A fast algorithm for the measurement of stimulus-frequency otoacoustic emission suppression tuning curves based on multi-level swept suppressor tones
•Based on the swept suppressor tones, we propose a novel fast algorithm for measuring stimulus-frequency otoacoustic emission (SFOAE) suppression tuning curves (STCs) in human ears.•The obtained SFOAE STCs are consistently reproduced in repeated measures and are nearly equivalent to those obtained b...
Saved in:
| Published in: | Applied acoustics Vol. 211; p. 109494 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.08.2023
|
| Subjects: | |
| ISSN: | 0003-682X, 1872-910X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Based on the swept suppressor tones, we propose a novel fast algorithm for measuring stimulus-frequency otoacoustic emission (SFOAE) suppression tuning curves (STCs) in human ears.•The obtained SFOAE STCs are consistently reproduced in repeated measures and are nearly equivalent to those obtained by the traditional one.•The obtained SFOAE STCs are with more than twice the frequency resolution, while their test time is nearly the half compared with traditional one.
Algorithms for measuring stimulus-frequency otoacoustic emission (SFOAE) suppression tuning curves (STCs) typically use pure tones as suppressors, leading to procedures which are time-consuming and difficult to apply in clinical settings. A fast algorithm based on multi-level swept suppressor tones (MLSST) is proposed in this study. Taking advantage of the time-varying frequencies of swept tones, the suppression effects on SFOAE produced by swept suppressor tones are obtained within a single test. Further, a SFOAE STC may be extracted by interpolation from a set of suppression-effect functions at multiple suppressor levels. In the present study, SFOAE STCs were obtained in twenty-six normal-hearing subjects using the fast MLSST and the traditional pure-tone algorithms. SFOAE STCs were measured with high test–retest repeatability using the MLSST algorithm (average mean absolute errors of 2.12 dB) and were nearly consistent with the SFOAE STCs obtained by the pure-tone algorithm (average mean absolute errors of 3.13 dB). In addition, with>1.8 times frequency solution of the acquired curves, the measurement speed of our MLSST algorithm was approximately 2.14 times faster than the traditional one. |
|---|---|
| AbstractList | •Based on the swept suppressor tones, we propose a novel fast algorithm for measuring stimulus-frequency otoacoustic emission (SFOAE) suppression tuning curves (STCs) in human ears.•The obtained SFOAE STCs are consistently reproduced in repeated measures and are nearly equivalent to those obtained by the traditional one.•The obtained SFOAE STCs are with more than twice the frequency resolution, while their test time is nearly the half compared with traditional one.
Algorithms for measuring stimulus-frequency otoacoustic emission (SFOAE) suppression tuning curves (STCs) typically use pure tones as suppressors, leading to procedures which are time-consuming and difficult to apply in clinical settings. A fast algorithm based on multi-level swept suppressor tones (MLSST) is proposed in this study. Taking advantage of the time-varying frequencies of swept tones, the suppression effects on SFOAE produced by swept suppressor tones are obtained within a single test. Further, a SFOAE STC may be extracted by interpolation from a set of suppression-effect functions at multiple suppressor levels. In the present study, SFOAE STCs were obtained in twenty-six normal-hearing subjects using the fast MLSST and the traditional pure-tone algorithms. SFOAE STCs were measured with high test–retest repeatability using the MLSST algorithm (average mean absolute errors of 2.12 dB) and were nearly consistent with the SFOAE STCs obtained by the pure-tone algorithm (average mean absolute errors of 3.13 dB). In addition, with>1.8 times frequency solution of the acquired curves, the measurement speed of our MLSST algorithm was approximately 2.14 times faster than the traditional one. |
| ArticleNumber | 109494 |
| Author | Liu, Yin Gong, Qin Xu, Runyi |
| Author_xml | – sequence: 1 givenname: Runyi surname: Xu fullname: Xu, Runyi organization: Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China – sequence: 2 givenname: Yin surname: Liu fullname: Liu, Yin organization: Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China – sequence: 3 givenname: Qin surname: Gong fullname: Gong, Qin email: gongqin@mail.tsinghua.edu.cn organization: Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China |
| BookMark | eNqFkM1KAzEQx4Mo2FZfQfICW5P9ahc8KMUvELwo9BayyaRN2d2smWzFB_F9TVn14MXTZAZ-_8n8puS4cx0QcsHZnDNeXu7mspfKDRjmKUuzOKzyKj8iE75cpEnF2fqYTBhjWVIu0_UpmSLuYsvSopiQzxtqJAYqm43zNmxbapynYQu0BYmDhxa6QJ2hGGw7NAMmxsPbAJ36oC64ca9VFFqLaF1Hceh7D-M7DJ3tNlQNfg9Ia4mgaRzHnGCTBvbQUHyHPvxCh9XxODwjJ0Y2COffdUZe725fVg_J0_P94-rmKVEZT0PClVpwzhaGcV0YXtU1L4q6LBQvocqXRoPWJjd1XZisXGZpynPItDSlVlAxnmUzcjXmKu8QPRihbJAh_j14aRvBmTgoFjvxo1gcFItRccTLP3jvbSv9x__g9QhCPG5vwQtUNjoFbT2oILSz_0V8AcXNo0I |
| CitedBy_id | crossref_primary_10_1016_j_heares_2025_109349 |
| Cites_doi | 10.1121/1.4807505 10.1016/j.apacoust.2017.06.017 10.1007/s10162-020-00747-2 10.1177/2331216520960053 10.1016/j.bpj.2020.06.011 10.1121/1.3531864 10.1016/j.neuron.2008.02.028 10.1016/j.bpj.2019.12.031 10.1121/1.3523287 10.1016/j.heares.2020.108079 10.1007/s10162-015-0513-0 10.3109/14992027.2014.941074 10.5152/iao.2021.8477 10.1016/j.bpj.2020.10.005 10.1038/s42003-020-0762-2 10.1007/s10162-021-00813-3 10.1007/s10162-022-00857-z 10.1121/1.1557211 10.1523/JNEUROSCI.11-04-01057.1991 10.1121/1.2828209 10.1016/j.heares.2020.108100 10.1016/j.heares.2013.09.016 10.1016/S0378-5955(98)00073-2 10.1080/14992027.2021.1886352 10.1186/1475-925X-13-171 10.1111/ejn.13837 10.1007/s10162-021-00788-1 10.1016/j.heares.2017.11.006 10.1121/1.4774279 10.1044/2020_JSLHR-20-00152 10.1121/1.5020275 10.1007/s10162-016-0588-2 10.1121/1.2949505 10.1121/1.392378 10.1177/23312165211059628 10.1121/10.0013998 10.1121/1.4996859 10.1016/j.heares.2016.02.012 10.1080/14992020600753189 10.1177/2331216519889226 10.1044/2020_JSLHR-19-00386 10.1121/10.0017835 10.1121/10.0009278 10.1121/1.5139660 10.1007/s10162-021-00814-2 10.1016/j.heares.2022.108500 10.1016/j.heares.2007.10.005 10.1007/s10162-014-0487-3 10.1007/s10162-013-0412-1 10.1121/1.426948 10.1016/j.apacoust.2022.108905 10.1007/s10162-010-0240-5 10.1121/1.1416198 10.1080/14992027.2020.1821252 10.1121/1.1426372 10.1121/1.2902184 10.1121/1.1321012 10.1121/1.405453 10.1126/science.3966153 |
| ContentType | Journal Article |
| Copyright | 2023 |
| Copyright_xml | – notice: 2023 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.apacoust.2023.109494 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1872-910X |
| ExternalDocumentID | 10_1016_j_apacoust_2023_109494 S0003682X2300292X |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K VH1 WUQ XPP ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c312t-1cc71107f01d5f19bb155b65c16e948fdeddf4fbb5f36832214e3daf6dce90133 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001029016000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0003-682X |
| IngestDate | Tue Nov 18 20:53:26 EST 2025 Sat Nov 29 07:32:51 EST 2025 Fri Feb 23 02:35:16 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Stimulus frequency otoacoustic emission Swept suppressor tone Fast algorithm Suppression tuning curve |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-1cc71107f01d5f19bb155b65c16e948fdeddf4fbb5f36832214e3daf6dce90133 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_apacoust_2023_109494 crossref_primary_10_1016_j_apacoust_2023_109494 elsevier_sciencedirect_doi_10_1016_j_apacoust_2023_109494 |
| PublicationCentury | 2000 |
| PublicationDate | August 2023 2023-08-00 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied acoustics |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Murakami, Fuji (b0100) 2022; 2 Bidelman, Nelms, Bhagat (b0110) 2016; 335 Jedrzejczak, Smurzynski, Blinowska (b0135) 2008; 235 Engler, Gaudrain, De Kleine, Van Dijk (b0095) 2022; 151 Long, Talmadge, Lee (b0215) 2008; 124 Gorga, Neely, Kopun, Tan (b0310) 2011; 129 Verhey, Par (b0010) 2020; 51 Dewey, Dhar (b0190) 2017; 18 Rhode, Recio (b0130) 2001; 110 Abdala, Kalluri (b0185) 2017; 142 Evans (b0030) 2001 Charaziak, Dong, Altoè, Shera (b0245) 2020; 21 Wilson, Browning-Kamins, Durante, Boothalingam, Moleti, Sisto (b0035) 2021; 60 Brownell, Bader, Bertrand, de Ribaupierre (b0050) 1985; 227 Wang, Zhu, He, Liu, Huang, Pan (b0210) 2022; 16 Strimbu, Wang, Olson (b0065) 2020; 119 Mishra, Talmadge (b0270) 2018; 358 Gorga, Neely, Dorn, Konrad-Martin (b0080) 2002; 111 Dallos, Wu, Cheatham, Gao, Zheng, Anderson (b0055) 2008; 58 Liu, Neely (b0120) 2013; 133 Charaziak, Siegel (b0145) 2015; 16 Brass, Kemp (b0240) 1993; 93 Gong, Wang, Xian (b0285) 2014; 13 Gong Q, Liu Y, Peng Z. Estimating Hearing Thresholds From Stimulus-Frequency Otoacoustic Emissions. Trends in Hearing 2020;24:233121652096005. https://doi.org/10.1177/2331216520960053. Stelmachowicz, Jesteadt, Gorga, Mott (b0305) 1985; 77 Charaziak, Shera (b0160) 2021; 22 Stiepan S, Shera CA, Abdala C. Characterizing the Joint-Otoacoustic Emission Profile in Endolymphatic Hydrops 2022. Altoè, Charaziak, Dewey, Moleti, Sisto, Oghalai (b0045) 2021; 22 Charaziak, Souza, Siegel (b0180) 2015; 54 Ren, He (b0250) 2020; 3 Vashishtha, Kumar (b0260) 2023 Leschke, Rodriguez Orellana, Shera, Oxenham (b0015) 2022; 420 Abdala, Luo, Shera (b0200) 2022; 23 Choi, Lee, Parham, Neely, Kim (b0220) 2008; 123 Abdala, Guardia, Shera (b0275) 2018; 143 Kluk, Moore (b0300) 2006; 45 Ruggero, Rich (b0060) 1991; 11 Kalluri, Shera (b0230) 2013; 134 Mills, Shen, Withnell (b0255) 2021; 22 Charaziak, Siegel (b0090) 2014; 15 Abdala C, Luo P, Guardia Y. Swept-Tone Stimulus-Frequency Otoacoustic Emissions in Human Newborns. Trends in Hearing 2019;23:233121651988922. https://doi.org/10.1177/2331216519889226. Parker (b0325) 2020; 398 Rasetshwane, Bosen, Kopun, Neely (b0290) 2019; 146 Department of Audiology and Speech-Language Pathology, Samvaad Institute of Speech and Hearing, Bengaluru, Karnataka, India, Kakar K, Bhat JP, Department of Audiology, Samvaad Institute of Speech and Hearing, Bengaluru, Karnataka, India, Thontadarya S, Department of Audiology and Speech-Language Pathology, Dr. S.R Chandrashekhar Institute of Speech and Hearing, Bengaluru, Karnataka, India. Effect of Musical Experience on Cochlear Frequency Resolution: An Estimation of PTCs, DLF and SOAEs. Int Adv Otol 2021;17:313–8. https://doi.org/10.5152/iao.2021.8477. Charaziak, Souza, Siegel (b0105) 2013; 14 Cheatham, Naik, Dallos (b0170) 2011; 12 Engler, de Kleine, Avan, van Dijk (b0125) 2020; 398 Kemp (b0165) 1980 Gong Q, Liu Y, Xu R, Liang D, Peng Z, Yang H. Objective Assessment System for Hearing Prediction Based on Stimulus-Frequency Otoacoustic Emissions. Trends in Hearing 2021;25:233121652110596. https://doi.org/10.1177/23312165211059628. Gorga, Neely, Kopun, Tan (b0315) 2011; 129 Liu, Xu, Gong (b0115) 2020; 63 Moore (b0005) 2004 Vashishtha, Chauhan, Yadav, Kumar, Kumar (b0265) 2022; 197 Xing, Gong (b0175) 2018; 129 Keefe, Ellison, Fitzpatrick, Gorga (b0085) 2008; 123 Jabeen, Holt, Becker, Nam (b0070) 2020; 119 Liu, Xu, Gong (b0150) 2021; 60 Regev, Zaar, Relaño-Iborra, Dau (b0025) 2023; 153 Shera, Guinan (b0280) 2003; 113 Abdala (b0075) 1998; 121 Chen, Deng, Bian, Li (b0225) 2013; 306 Moore BC. Masking, frequency selectivity and basilar membrane nonlinearity. Cochlear Hearing Loss, 2nd ed. Chichester, UK: John Wiley & Sons; 2008. Shera, Guinan (b0235) 1999; 105 Goodman, Lee, Guinan, Lichtenhan (b0320) 2020; 118 Talmadge, Tubis, Long, Tong (b0140) 2000; 108 Wilson, Browning-Kamins, Boothalingam, Moleti, Sisto, Dhar (b0330) 2020; 63 10.1016/j.apacoust.2023.109494_b0020 Altoè (10.1016/j.apacoust.2023.109494_b0045) 2021; 22 Wang (10.1016/j.apacoust.2023.109494_b0210) 2022; 16 Liu (10.1016/j.apacoust.2023.109494_b0150) 2021; 60 Chen (10.1016/j.apacoust.2023.109494_b0225) 2013; 306 Cheatham (10.1016/j.apacoust.2023.109494_b0170) 2011; 12 Ruggero (10.1016/j.apacoust.2023.109494_b0060) 1991; 11 Shera (10.1016/j.apacoust.2023.109494_b0235) 1999; 105 Gorga (10.1016/j.apacoust.2023.109494_b0310) 2011; 129 Xing (10.1016/j.apacoust.2023.109494_b0175) 2018; 129 Jedrzejczak (10.1016/j.apacoust.2023.109494_b0135) 2008; 235 Gong (10.1016/j.apacoust.2023.109494_b0285) 2014; 13 Jabeen (10.1016/j.apacoust.2023.109494_b0070) 2020; 119 Verhey (10.1016/j.apacoust.2023.109494_b0010) 2020; 51 Regev (10.1016/j.apacoust.2023.109494_b0025) 2023; 153 Charaziak (10.1016/j.apacoust.2023.109494_b0180) 2015; 54 10.1016/j.apacoust.2023.109494_b0195 Abdala (10.1016/j.apacoust.2023.109494_b0185) 2017; 142 Choi (10.1016/j.apacoust.2023.109494_b0220) 2008; 123 Wilson (10.1016/j.apacoust.2023.109494_b0330) 2020; 63 Mishra (10.1016/j.apacoust.2023.109494_b0270) 2018; 358 Engler (10.1016/j.apacoust.2023.109494_b0095) 2022; 151 Kalluri (10.1016/j.apacoust.2023.109494_b0230) 2013; 134 Ren (10.1016/j.apacoust.2023.109494_b0250) 2020; 3 Parker (10.1016/j.apacoust.2023.109494_b0325) 2020; 398 Shera (10.1016/j.apacoust.2023.109494_b0280) 2003; 113 Rasetshwane (10.1016/j.apacoust.2023.109494_b0290) 2019; 146 10.1016/j.apacoust.2023.109494_b0155 10.1016/j.apacoust.2023.109494_b0040 Keefe (10.1016/j.apacoust.2023.109494_b0085) 2008; 123 Long (10.1016/j.apacoust.2023.109494_b0215) 2008; 124 Mills (10.1016/j.apacoust.2023.109494_b0255) 2021; 22 Kluk (10.1016/j.apacoust.2023.109494_b0300) 2006; 45 Brass (10.1016/j.apacoust.2023.109494_b0240) 1993; 93 Kemp (10.1016/j.apacoust.2023.109494_b0165) 1980 Brownell (10.1016/j.apacoust.2023.109494_b0050) 1985; 227 10.1016/j.apacoust.2023.109494_b0205 Dallos (10.1016/j.apacoust.2023.109494_b0055) 2008; 58 Dewey (10.1016/j.apacoust.2023.109494_b0190) 2017; 18 Charaziak (10.1016/j.apacoust.2023.109494_b0090) 2014; 15 Moore (10.1016/j.apacoust.2023.109494_b0005) 2004 Gorga (10.1016/j.apacoust.2023.109494_b0080) 2002; 111 Charaziak (10.1016/j.apacoust.2023.109494_b0145) 2015; 16 10.1016/j.apacoust.2023.109494_b0295 Liu (10.1016/j.apacoust.2023.109494_b0115) 2020; 63 Liu (10.1016/j.apacoust.2023.109494_b0120) 2013; 133 Evans (10.1016/j.apacoust.2023.109494_b0030) 2001 Leschke (10.1016/j.apacoust.2023.109494_b0015) 2022; 420 Bidelman (10.1016/j.apacoust.2023.109494_b0110) 2016; 335 Talmadge (10.1016/j.apacoust.2023.109494_b0140) 2000; 108 Vashishtha (10.1016/j.apacoust.2023.109494_b0260) 2023 Vashishtha (10.1016/j.apacoust.2023.109494_b0265) 2022; 197 Stelmachowicz (10.1016/j.apacoust.2023.109494_b0305) 1985; 77 Wilson (10.1016/j.apacoust.2023.109494_b0035) 2021; 60 Abdala (10.1016/j.apacoust.2023.109494_b0075) 1998; 121 Rhode (10.1016/j.apacoust.2023.109494_b0130) 2001; 110 Murakami (10.1016/j.apacoust.2023.109494_b0100) 2022; 2 Abdala (10.1016/j.apacoust.2023.109494_b0275) 2018; 143 Charaziak (10.1016/j.apacoust.2023.109494_b0160) 2021; 22 Strimbu (10.1016/j.apacoust.2023.109494_b0065) 2020; 119 Engler (10.1016/j.apacoust.2023.109494_b0125) 2020; 398 Gorga (10.1016/j.apacoust.2023.109494_b0315) 2011; 129 Charaziak (10.1016/j.apacoust.2023.109494_b0105) 2013; 14 Goodman (10.1016/j.apacoust.2023.109494_b0320) 2020; 118 Charaziak (10.1016/j.apacoust.2023.109494_b0245) 2020; 21 Abdala (10.1016/j.apacoust.2023.109494_b0200) 2022; 23 |
| References_xml | – volume: 227 start-page: 194 year: 1985 end-page: 196 ident: b0050 article-title: Evoked mechanical responses of isolated cochlear outer hair cells publication-title: Science – volume: 118 start-page: 1183 year: 2020 end-page: 1195 ident: b0320 article-title: The spatial origins of cochlear amplification assessed by stimulus-frequency otoacoustic emissions publication-title: Biophys J – volume: 2 start-page: 094402 year: 2022 ident: b0100 article-title: Difference between frequency and suppression tuning curves in a two-dimensional cochlear model publication-title: JASA Express Letters – reference: Abdala C, Luo P, Guardia Y. Swept-Tone Stimulus-Frequency Otoacoustic Emissions in Human Newborns. Trends in Hearing 2019;23:233121651988922. https://doi.org/10.1177/2331216519889226. – year: 1980 ident: b0165 article-title: Observations on the generator mechanism of stimulus frequency acoustic emissions–two tone suppression publication-title: Psychophysical, physiological and behavioral studies in hearing – reference: Gong Q, Liu Y, Peng Z. Estimating Hearing Thresholds From Stimulus-Frequency Otoacoustic Emissions. Trends in Hearing 2020;24:233121652096005. https://doi.org/10.1177/2331216520960053. – volume: 58 start-page: 333 year: 2008 end-page: 339 ident: b0055 article-title: Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification publication-title: Neuron – volume: 146 start-page: 4481 year: 2019 end-page: 4492 ident: b0290 article-title: Comparison of distortion-product otoacoustic emission and stimulus-frequency otoacoustic emission two-tone suppression in humans publication-title: J Acoust Soc Am – volume: 77 start-page: 620 year: 1985 end-page: 627 ident: b0305 article-title: Speech perception ability and psychophysical tuning curves in hearing-impaired listeners publication-title: J Acoust Soc Am – reference: Stiepan S, Shera CA, Abdala C. Characterizing the Joint-Otoacoustic Emission Profile in Endolymphatic Hydrops 2022. – volume: 398 year: 2020 ident: b0125 article-title: Frequency selectivity of tonal language native speakers probed by suppression tuning curves of spontaneous otoacoustic emissions publication-title: Hear Res – start-page: 93 year: 2001 end-page: 94 ident: b0030 article-title: Latest comparisons between physiological and behavioural frequency selectivity publication-title: Physiological and psychophysical bases of auditory function – volume: 16 start-page: 317 year: 2015 end-page: 329 ident: b0145 article-title: Tuning of SFOAEs evoked by low-frequency tones is not compatible with localized emission generation publication-title: JARO – volume: 45 start-page: 463 year: 2006 end-page: 476 ident: b0300 article-title: Detecting dead regions using psychophysical tuning curves: a comparison of simultaneous and forward masking: La detección de regiones muertas utilizando curvas psicofísicas de afinamiento: Una comparación del enmascaramiento simultáneo y el anterógrado publication-title: Int J Audiol – volume: 113 start-page: 2762 year: 2003 end-page: 2772 ident: b0280 article-title: Stimulus-frequency-emission group delay: a test of coherent reflection filtering and a window on cochlear tuning publication-title: J Acoust Soc Am – volume: 21 start-page: 151 year: 2020 end-page: 170 ident: b0245 article-title: Asymmetry and microstructure of temporal-suppression patterns in basilar-membrane responses to clicks: relation to tonal suppression and traveling-wave dispersion publication-title: JARO – volume: 129 start-page: 801 year: 2011 end-page: 816 ident: b0315 article-title: Growth of suppression in humans based on distortion-product otoacoustic emission measurements publication-title: J Acoust Soc Am – volume: 22 start-page: 641 year: 2021 end-page: 658 ident: b0160 article-title: Reflection-source emissions evoked with clicks and frequency sweeps: comparisons across levels publication-title: JARO – volume: 110 start-page: 3140 year: 2001 end-page: 3154 ident: b0130 article-title: Multicomponent stimulus interactions observed in basilar-membrane vibration in the basal region of the chinchilla cochlea publication-title: J Acoust Soc Am – volume: 358 start-page: 42 year: 2018 end-page: 49 ident: b0270 article-title: Sweep-tone evoked stimulus frequency otoacoustic emissions in humans: development of a noise-rejection algorithm and normative features publication-title: Hear Res – volume: 133 start-page: 951 year: 2013 end-page: 961 ident: b0120 article-title: Suppression tuning of distortion-product otoacoustic emissions: results from cochlear mechanics simulation publication-title: J Acoust Soc Am – reference: Moore BC. Masking, frequency selectivity and basilar membrane nonlinearity. Cochlear Hearing Loss, 2nd ed. Chichester, UK: John Wiley & Sons; 2008. – volume: 142 start-page: 812 year: 2017 end-page: 824 ident: b0185 article-title: Towards a joint reflection-distortion otoacoustic emission profile: results in normal and impaired ears publication-title: J Acoust Soc Am – volume: 119 start-page: 314 year: 2020 end-page: 325 ident: b0070 article-title: Interactions between passive and active vibrations in the organ of corti in vitro publication-title: Biophys J – volume: 420 year: 2022 ident: b0015 article-title: Auditory filter shapes derived from forward and simultaneous masking at low frequencies: Implications for human cochlear tuning publication-title: Hear Res – volume: 22 start-page: 623 year: 2021 end-page: 640 ident: b0045 article-title: The elusive cochlear filter: wave origin of cochlear cross-frequency masking publication-title: JARO – volume: 16 year: 2022 ident: b0210 article-title: Usefulness of phase gradients of otoacoustic emissions in auditory health screening: an exploration with swept tones publication-title: Front Neurosci – volume: 306 start-page: 104 year: 2013 end-page: 114 ident: b0225 article-title: Stimulus frequency otoacoustic emissions evoked by swept tones publication-title: Hear Res – volume: 235 start-page: 80 year: 2008 end-page: 89 ident: b0135 article-title: Origin of suppression of otoacoustic emissions evoked by two-tone bursts publication-title: Hear Res – year: 2004 ident: b0005 article-title: Frequency selectivity, masking and the critical band publication-title: An introduction to the psychology of hearing – volume: 111 start-page: 271 year: 2002 end-page: 284 ident: b0080 article-title: The use of distortion product otoacoustic emission suppression as an estimate of response growth publication-title: J Acoust Soc Am – volume: 11 start-page: 1057 year: 1991 end-page: 1067 ident: b0060 article-title: Furosemide alters organ of corti mechanics: evidence for feedback of outer hair cells upon the basilar membrane publication-title: J Neurosci – volume: 93 start-page: 920 year: 1993 end-page: 939 ident: b0240 article-title: Suppression of stimulus frequency otoacoustic emissions publication-title: J Acoust Soc Am – reference: Gong Q, Liu Y, Xu R, Liang D, Peng Z, Yang H. Objective Assessment System for Hearing Prediction Based on Stimulus-Frequency Otoacoustic Emissions. Trends in Hearing 2021;25:233121652110596. https://doi.org/10.1177/23312165211059628. – volume: 119 start-page: 2087 year: 2020 end-page: 2101 ident: b0065 article-title: Manipulation of the endocochlear potential reveals two distinct types of cochlear nonlinearity publication-title: Biophys J – volume: 60 start-page: 890 year: 2021 end-page: 899 ident: b0035 article-title: Cochlear tuning estimates from level ratio functions of distortion product otoacoustic emissions publication-title: Int J Audiol – volume: 22 start-page: 275 year: 2021 end-page: 288 ident: b0255 article-title: Examining the factors that contribute to non-monotonic growth of the $$2f_1 - f_2$$ otoacoustic emission in humans publication-title: JARO – volume: 197 year: 2022 ident: b0265 article-title: A two-level adaptive chirp mode decomposition and tangent entropy in estimation of single-valued neutrosophic cross-entropy for detecting impeller defects in centrifugal pump publication-title: Appl Acoust – volume: 54 start-page: 96 year: 2015 end-page: 105 ident: b0180 article-title: Exploration of stimulus-frequency otoacoustic emission suppression tuning in hearing-impaired listeners publication-title: Int J Audiol – start-page: 295 year: 2023 end-page: 310 ident: b0260 article-title: Feature Selection Based on Gaussian Ant Lion Optimizer for Fault Identification in Centrifugal Pump publication-title: Recent Advances in Machines and Mechanisms – volume: 123 start-page: 2651 year: 2008 end-page: 2669 ident: b0220 article-title: Stimulus-frequency otoacoustic emission: Measurements in humans and simulations with an active cochlear model publication-title: J Acoust Soc Am – volume: 121 start-page: 125 year: 1998 end-page: 138 ident: b0075 article-title: A developmental study of distortion product otoacoustic emission (2f1-f2) suppression in humans publication-title: Hear Res – volume: 3 start-page: 35 year: 2020 ident: b0250 article-title: Two-tone distortion in reticular lamina vibration of the living cochlea publication-title: Commun Biol – volume: 398 year: 2020 ident: b0325 article-title: Identifying three otopathologies in humans publication-title: Hear Res – volume: 108 start-page: 2911 year: 2000 end-page: 2932 ident: b0140 article-title: Modeling the combined effects of basilar membrane nonlinearity and roughness on stimulus frequency otoacoustic emission fine structure publication-title: J Acoust Soc Am – volume: 63 start-page: 4277 year: 2020 end-page: 4288 ident: b0115 article-title: Human auditory-frequency tuning is sensitive to tonal language experience publication-title: J Speech Lang Hear Res – volume: 151 start-page: 1055 year: 2022 end-page: 1063 ident: b0095 article-title: Relationship between irregularities in spontaneous otoacoustic emissions suppression and psychophysical tuning curves publication-title: J Acoust Soc Am – volume: 123 start-page: 1479 year: 2008 end-page: 1494 ident: b0085 article-title: Two-tone suppression of stimulus frequency otoacoustic emissions publication-title: J Acoust Soc Am – volume: 15 start-page: 883 year: 2014 end-page: 896 ident: b0090 article-title: Estimating cochlear frequency selectivity with stimulus-frequency otoacoustic emissions in chinchillas publication-title: JARO – volume: 129 start-page: 173 year: 2018 end-page: 180 ident: b0175 article-title: A fast algorithm for the measurement of stimulus frequency otoacoustic emission suppression tuning curves publication-title: Appl Acoust – volume: 143 start-page: 181 year: 2018 end-page: 192 ident: b0275 article-title: Swept-tone stimulus-frequency otoacoustic emissions: normative data and methodological considerations publication-title: J Acoust Soc Am – volume: 129 start-page: 817 year: 2011 end-page: 827 ident: b0310 article-title: Distortion-product otoacoustic emission suppression tuning curves in humans publication-title: J Acoust Soc Am – reference: Department of Audiology and Speech-Language Pathology, Samvaad Institute of Speech and Hearing, Bengaluru, Karnataka, India, Kakar K, Bhat JP, Department of Audiology, Samvaad Institute of Speech and Hearing, Bengaluru, Karnataka, India, Thontadarya S, Department of Audiology and Speech-Language Pathology, Dr. S.R Chandrashekhar Institute of Speech and Hearing, Bengaluru, Karnataka, India. Effect of Musical Experience on Cochlear Frequency Resolution: An Estimation of PTCs, DLF and SOAEs. Int Adv Otol 2021;17:313–8. https://doi.org/10.5152/iao.2021.8477. – volume: 12 start-page: 113 year: 2011 end-page: 125 ident: b0170 article-title: Using the cochlear microphonic as a tool to evaluate cochlear function in mouse models of hearing publication-title: JARO – volume: 18 start-page: 89 year: 2017 end-page: 110 ident: b0190 article-title: Profiles of stimulus-frequency otoacoustic emissions from 0.5 to 20 kHz in humans publication-title: JARO – volume: 13 start-page: 171 year: 2014 ident: b0285 article-title: An objective assessment method for frequency selectivity of the human auditory system publication-title: BioMed Eng OnLine – volume: 63 start-page: 1958 year: 2020 end-page: 1968 ident: b0330 article-title: Relationship between behavioral and stimulus frequency otoacoustic emissions delay-based tuning estimates publication-title: J Speech Lang Hear Res – volume: 134 start-page: 356 year: 2013 end-page: 368 ident: b0230 article-title: Measuring stimulus-frequency otoacoustic emissions using swept tones publication-title: J Acoust Soc Am – volume: 51 start-page: 1179 year: 2020 end-page: 1190 ident: b0010 article-title: Binaural frequency selectivity in humans publication-title: Eur J Neurosci – volume: 23 start-page: 647 year: 2022 end-page: 664 ident: b0200 article-title: Characterizing the relationship between reflection and distortion otoacoustic emissions in normal-hearing adults publication-title: J Assoc Res Otolaryngol – volume: 14 start-page: 843 year: 2013 end-page: 862 ident: b0105 article-title: Stimulus-frequency otoacoustic emission suppression tuning in humans: comparison to behavioral tuning publication-title: JARO – volume: 60 start-page: 263 year: 2021 end-page: 273 ident: b0150 article-title: Maximising the ability of stimulus-frequency otoacoustic emissions to predict hearing status and thresholds using machine-learning models publication-title: Int J Audiol – volume: 124 start-page: 1613 year: 2008 end-page: 1626 ident: b0215 article-title: Measuring distortion product otoacoustic emissions using continuously sweeping primaries publication-title: J Acoust Soc Am – volume: 335 start-page: 40 year: 2016 end-page: 46 ident: b0110 article-title: Musical experience sharpens human cochlear tuning publication-title: Hear Res – volume: 153 start-page: 2298 year: 2023 end-page: 2311 ident: b0025 article-title: Age-related reduction of amplitude modulation frequency selectivity publication-title: J Acoust Soc Am – volume: 105 start-page: 782 year: 1999 end-page: 798 ident: b0235 article-title: Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs publication-title: J Acoust Soc Am – start-page: 93 year: 2001 ident: 10.1016/j.apacoust.2023.109494_b0030 article-title: Latest comparisons between physiological and behavioural frequency selectivity – volume: 134 start-page: 356 year: 2013 ident: 10.1016/j.apacoust.2023.109494_b0230 article-title: Measuring stimulus-frequency otoacoustic emissions using swept tones publication-title: J Acoust Soc Am doi: 10.1121/1.4807505 – volume: 129 start-page: 173 year: 2018 ident: 10.1016/j.apacoust.2023.109494_b0175 article-title: A fast algorithm for the measurement of stimulus frequency otoacoustic emission suppression tuning curves publication-title: Appl Acoust doi: 10.1016/j.apacoust.2017.06.017 – volume: 21 start-page: 151 year: 2020 ident: 10.1016/j.apacoust.2023.109494_b0245 article-title: Asymmetry and microstructure of temporal-suppression patterns in basilar-membrane responses to clicks: relation to tonal suppression and traveling-wave dispersion publication-title: JARO doi: 10.1007/s10162-020-00747-2 – ident: 10.1016/j.apacoust.2023.109494_b0295 doi: 10.1177/2331216520960053 – volume: 119 start-page: 314 year: 2020 ident: 10.1016/j.apacoust.2023.109494_b0070 article-title: Interactions between passive and active vibrations in the organ of corti in vitro publication-title: Biophys J doi: 10.1016/j.bpj.2020.06.011 – volume: 129 start-page: 817 year: 2011 ident: 10.1016/j.apacoust.2023.109494_b0310 article-title: Distortion-product otoacoustic emission suppression tuning curves in humans publication-title: J Acoust Soc Am doi: 10.1121/1.3531864 – volume: 58 start-page: 333 issue: 3 year: 2008 ident: 10.1016/j.apacoust.2023.109494_b0055 article-title: Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification publication-title: Neuron doi: 10.1016/j.neuron.2008.02.028 – volume: 118 start-page: 1183 issue: 5 year: 2020 ident: 10.1016/j.apacoust.2023.109494_b0320 article-title: The spatial origins of cochlear amplification assessed by stimulus-frequency otoacoustic emissions publication-title: Biophys J doi: 10.1016/j.bpj.2019.12.031 – volume: 129 start-page: 801 year: 2011 ident: 10.1016/j.apacoust.2023.109494_b0315 article-title: Growth of suppression in humans based on distortion-product otoacoustic emission measurements publication-title: J Acoust Soc Am doi: 10.1121/1.3523287 – volume: 398 year: 2020 ident: 10.1016/j.apacoust.2023.109494_b0325 article-title: Identifying three otopathologies in humans publication-title: Hear Res doi: 10.1016/j.heares.2020.108079 – volume: 16 start-page: 317 year: 2015 ident: 10.1016/j.apacoust.2023.109494_b0145 article-title: Tuning of SFOAEs evoked by low-frequency tones is not compatible with localized emission generation publication-title: JARO doi: 10.1007/s10162-015-0513-0 – volume: 54 start-page: 96 year: 2015 ident: 10.1016/j.apacoust.2023.109494_b0180 article-title: Exploration of stimulus-frequency otoacoustic emission suppression tuning in hearing-impaired listeners publication-title: Int J Audiol doi: 10.3109/14992027.2014.941074 – ident: 10.1016/j.apacoust.2023.109494_b0040 doi: 10.5152/iao.2021.8477 – volume: 119 start-page: 2087 year: 2020 ident: 10.1016/j.apacoust.2023.109494_b0065 article-title: Manipulation of the endocochlear potential reveals two distinct types of cochlear nonlinearity publication-title: Biophys J doi: 10.1016/j.bpj.2020.10.005 – volume: 3 start-page: 35 year: 2020 ident: 10.1016/j.apacoust.2023.109494_b0250 article-title: Two-tone distortion in reticular lamina vibration of the living cochlea publication-title: Commun Biol doi: 10.1038/s42003-020-0762-2 – volume: 22 start-page: 641 year: 2021 ident: 10.1016/j.apacoust.2023.109494_b0160 article-title: Reflection-source emissions evoked with clicks and frequency sweeps: comparisons across levels publication-title: JARO doi: 10.1007/s10162-021-00813-3 – volume: 23 start-page: 647 issue: 5 year: 2022 ident: 10.1016/j.apacoust.2023.109494_b0200 article-title: Characterizing the relationship between reflection and distortion otoacoustic emissions in normal-hearing adults publication-title: J Assoc Res Otolaryngol doi: 10.1007/s10162-022-00857-z – volume: 113 start-page: 2762 issue: 5 year: 2003 ident: 10.1016/j.apacoust.2023.109494_b0280 article-title: Stimulus-frequency-emission group delay: a test of coherent reflection filtering and a window on cochlear tuning publication-title: J Acoust Soc Am doi: 10.1121/1.1557211 – volume: 11 start-page: 1057 year: 1991 ident: 10.1016/j.apacoust.2023.109494_b0060 article-title: Furosemide alters organ of corti mechanics: evidence for feedback of outer hair cells upon the basilar membrane publication-title: J Neurosci doi: 10.1523/JNEUROSCI.11-04-01057.1991 – volume: 123 start-page: 1479 year: 2008 ident: 10.1016/j.apacoust.2023.109494_b0085 article-title: Two-tone suppression of stimulus frequency otoacoustic emissions publication-title: J Acoust Soc Am doi: 10.1121/1.2828209 – volume: 398 year: 2020 ident: 10.1016/j.apacoust.2023.109494_b0125 article-title: Frequency selectivity of tonal language native speakers probed by suppression tuning curves of spontaneous otoacoustic emissions publication-title: Hear Res doi: 10.1016/j.heares.2020.108100 – volume: 306 start-page: 104 year: 2013 ident: 10.1016/j.apacoust.2023.109494_b0225 article-title: Stimulus frequency otoacoustic emissions evoked by swept tones publication-title: Hear Res doi: 10.1016/j.heares.2013.09.016 – volume: 121 start-page: 125 year: 1998 ident: 10.1016/j.apacoust.2023.109494_b0075 article-title: A developmental study of distortion product otoacoustic emission (2f1-f2) suppression in humans publication-title: Hear Res doi: 10.1016/S0378-5955(98)00073-2 – volume: 60 start-page: 890 issue: 11 year: 2021 ident: 10.1016/j.apacoust.2023.109494_b0035 article-title: Cochlear tuning estimates from level ratio functions of distortion product otoacoustic emissions publication-title: Int J Audiol doi: 10.1080/14992027.2021.1886352 – start-page: 295 year: 2023 ident: 10.1016/j.apacoust.2023.109494_b0260 article-title: Feature Selection Based on Gaussian Ant Lion Optimizer for Fault Identification in Centrifugal Pump – volume: 13 start-page: 171 year: 2014 ident: 10.1016/j.apacoust.2023.109494_b0285 article-title: An objective assessment method for frequency selectivity of the human auditory system publication-title: BioMed Eng OnLine doi: 10.1186/1475-925X-13-171 – volume: 51 start-page: 1179 year: 2020 ident: 10.1016/j.apacoust.2023.109494_b0010 article-title: Binaural frequency selectivity in humans publication-title: Eur J Neurosci doi: 10.1111/ejn.13837 – volume: 22 start-page: 275 year: 2021 ident: 10.1016/j.apacoust.2023.109494_b0255 article-title: Examining the factors that contribute to non-monotonic growth of the $$2f_1 - f_2$$ otoacoustic emission in humans publication-title: JARO doi: 10.1007/s10162-021-00788-1 – volume: 358 start-page: 42 year: 2018 ident: 10.1016/j.apacoust.2023.109494_b0270 article-title: Sweep-tone evoked stimulus frequency otoacoustic emissions in humans: development of a noise-rejection algorithm and normative features publication-title: Hear Res doi: 10.1016/j.heares.2017.11.006 – volume: 133 start-page: 951 year: 2013 ident: 10.1016/j.apacoust.2023.109494_b0120 article-title: Suppression tuning of distortion-product otoacoustic emissions: results from cochlear mechanics simulation publication-title: J Acoust Soc Am doi: 10.1121/1.4774279 – volume: 63 start-page: 4277 year: 2020 ident: 10.1016/j.apacoust.2023.109494_b0115 article-title: Human auditory-frequency tuning is sensitive to tonal language experience publication-title: J Speech Lang Hear Res doi: 10.1044/2020_JSLHR-20-00152 – volume: 143 start-page: 181 year: 2018 ident: 10.1016/j.apacoust.2023.109494_b0275 article-title: Swept-tone stimulus-frequency otoacoustic emissions: normative data and methodological considerations publication-title: J Acoust Soc Am doi: 10.1121/1.5020275 – volume: 18 start-page: 89 year: 2017 ident: 10.1016/j.apacoust.2023.109494_b0190 article-title: Profiles of stimulus-frequency otoacoustic emissions from 0.5 to 20 kHz in humans publication-title: JARO doi: 10.1007/s10162-016-0588-2 – volume: 124 start-page: 1613 year: 2008 ident: 10.1016/j.apacoust.2023.109494_b0215 article-title: Measuring distortion product otoacoustic emissions using continuously sweeping primaries publication-title: J Acoust Soc Am doi: 10.1121/1.2949505 – volume: 77 start-page: 620 year: 1985 ident: 10.1016/j.apacoust.2023.109494_b0305 article-title: Speech perception ability and psychophysical tuning curves in hearing-impaired listeners publication-title: J Acoust Soc Am doi: 10.1121/1.392378 – ident: 10.1016/j.apacoust.2023.109494_b0155 doi: 10.1177/23312165211059628 – volume: 2 start-page: 094402 issue: 9 year: 2022 ident: 10.1016/j.apacoust.2023.109494_b0100 article-title: Difference between frequency and suppression tuning curves in a two-dimensional cochlear model publication-title: JASA Express Letters doi: 10.1121/10.0013998 – volume: 142 start-page: 812 year: 2017 ident: 10.1016/j.apacoust.2023.109494_b0185 article-title: Towards a joint reflection-distortion otoacoustic emission profile: results in normal and impaired ears publication-title: J Acoust Soc Am doi: 10.1121/1.4996859 – volume: 335 start-page: 40 year: 2016 ident: 10.1016/j.apacoust.2023.109494_b0110 article-title: Musical experience sharpens human cochlear tuning publication-title: Hear Res doi: 10.1016/j.heares.2016.02.012 – volume: 45 start-page: 463 year: 2006 ident: 10.1016/j.apacoust.2023.109494_b0300 article-title: Detecting dead regions using psychophysical tuning curves: a comparison of simultaneous and forward masking: La detección de regiones muertas utilizando curvas psicofísicas de afinamiento: Una comparación del enmascaramiento simultáneo y el anterógrado publication-title: Int J Audiol doi: 10.1080/14992020600753189 – ident: 10.1016/j.apacoust.2023.109494_b0195 doi: 10.1177/2331216519889226 – volume: 63 start-page: 1958 year: 2020 ident: 10.1016/j.apacoust.2023.109494_b0330 article-title: Relationship between behavioral and stimulus frequency otoacoustic emissions delay-based tuning estimates publication-title: J Speech Lang Hear Res doi: 10.1044/2020_JSLHR-19-00386 – year: 2004 ident: 10.1016/j.apacoust.2023.109494_b0005 article-title: Frequency selectivity, masking and the critical band – volume: 153 start-page: 2298 year: 2023 ident: 10.1016/j.apacoust.2023.109494_b0025 article-title: Age-related reduction of amplitude modulation frequency selectivity publication-title: J Acoust Soc Am doi: 10.1121/10.0017835 – volume: 151 start-page: 1055 year: 2022 ident: 10.1016/j.apacoust.2023.109494_b0095 article-title: Relationship between irregularities in spontaneous otoacoustic emissions suppression and psychophysical tuning curves publication-title: J Acoust Soc Am doi: 10.1121/10.0009278 – volume: 146 start-page: 4481 year: 2019 ident: 10.1016/j.apacoust.2023.109494_b0290 article-title: Comparison of distortion-product otoacoustic emission and stimulus-frequency otoacoustic emission two-tone suppression in humans publication-title: J Acoust Soc Am doi: 10.1121/1.5139660 – volume: 22 start-page: 623 issue: 6 year: 2021 ident: 10.1016/j.apacoust.2023.109494_b0045 article-title: The elusive cochlear filter: wave origin of cochlear cross-frequency masking publication-title: JARO doi: 10.1007/s10162-021-00814-2 – volume: 420 year: 2022 ident: 10.1016/j.apacoust.2023.109494_b0015 article-title: Auditory filter shapes derived from forward and simultaneous masking at low frequencies: Implications for human cochlear tuning publication-title: Hear Res doi: 10.1016/j.heares.2022.108500 – volume: 235 start-page: 80 year: 2008 ident: 10.1016/j.apacoust.2023.109494_b0135 article-title: Origin of suppression of otoacoustic emissions evoked by two-tone bursts publication-title: Hear Res doi: 10.1016/j.heares.2007.10.005 – ident: 10.1016/j.apacoust.2023.109494_b0020 – volume: 15 start-page: 883 year: 2014 ident: 10.1016/j.apacoust.2023.109494_b0090 article-title: Estimating cochlear frequency selectivity with stimulus-frequency otoacoustic emissions in chinchillas publication-title: JARO doi: 10.1007/s10162-014-0487-3 – volume: 14 start-page: 843 year: 2013 ident: 10.1016/j.apacoust.2023.109494_b0105 article-title: Stimulus-frequency otoacoustic emission suppression tuning in humans: comparison to behavioral tuning publication-title: JARO doi: 10.1007/s10162-013-0412-1 – volume: 105 start-page: 782 issue: 2 year: 1999 ident: 10.1016/j.apacoust.2023.109494_b0235 article-title: Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs publication-title: J Acoust Soc Am doi: 10.1121/1.426948 – volume: 197 year: 2022 ident: 10.1016/j.apacoust.2023.109494_b0265 article-title: A two-level adaptive chirp mode decomposition and tangent entropy in estimation of single-valued neutrosophic cross-entropy for detecting impeller defects in centrifugal pump publication-title: Appl Acoust doi: 10.1016/j.apacoust.2022.108905 – volume: 12 start-page: 113 year: 2011 ident: 10.1016/j.apacoust.2023.109494_b0170 article-title: Using the cochlear microphonic as a tool to evaluate cochlear function in mouse models of hearing publication-title: JARO doi: 10.1007/s10162-010-0240-5 – volume: 110 start-page: 3140 year: 2001 ident: 10.1016/j.apacoust.2023.109494_b0130 article-title: Multicomponent stimulus interactions observed in basilar-membrane vibration in the basal region of the chinchilla cochlea publication-title: J Acoust Soc Am doi: 10.1121/1.1416198 – volume: 60 start-page: 263 year: 2021 ident: 10.1016/j.apacoust.2023.109494_b0150 article-title: Maximising the ability of stimulus-frequency otoacoustic emissions to predict hearing status and thresholds using machine-learning models publication-title: Int J Audiol doi: 10.1080/14992027.2020.1821252 – volume: 111 start-page: 271 year: 2002 ident: 10.1016/j.apacoust.2023.109494_b0080 article-title: The use of distortion product otoacoustic emission suppression as an estimate of response growth publication-title: J Acoust Soc Am doi: 10.1121/1.1426372 – ident: 10.1016/j.apacoust.2023.109494_b0205 – volume: 123 start-page: 2651 year: 2008 ident: 10.1016/j.apacoust.2023.109494_b0220 article-title: Stimulus-frequency otoacoustic emission: Measurements in humans and simulations with an active cochlear model publication-title: J Acoust Soc Am doi: 10.1121/1.2902184 – volume: 108 start-page: 2911 year: 2000 ident: 10.1016/j.apacoust.2023.109494_b0140 article-title: Modeling the combined effects of basilar membrane nonlinearity and roughness on stimulus frequency otoacoustic emission fine structure publication-title: J Acoust Soc Am doi: 10.1121/1.1321012 – volume: 16 year: 2022 ident: 10.1016/j.apacoust.2023.109494_b0210 article-title: Usefulness of phase gradients of otoacoustic emissions in auditory health screening: an exploration with swept tones publication-title: Front Neurosci – year: 1980 ident: 10.1016/j.apacoust.2023.109494_b0165 article-title: Observations on the generator mechanism of stimulus frequency acoustic emissions–two tone suppression – volume: 93 start-page: 920 year: 1993 ident: 10.1016/j.apacoust.2023.109494_b0240 article-title: Suppression of stimulus frequency otoacoustic emissions publication-title: J Acoust Soc Am doi: 10.1121/1.405453 – volume: 227 start-page: 194 year: 1985 ident: 10.1016/j.apacoust.2023.109494_b0050 article-title: Evoked mechanical responses of isolated cochlear outer hair cells publication-title: Science doi: 10.1126/science.3966153 |
| SSID | ssj0000255 |
| Score | 2.3521872 |
| Snippet | •Based on the swept suppressor tones, we propose a novel fast algorithm for measuring stimulus-frequency otoacoustic emission (SFOAE) suppression tuning curves... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109494 |
| SubjectTerms | Fast algorithm Stimulus frequency otoacoustic emission Suppression tuning curve Swept suppressor tone |
| Title | A fast algorithm for the measurement of stimulus-frequency otoacoustic emission suppression tuning curves based on multi-level swept suppressor tones |
| URI | https://dx.doi.org/10.1016/j.apacoust.2023.109494 |
| Volume | 211 |
| WOSCitedRecordID | wos001029016000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-910X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000255 issn: 0003-682X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB7WrYJ9EK2KrRfmwbeQurnPPC5Sb0hRrBCfQjKXumU3u2yS0r76H_y_nrklwRaqiC9hGTiZZb9vznxz9sw5CL1kjCalJDO_SoXwY5FJv-Sw8KqI0zggqayELpn_MTs-JnlOP00mP9xdmPNlVtfk4oJu_ivUMAZgq6uzfwF3_1IYgM8AOjwBdnj-EfBzT5aNCuSeruHg_33VJxKuhnCgkoiwtlfdsmt8uTXp1Jfeul2Dg9T9vTzVB05F0rym29hk2dprOx1GYd1WFatVOyBX_zborER_qfKPPFUJte2N1NSqG8BYAzvh66bqVX3eacC7-nLR5wkt9Ni3Rc_htzaH-LMdshGLMOrz5WwYzV2lGfKWjGuO_JTo3uqwMRlvTLIQvPEsH7vr0DjnK67fRCHODkFj6K9_qKZW1bJi00X5t7LaX3QpHpgPzmCzkIb5LbQTZgklU7Qzf3-Ufxj28zBJXN9FZTC6Z379bNdLnJFsObmP7tnzBp4bnjxAE1Hvod1RFco9dEdnAbPmIfo5x4o7uOcOBu5g4A4ecQevJb7KHTziDnbcwSPuYMMdbLiDNXcwDI-4gzV38MAdrLnzCH19c3Ty-p1v-3b4LArC1g8Yy1RYQc4CnsiAVhWI1ipNWJAKGhPJBecyllWVSEAAdpQgFhEvZcqZAHkaRY_RtIb3P0E45lGZphxkvZQg_DklXNIKDoQkjFk2E_socT91wWxRe9VbZVm47MWzwkFUKIgKA9E-etXbbUxZlxstqEOysOLUiM4CCHiD7cE_2D5Fd4c19AxN220nnqPb7LxdNNsXlqu_APCEw2w |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fast+algorithm+for+the+measurement+of+stimulus-frequency+otoacoustic+emission+suppression+tuning+curves+based+on+multi-level+swept+suppressor+tones&rft.jtitle=Applied+acoustics&rft.au=Xu%2C+Runyi&rft.au=Liu%2C+Yin&rft.au=Gong%2C+Qin&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=0003-682X&rft.eissn=1872-910X&rft.volume=211&rft_id=info:doi/10.1016%2Fj.apacoust.2023.109494&rft.externalDocID=S0003682X2300292X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-682X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-682X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-682X&client=summon |