-title: Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification
  publication-title: Neuron
– volume: 146
  start-page: 4481
  year: 2019
  end-page: 4492
  ident: b0290
  article-title: Comparison of distortion-product otoacoustic emission and stimulus-frequency otoacoustic emission two-tone suppression in humans
  publication-title: J Acoust Soc Am
– volume: 77
  start-page: 620
  year: 1985
  end-page: 627
  ident: b0305
  article-title: Speech perception ability and psychophysical tuning curves in hearing-impaired listeners
  publication-title: J Acoust Soc Am
– reference: Stiepan S, Shera CA, Abdala C. Characterizing the Joint-Otoacoustic Emission Profile in Endolymphatic Hydrops 2022.
– volume: 398
  year: 2020
  ident: b0125
  article-title: Frequency selectivity of tonal language native speakers probed by suppression tuning curves of spontaneous otoacoustic emissions
  publication-title: Hear Res
– start-page: 93
  year: 2001
  end-page: 94
  ident: b0030
  article-title: Latest comparisons between physiological and behavioural frequency selectivity
  publication-title: Physiological and psychophysical bases of auditory function
– volume: 16
  start-page: 317
  year: 2015
  end-page: 329
  ident: b0145
  article-title: Tuning of SFOAEs evoked by low-frequency tones is not compatible with localized emission generation
  publication-title: JARO
– volume: 45
  start-page: 463
  year: 2006
  end-page: 476
  ident: b0300
  article-title: Detecting dead regions using psychophysical tuning curves: a comparison of simultaneous and forward masking: La detección de regiones muertas utilizando curvas psicofísicas de afinamiento: Una comparación del enmascaramiento simultáneo y el anterógrado
  publication-title: Int J Audiol
– volume: 113
  start-page: 2762
  year: 2003
  end-page: 2772
  ident: b0280
  article-title: Stimulus-frequency-emission group delay: a test of coherent reflection filtering and a window on cochlear tuning
  publication-title: J Acoust Soc Am
– volume: 21
  start-page: 151
  year: 2020
  end-page: 170
  ident: b0245
  article-title: Asymmetry and microstructure of temporal-suppression patterns in basilar-membrane responses to clicks: relation to tonal suppression and traveling-wave dispersion
  publication-title: JARO
– volume: 129
  start-page: 801
  year: 2011
  end-page: 816
  ident: b0315
  article-title: Growth of suppression in humans based on distortion-product otoacoustic emission measurements
  publication-title: J Acoust Soc Am
– volume: 22
  start-page: 641
  year: 2021
  end-page: 658
  ident: b0160
  article-title: Reflection-source emissions evoked with clicks and frequency sweeps: comparisons across levels
  publication-title: JARO
– volume: 110
  start-page: 3140
  year: 2001
  end-page: 3154
  ident: b0130
  article-title: Multicomponent stimulus interactions observed in basilar-membrane vibration in the basal region of the chinchilla cochlea
  publication-title: J Acoust Soc Am
– volume: 358
  start-page: 42
  year: 2018
  end-page: 49
  ident: b0270
  article-title: Sweep-tone evoked stimulus frequency otoacoustic emissions in humans: development of a noise-rejection algorithm and normative features
  publication-title: Hear Res
– volume: 133
  start-page: 951
  year: 2013
  end-page: 961
  ident: b0120
  article-title: Suppression tuning of distortion-product otoacoustic emissions: results from cochlear mechanics simulation
  publication-title: J Acoust Soc Am
– reference: Moore BC. Masking, frequency selectivity and basilar membrane nonlinearity. Cochlear Hearing Loss, 2nd ed. Chichester, UK: John Wiley & Sons; 2008.
– volume: 142
  start-page: 812
  year: 2017
  end-page: 824
  ident: b0185
  article-title: Towards a joint reflection-distortion otoacoustic emission profile: results in normal and impaired ears
  publication-title: J Acoust Soc Am
– volume: 119
  start-page: 314
  year: 2020
  end-page: 325
  ident: b0070
  article-title: Interactions between passive and active vibrations in the organ of corti in vitro
  publication-title: Biophys J
– volume: 420
  year: 2022
  ident: b0015
  article-title: Auditory filter shapes derived from forward and simultaneous masking at low frequencies: Implications for human cochlear tuning
  publication-title: Hear Res
– volume: 22
  start-page: 623
  year: 2021
  end-page: 640
  ident: b0045
  article-title: The elusive cochlear filter: wave origin of cochlear cross-frequency masking
  publication-title: JARO
– volume: 16
  year: 2022
  ident: b0210
  article-title: Usefulness of phase gradients of otoacoustic emissions in auditory health screening: an exploration with swept tones
  publication-title: Front Neurosci
– volume: 306
  start-page: 104
  year: 2013
  end-page: 114
  ident: b0225
  article-title: Stimulus frequency otoacoustic emissions evoked by swept tones
  publication-title: Hear Res
– volume: 235
  start-page: 80
  year: 2008
  end-page: 89
  ident: b0135
  article-title: Origin of suppression of otoacoustic emissions evoked by two-tone bursts
  publication-title: Hear Res
– year: 2004
  ident: b0005
  article-title: Frequency selectivity, masking and the critical band
  publication-title: An introduction to the psychology of hearing
– volume: 111
  start-page: 271
  year: 2002
  end-page: 284
  ident: b0080
  article-title: The use of distortion product otoacoustic emission suppression as an estimate of response growth
  publication-title: J Acoust Soc Am
– volume: 11
  start-page: 1057
  year: 1991
  end-page: 1067
  ident: b0060
  article-title: Furosemide alters organ of corti mechanics: evidence for feedback of outer hair cells upon the basilar membrane
  publication-title: J Neurosci
– volume: 93
  start-page: 920
  year: 1993
  end-page: 939
  ident: b0240
  article-title: Suppression of stimulus frequency otoacoustic emissions
  publication-title: J Acoust Soc Am
– reference: Gong Q, Liu Y, Xu R, Liang D, Peng Z, Yang H. Objective Assessment System for Hearing Prediction Based on Stimulus-Frequency Otoacoustic Emissions. Trends in Hearing 2021;25:233121652110596. https://doi.org/10.1177/23312165211059628.
– volume: 119
  start-page: 2087
  year: 2020
  end-page: 2101
  ident: b0065
  article-title: Manipulation of the endocochlear potential reveals two distinct types of cochlear nonlinearity
  publication-title: Biophys J
– volume: 60
  start-page: 890
  year: 2021
  end-page: 899
  ident: b0035
  article-title: Cochlear tuning estimates from level ratio functions of distortion product otoacoustic emissions
  publication-title: Int J Audiol
– volume: 22
  start-page: 275
  year: 2021
  end-page: 288
  ident: b0255
  article-title: Examining the factors that contribute to non-monotonic growth of the $$2f_1 - f_2$$ otoacoustic emission in humans
  publication-title: JARO
– volume: 197
  year: 2022
  ident: b0265
  article-title: A two-level adaptive chirp mode decomposition and tangent entropy in estimation of single-valued neutrosophic cross-entropy for detecting impeller defects in centrifugal pump
  publication-title: Appl Acoust
– volume: 54
  start-page: 96
  year: 2015
  end-page: 105
  ident: b0180
  article-title: Exploration of stimulus-frequency otoacoustic emission suppression tuning in hearing-impaired listeners
  publication-title: Int J Audiol
– start-page: 295
  year: 2023
  end-page: 310
  ident: b0260
  article-title: Feature Selection Based on Gaussian Ant Lion Optimizer for Fault Identification in Centrifugal Pump
  publication-title: Recent Advances in Machines and Mechanisms
– volume: 123
  start-page: 2651
  year: 2008
  end-page: 2669
  ident: b0220
  article-title: Stimulus-frequency otoacoustic emission: Measurements in humans and simulations with an active cochlear model
  publication-title: J Acoust Soc Am
– volume: 121
  start-page: 125
  year: 1998
  end-page: 138
  ident: b0075
  article-title: A developmental study of distortion product otoacoustic emission (2f1-f2) suppression in humans
  publication-title: Hear Res
– volume: 3
  start-page: 35
  year: 2020
  ident: b0250
  article-title: Two-tone distortion in reticular lamina vibration of the living cochlea
  publication-title: Commun Biol
– volume: 398
  year: 2020
  ident: b0325
  article-title: Identifying three otopathologies in humans
  publication-title: Hear Res
– volume: 108
  start-page: 2911
  year: 2000
  end-page: 2932
  ident: b0140
  article-title: Modeling the combined effects of basilar membrane nonlinearity and roughness on stimulus frequency otoacoustic emission fine structure
  publication-title: J Acoust Soc Am
– volume: 63
  start-page: 4277
  year: 2020
  end-page: 4288
  ident: b0115
  article-title: Human auditory-frequency tuning is sensitive to tonal language experience
  publication-title: J Speech Lang Hear Res
– volume: 151
  start-page: 1055
  year: 2022
  end-page: 1063
  ident: b0095
  article-title: Relationship between irregularities in spontaneous otoacoustic emissions suppression and psychophysical tuning curves
  publication-title: J Acoust Soc Am
– volume: 123
  start-page: 1479
  year: 2008
  end-page: 1494
  ident: b0085
  article-title: Two-tone suppression of stimulus frequency otoacoustic emissions
  publication-title: J Acoust Soc Am
– volume: 15
  start-page: 883
  year: 2014
  end-page: 896
  ident: b0090
  article-title: Estimating cochlear frequency selectivity with stimulus-frequency otoacoustic emissions in chinchillas
  publication-title: JARO
– volume: 129
  start-page: 173
  year: 2018
  end-page: 180
  ident: b0175
  article-title: A fast algorithm for the measurement of stimulus frequency otoacoustic emission suppression tuning curves
  publication-title: Appl Acoust
– volume: 143
  start-page: 181
  year: 2018
  end-page: 192
  ident: b0275
  article-title: Swept-tone stimulus-frequency otoacoustic emissions: normative data and methodological considerations
  publication-title: J Acoust Soc Am
– volume: 129
  start-page: 817
  year: 2011
  end-page: 827
  ident: b0310
  article-title: Distortion-product otoacoustic emission suppression tuning curves in humans
  publication-title: J Acoust Soc Am
– reference: Department of Audiology and Speech-Language Pathology, Samvaad Institute of Speech and Hearing, Bengaluru, Karnataka, India, Kakar K, Bhat JP, Department of Audiology, Samvaad Institute of Speech and Hearing, Bengaluru, Karnataka, India, Thontadarya S, Department of Audiology and Speech-Language Pathology, Dr. S.R Chandrashekhar Institute of Speech and Hearing, Bengaluru, Karnataka, India. Effect of Musical Experience on Cochlear Frequency Resolution: An Estimation of PTCs, DLF and SOAEs. Int Adv Otol 2021;17:313–8. https://doi.org/10.5152/iao.2021.8477.
– volume: 12
  start-page: 113
  year: 2011
  end-page: 125
  ident: b0170
  article-title: Using the cochlear microphonic as a tool to evaluate cochlear function in mouse models of hearing
  publication-title: JARO
– volume: 18
  start-page: 89
  year: 2017
  end-page: 110
  ident: b0190
  article-title: Profiles of stimulus-frequency otoacoustic emissions from 0.5 to 20 kHz in humans
  publication-title: JARO
– volume: 13
  start-page: 171
  year: 2014
  ident: b0285
  article-title: An objective assessment method for frequency selectivity of the human auditory system
  publication-title: BioMed Eng OnLine
– volume: 63
  start-page: 1958
  year: 2020
  end-page: 1968
  ident: b0330
  article-title: Relationship between behavioral and stimulus frequency otoacoustic emissions delay-based tuning estimates
  publication-title: J Speech Lang Hear Res
– volume: 134
  start-page: 356
  year: 2013
  end-page: 368
  ident: b0230
  article-title: Measuring stimulus-frequency otoacoustic emissions using swept tones
  publication-title: J Acoust Soc Am
– volume: 51
  start-page: 1179
  year: 2020
  end-page: 1190
  ident: b0010
  article-title: Binaural frequency selectivity in humans
  publication-title: Eur J Neurosci
– volume: 23
  start-page: 647
  year: 2022
  end-page: 664
  ident: b0200
  article-title: Characterizing the relationship between reflection and distortion otoacoustic emissions in normal-hearing adults
  publication-title: J Assoc Res Otolaryngol
– volume: 14
  start-page: 843
  year: 2013
  end-page: 862
  ident: b0105
  article-title: Stimulus-frequency otoacoustic emission suppression tuning in humans: comparison to behavioral tuning
  publication-title: JARO
– volume: 60
  start-page: 263
  year: 2021
  end-page: 273
  ident: b0150
  article-title: Maximising the ability of stimulus-frequency otoacoustic emissions to predict hearing status and thresholds using machine-learning models
  publication-title: Int J Audiol
– volume: 124
  start-page: 1613
  year: 2008
  end-page: 1626
  ident: b0215
  article-title: Measuring distortion product otoacoustic emissions using continuously sweeping primaries
  publication-title: J Acoust Soc Am
– volume: 335
  start-page: 40
  year: 2016
  end-page: 46
  ident: b0110
  article-title: Musical experience sharpens human cochlear tuning
  publication-title: Hear Res
– volume: 153
  start-page: 2298
  year: 2023
  end-page: 2311
  ident: b0025
  article-title: Age-related reduction of amplitude modulation frequency selectivity
  publication-title: J Acoust Soc Am
– volume: 105
  start-page: 782
  year: 1999
  end-page: 798
  ident: b0235
  article-title: Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs
  publication-title: J Acoust Soc Am
– start-page: 93
  year: 2001
  ident: 10.1016/j.apacoust.2023.109494_b0030
  article-title: Latest comparisons between physiological and behavioural frequency selectivity
– volume: 134
  start-page: 356
  year: 2013
  ident: 10.1016/j.apacoust.2023.109494_b0230
  article-title: Measuring stimulus-frequency otoacoustic emissions using swept tones
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.4807505
– volume: 129
  start-page: 173
  year: 2018
  ident: 10.1016/j.apacoust.2023.109494_b0175
  article-title: A fast algorithm for the measurement of stimulus frequency otoacoustic emission suppression tuning curves
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2017.06.017
– volume: 21
  start-page: 151
  year: 2020
  ident: 10.1016/j.apacoust.2023.109494_b0245
  article-title: Asymmetry and microstructure of temporal-suppression patterns in basilar-membrane responses to clicks: relation to tonal suppression and traveling-wave dispersion
  publication-title: JARO
  doi: 10.1007/s10162-020-00747-2
– ident: 10.1016/j.apacoust.2023.109494_b0295
  doi: 10.1177/2331216520960053
– volume: 119
  start-page: 314
  year: 2020
  ident: 10.1016/j.apacoust.2023.109494_b0070
  article-title: Interactions between passive and active vibrations in the organ of corti in vitro
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2020.06.011
– volume: 129
  start-page: 817
  year: 2011
  ident: 10.1016/j.apacoust.2023.109494_b0310
  article-title: Distortion-product otoacoustic emission suppression tuning curves in humans
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.3531864
– volume: 58
  start-page: 333
  issue: 3
  year: 2008
  ident: 10.1016/j.apacoust.2023.109494_b0055
  article-title: Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.02.028
– volume: 118
  start-page: 1183
  issue: 5
  year: 2020
  ident: 10.1016/j.apacoust.2023.109494_b0320
  article-title: The spatial origins of cochlear amplification assessed by stimulus-frequency otoacoustic emissions
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2019.12.031
– volume: 129
  start-page: 801
  year: 2011
  ident: 10.1016/j.apacoust.2023.109494_b0315
  article-title: Growth of suppression in humans based on distortion-product otoacoustic emission measurements
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.3523287
– volume: 398
  year: 2020
  ident: 10.1016/j.apacoust.2023.109494_b0325
  article-title: Identifying three otopathologies in humans
  publication-title: Hear Res
  doi: 10.1016/j.heares.2020.108079
– volume: 16
  start-page: 317
  year: 2015
  ident: 10.1016/j.apacoust.2023.109494_b0145
  article-title: Tuning of SFOAEs evoked by low-frequency tones is not compatible with localized emission generation
  publication-title: JARO
  doi: 10.1007/s10162-015-0513-0
– volume: 54
  start-page: 96
  year: 2015
  ident: 10.1016/j.apacoust.2023.109494_b0180
  article-title: Exploration of stimulus-frequency otoacoustic emission suppression tuning in hearing-impaired listeners
  publication-title: Int J Audiol
  doi: 10.3109/14992027.2014.941074
– ident: 10.1016/j.apacoust.2023.109494_b0040
  doi: 10.5152/iao.2021.8477
– volume: 119
  start-page: 2087
  year: 2020
  ident: 10.1016/j.apacoust.2023.109494_b0065
  article-title: Manipulation of the endocochlear potential reveals two distinct types of cochlear nonlinearity
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2020.10.005
– volume: 3
  start-page: 35
  year: 2020
  ident: 10.1016/j.apacoust.2023.109494_b0250
  article-title: Two-tone distortion in reticular lamina vibration of the living cochlea
  publication-title: Commun Biol
  doi: 10.1038/s42003-020-0762-2
– volume: 22
  start-page: 641
  year: 2021
  ident: 10.1016/j.apacoust.2023.109494_b0160
  article-title: Reflection-source emissions evoked with clicks and frequency sweeps: comparisons across levels
  publication-title: JARO
  doi: 10.1007/s10162-021-00813-3
– volume: 23
  start-page: 647
  issue: 5
  year: 2022
  ident: 10.1016/j.apacoust.2023.109494_b0200
  article-title: Characterizing the relationship between reflection and distortion otoacoustic emissions in normal-hearing adults
  publication-title: J Assoc Res Otolaryngol
  doi: 10.1007/s10162-022-00857-z
– volume: 113
  start-page: 2762
  issue: 5
  year: 2003
  ident: 10.1016/j.apacoust.2023.109494_b0280
  article-title: Stimulus-frequency-emission group delay: a test of coherent reflection filtering and a window on cochlear tuning
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.1557211
– volume: 11
  start-page: 1057
  year: 1991
  ident: 10.1016/j.apacoust.2023.109494_b0060
  article-title: Furosemide alters organ of corti mechanics: evidence for feedback of outer hair cells upon the basilar membrane
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.11-04-01057.1991
– volume: 123
  start-page: 1479
  year: 2008
  ident: 10.1016/j.apacoust.2023.109494_b0085
  article-title: Two-tone suppression of stimulus frequency otoacoustic emissions
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.2828209
– volume: 398
  year: 2020
  ident: 10.1016/j.apacoust.2023.109494_b0125
  article-title: Frequency selectivity of tonal language native speakers probed by suppression tuning curves of spontaneous otoacoustic emissions
  publication-title: Hear Res
  doi: 10.1016/j.heares.2020.108100
– volume: 306
  start-page: 104
  year: 2013
  ident: 10.1016/j.apacoust.2023.109494_b0225
  article-title: Stimulus frequency otoacoustic emissions evoked by swept tones
  publication-title: Hear Res
  doi: 10.1016/j.heares.2013.09.016
– volume: 121
  start-page: 125
  year: 1998
  ident: 10.1016/j.apacoust.2023.109494_b0075
  article-title: A developmental study of distortion product otoacoustic emission (2f1-f2) suppression in humans
  publication-title: Hear Res
  doi: 10.1016/S0378-5955(98)00073-2
– volume: 60
  start-page: 890
  issue: 11
  year: 2021
  ident: 10.1016/j.apacoust.2023.109494_b0035
  article-title: Cochlear tuning estimates from level ratio functions of distortion product otoacoustic emissions
  publication-title: Int J Audiol
  doi: 10.1080/14992027.2021.1886352
– start-page: 295
  year: 2023
  ident: 10.1016/j.apacoust.2023.109494_b0260
  article-title: Feature Selection Based on Gaussian Ant Lion Optimizer for Fault Identification in Centrifugal Pump
– volume: 13
  start-page: 171
  year: 2014
  ident: 10.1016/j.apacoust.2023.109494_b0285
  article-title: An objective assessment method for frequency selectivity of the human auditory system
  publication-title: BioMed Eng OnLine
  doi: 10.1186/1475-925X-13-171
– volume: 51
  start-page: 1179
  year: 2020
  ident: 10.1016/j.apacoust.2023.109494_b0010
  article-title: Binaural frequency selectivity in humans
  publication-title: Eur J Neurosci
  doi: 10.1111/ejn.13837
– volume: 22
  start-page: 275
  year: 2021
  ident: 10.1016/j.apacoust.2023.109494_b0255
  article-title: Examining the factors that contribute to non-monotonic growth of the $$2f_1 - f_2$$ otoacoustic emission in humans
  publication-title: JARO
  doi: 10.1007/s10162-021-00788-1
– volume: 358
  start-page: 42
  year: 2018
  ident: 10.1016/j.apacoust.2023.109494_b0270
  article-title: Sweep-tone evoked stimulus frequency otoacoustic emissions in humans: development of a noise-rejection algorithm and normative features
  publication-title: Hear Res
  doi: 10.1016/j.heares.2017.11.006
– volume: 133
  start-page: 951
  year: 2013
  ident: 10.1016/j.apacoust.2023.109494_b0120
  article-title: Suppression tuning of distortion-product otoacoustic emissions: results from cochlear mechanics simulation
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.4774279
– volume: 63
  start-page: 4277
  year: 2020
  ident: 10.1016/j.apacoust.2023.109494_b0115
  article-title: Human auditory-frequency tuning is sensitive to tonal language experience
  publication-title: J Speech Lang Hear Res
  doi: 10.1044/2020_JSLHR-20-00152
– volume: 143
  start-page: 181
  year: 2018
  ident: 10.1016/j.apacoust.2023.109494_b0275
  article-title: Swept-tone stimulus-frequency otoacoustic emissions: normative data and methodological considerations
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.5020275
– volume: 18
  start-page: 89
  year: 2017
  ident: 10.1016/j.apacoust.2023.109494_b0190
  article-title: Profiles of stimulus-frequency otoacoustic emissions from 0.5 to 20 kHz in humans
  publication-title: JARO
  doi: 10.1007/s10162-016-0588-2
– volume: 124
  start-page: 1613
  year: 2008
  ident: 10.1016/j.apacoust.2023.109494_b0215
  article-title: Measuring distortion product otoacoustic emissions using continuously sweeping primaries
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.2949505
– volume: 77
  start-page: 620
  year: 1985
  ident: 10.1016/j.apacoust.2023.109494_b0305
  article-title: Speech perception ability and psychophysical tuning curves in hearing-impaired listeners
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.392378
– ident: 10.1016/j.apacoust.2023.109494_b0155
  doi: 10.1177/23312165211059628
– volume: 2
  start-page: 094402
  issue: 9
  year: 2022
  ident: 10.1016/j.apacoust.2023.109494_b0100
  article-title: Difference between frequency and suppression tuning curves in a two-dimensional cochlear model
  publication-title: JASA Express Letters
  doi: 10.1121/10.0013998
– volume: 142
  start-page: 812
  year: 2017
  ident: 10.1016/j.apacoust.2023.109494_b0185
  article-title: Towards a joint reflection-distortion otoacoustic emission profile: results in normal and impaired ears
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.4996859
– volume: 335
  start-page: 40
  year: 2016
  ident: 10.1016/j.apacoust.2023.109494_b0110
  article-title: Musical experience sharpens human cochlear tuning
  publication-title: Hear Res
  doi: 10.1016/j.heares.2016.02.012
– volume: 45
  start-page: 463
  year: 2006
  ident: 10.1016/j.apacoust.2023.109494_b0300
  article-title: Detecting dead regions using psychophysical tuning curves: a comparison of simultaneous and forward masking: La detección de regiones muertas utilizando curvas psicofísicas de afinamiento: Una comparación del enmascaramiento simultáneo y el anterógrado
  publication-title: Int J Audiol
  doi: 10.1080/14992020600753189
– ident: 10.1016/j.apacoust.2023.109494_b0195
  doi: 10.1177/2331216519889226
– volume: 63
  start-page: 1958
  year: 2020
  ident: 10.1016/j.apacoust.2023.109494_b0330
  article-title: Relationship between behavioral and stimulus frequency otoacoustic emissions delay-based tuning estimates
  publication-title: J Speech Lang Hear Res
  doi: 10.1044/2020_JSLHR-19-00386
– year: 2004
  ident: 10.1016/j.apacoust.2023.109494_b0005
  article-title: Frequency selectivity, masking and the critical band
– volume: 153
  start-page: 2298
  year: 2023
  ident: 10.1016/j.apacoust.2023.109494_b0025
  article-title: Age-related reduction of amplitude modulation frequency selectivity
  publication-title: J Acoust Soc Am
  doi: 10.1121/10.0017835
– volume: 151
  start-page: 1055
  year: 2022
  ident: 10.1016/j.apacoust.2023.109494_b0095
  article-title: Relationship between irregularities in spontaneous otoacoustic emissions suppression and psychophysical tuning curves
  publication-title: J Acoust Soc Am
  doi: 10.1121/10.0009278
– volume: 146
  start-page: 4481
  year: 2019
  ident: 10.1016/j.apacoust.2023.109494_b0290
  article-title: Comparison of distortion-product otoacoustic emission and stimulus-frequency otoacoustic emission two-tone suppression in humans
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.5139660
– volume: 22
  start-page: 623
  issue: 6
  year: 2021
  ident: 10.1016/j.apacoust.2023.109494_b0045
  article-title: The elusive cochlear filter: wave origin of cochlear cross-frequency masking
  publication-title: JARO
  doi: 10.1007/s10162-021-00814-2
– volume: 420
  year: 2022
  ident: 10.1016/j.apacoust.2023.109494_b0015
  article-title: Auditory filter shapes derived from forward and simultaneous masking at low frequencies: Implications for human cochlear tuning
  publication-title: Hear Res
  doi: 10.1016/j.heares.2022.108500
– volume: 235
  start-page: 80
  year: 2008
  ident: 10.1016/j.apacoust.2023.109494_b0135
  article-title: Origin of suppression of otoacoustic emissions evoked by two-tone bursts
  publication-title: Hear Res
  doi: 10.1016/j.heares.2007.10.005
– ident: 10.1016/j.apacoust.2023.109494_b0020
– volume: 15
  start-page: 883
  year: 2014
  ident: 10.1016/j.apacoust.2023.109494_b0090
  article-title: Estimating cochlear frequency selectivity with stimulus-frequency otoacoustic emissions in chinchillas
  publication-title: JARO
  doi: 10.1007/s10162-014-0487-3
– volume: 14
  start-page: 843
  year: 2013
  ident: 10.1016/j.apacoust.2023.109494_b0105
  article-title: Stimulus-frequency otoacoustic emission suppression tuning in humans: comparison to behavioral tuning
  publication-title: JARO
  doi: 10.1007/s10162-013-0412-1
– volume: 105
  start-page: 782
  issue: 2
  year: 1999
  ident: 10.1016/j.apacoust.2023.109494_b0235
  article-title: Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.426948
– volume: 197
  year: 2022
  ident: 10.1016/j.apacoust.2023.109494_b0265
  article-title: A two-level adaptive chirp mode decomposition and tangent entropy in estimation of single-valued neutrosophic cross-entropy for detecting impeller defects in centrifugal pump
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2022.108905
– volume: 12
  start-page: 113
  year: 2011
  ident: 10.1016/j.apacoust.2023.109494_b0170
  article-title: Using the cochlear microphonic as a tool to evaluate cochlear function in mouse models of hearing
  publication-title: JARO
  doi: 10.1007/s10162-010-0240-5
– volume: 110
  start-page: 3140
  year: 2001
  ident: 10.1016/j.apacoust.2023.109494_b0130
  article-title: Multicomponent stimulus interactions observed in basilar-membrane vibration in the basal region of the chinchilla cochlea
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.1416198
– volume: 60
  start-page: 263
  year: 2021
  ident: 10.1016/j.apacoust.2023.109494_b0150
  article-title: Maximising the ability of stimulus-frequency otoacoustic emissions to predict hearing status and thresholds using machine-learning models
  publication-title: Int J Audiol
  doi: 10.1080/14992027.2020.1821252
– volume: 111
  start-page: 271
  year: 2002
  ident: 10.1016/j.apacoust.2023.109494_b0080
  article-title: The use of distortion product otoacoustic emission suppression as an estimate of response growth
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.1426372
– ident: 10.1016/j.apacoust.2023.109494_b0205
– volume: 123
  start-page: 2651
  year: 2008
  ident: 10.1016/j.apacoust.2023.109494_b0220
  article-title: Stimulus-frequency otoacoustic emission: Measurements in humans and simulations with an active cochlear model
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.2902184
– volume: 108
  start-page: 2911
  year: 2000
  ident: 10.1016/j.apacoust.2023.109494_b0140
  article-title: Modeling the combined effects of basilar membrane nonlinearity and roughness on stimulus frequency otoacoustic emission fine structure
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.1321012
– volume: 16
  year: 2022
  ident: 10.1016/j.apacoust.2023.109494_b0210
  article-title: Usefulness of phase gradients of otoacoustic emissions in auditory health screening: an exploration with swept tones
  publication-title: Front Neurosci
– year: 1980
  ident: 10.1016/j.apacoust.2023.109494_b0165
  article-title: Observations on the generator mechanism of stimulus frequency acoustic emissions–two tone suppression
– volume: 93
  start-page: 920
  year: 1993
  ident: 10.1016/j.apacoust.2023.109494_b0240
  article-title: Suppression of stimulus frequency otoacoustic emissions
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.405453
– volume: 227
  start-page: 194
  year: 1985
  ident: 10.1016/j.apacoust.2023.109494_b0050
  article-title: Evoked mechanical responses of isolated cochlear outer hair cells
  publication-title: Science
  doi: 10.1126/science.3966153
SSID ssj0000255
Score 2.3521872
Snippet •Based on the swept suppressor tones, we propose a novel fast algorithm for measuring stimulus-frequency otoacoustic emission (SFOAE) suppression tuning curves...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109494
SubjectTerms Fast algorithm
Stimulus frequency otoacoustic emission
Suppression tuning curve
Swept suppressor tone
Title A fast algorithm for the measurement of stimulus-frequency otoacoustic emission suppression tuning curves based on multi-level swept suppressor tones
URI https://dx.doi.org/10.1016/j.apacoust.2023.109494
Volume 211
WOSCitedRecordID wos001029016000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-910X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000255
  issn: 0003-682X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB7WrYJ9EK2KrRfmwbeQurnPPC5Sb0hRrBCfQjKXumU3u2yS0r76H_y_nrklwRaqiC9hGTiZZb9vznxz9sw5CL1kjCalJDO_SoXwY5FJv-Sw8KqI0zggqayELpn_MTs-JnlOP00mP9xdmPNlVtfk4oJu_ivUMAZgq6uzfwF3_1IYgM8AOjwBdnj-EfBzT5aNCuSeruHg_33VJxKuhnCgkoiwtlfdsmt8uTXp1Jfeul2Dg9T9vTzVB05F0rym29hk2dprOx1GYd1WFatVOyBX_zborER_qfKPPFUJte2N1NSqG8BYAzvh66bqVX3eacC7-nLR5wkt9Ni3Rc_htzaH-LMdshGLMOrz5WwYzV2lGfKWjGuO_JTo3uqwMRlvTLIQvPEsH7vr0DjnK67fRCHODkFj6K9_qKZW1bJi00X5t7LaX3QpHpgPzmCzkIb5LbQTZgklU7Qzf3-Ufxj28zBJXN9FZTC6Z379bNdLnJFsObmP7tnzBp4bnjxAE1Hvod1RFco9dEdnAbPmIfo5x4o7uOcOBu5g4A4ecQevJb7KHTziDnbcwSPuYMMdbLiDNXcwDI-4gzV38MAdrLnzCH19c3Ty-p1v-3b4LArC1g8Yy1RYQc4CnsiAVhWI1ipNWJAKGhPJBecyllWVSEAAdpQgFhEvZcqZAHkaRY_RtIb3P0E45lGZphxkvZQg_DklXNIKDoQkjFk2E_socT91wWxRe9VbZVm47MWzwkFUKIgKA9E-etXbbUxZlxstqEOysOLUiM4CCHiD7cE_2D5Fd4c19AxN220nnqPb7LxdNNsXlqu_APCEw2w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fast+algorithm+for+the+measurement+of+stimulus-frequency+otoacoustic+emission+suppression+tuning+curves+based+on+multi-level+swept+suppressor+tones&rft.jtitle=Applied+acoustics&rft.au=Xu%2C+Runyi&rft.au=Liu%2C+Yin&rft.au=Gong%2C+Qin&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=0003-682X&rft.eissn=1872-910X&rft.volume=211&rft_id=info:doi/10.1016%2Fj.apacoust.2023.109494&rft.externalDocID=S0003682X2300292X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-682X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-682X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-682X&client=summon