Parkinson’s disease diagnosis and stage prediction based on gait signal analysis using EMD and CNN–LSTM network

Parkinson’s disease (PD) diagnosis is a complex and challenging task which needs the assessment of various motor and non-motor symptoms. As gait impairment is one of the early and important symptoms of PD, in a clinical setting, physicians generally evaluate the gait abnormality based on visual obse...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering applications of artificial intelligence Ročník 114; s. 105099
Hlavní autoři: B. Vidya, Sasikumar P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.09.2022
Témata:
ISSN:0952-1976
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Parkinson’s disease (PD) diagnosis is a complex and challenging task which needs the assessment of various motor and non-motor symptoms. As gait impairment is one of the early and important symptoms of PD, in a clinical setting, physicians generally evaluate the gait abnormality based on visual observations along with other numerous manifestations to assess the severity of PD. As such kind of assessment majorly depends on the experience and expertise of the physicians, there is scope for bias in assessment, leading to misdiagnosis. In this context, to assist the physicians to diagnose PD effectively, this study aims to design and investigate a gait analysis based classifier model using a hybrid convolutional neural network-long short term memory (CNN–LSTM) network to predict the severity rating of PD. For evaluation, we utilize the openly available gait dataset from Physionet that consists of vertical ground reaction force (VGRF) signals from three different walking tests. Firstly, the prominent VGRF signals obtained using the variability analysis are decomposed using the empirical mode decomposition (EMD) technique to extract the significant intrinsic mode functions (IMFs) that contain the vital gait features. Secondly, through the power spectral analysis the dominant IMFs of the selected VGRF signals are extracted to train the CNN–LSTM classifier model. To address the data overfitting problem in the classifier model, the proposed approach employs L2 regularization along with dropout techniques. Moreover, to solve the stochastic cost function, CNN–LSTM network utilizes the Adam optimizer for its minimal memory requirement and tuning. Finally, the experiments conducted using the gait patterns from 93 PD subjects and 73 healthy controls substantiate that the proposed CNN–LSTM​ classifier model can achieve a maximum multi-class classification accuracy of 98.32% and offer superior performance compared to several other similar methods which have used gait pattern to diagnose PD. [Display omitted] •PD stage prediction based on gait classification using CNN–LSTM network is proposed.•The VGRF signals are decomposed using EMD technique to extract dominant IMFs.•L2 regularization along with dropout layer is employed to address the data overfitting problem.•The multi-class classification accuracy of 98.32% is achieved using Adam optimizer.
AbstractList Parkinson’s disease (PD) diagnosis is a complex and challenging task which needs the assessment of various motor and non-motor symptoms. As gait impairment is one of the early and important symptoms of PD, in a clinical setting, physicians generally evaluate the gait abnormality based on visual observations along with other numerous manifestations to assess the severity of PD. As such kind of assessment majorly depends on the experience and expertise of the physicians, there is scope for bias in assessment, leading to misdiagnosis. In this context, to assist the physicians to diagnose PD effectively, this study aims to design and investigate a gait analysis based classifier model using a hybrid convolutional neural network-long short term memory (CNN–LSTM) network to predict the severity rating of PD. For evaluation, we utilize the openly available gait dataset from Physionet that consists of vertical ground reaction force (VGRF) signals from three different walking tests. Firstly, the prominent VGRF signals obtained using the variability analysis are decomposed using the empirical mode decomposition (EMD) technique to extract the significant intrinsic mode functions (IMFs) that contain the vital gait features. Secondly, through the power spectral analysis the dominant IMFs of the selected VGRF signals are extracted to train the CNN–LSTM classifier model. To address the data overfitting problem in the classifier model, the proposed approach employs L2 regularization along with dropout techniques. Moreover, to solve the stochastic cost function, CNN–LSTM network utilizes the Adam optimizer for its minimal memory requirement and tuning. Finally, the experiments conducted using the gait patterns from 93 PD subjects and 73 healthy controls substantiate that the proposed CNN–LSTM​ classifier model can achieve a maximum multi-class classification accuracy of 98.32% and offer superior performance compared to several other similar methods which have used gait pattern to diagnose PD. [Display omitted] •PD stage prediction based on gait classification using CNN–LSTM network is proposed.•The VGRF signals are decomposed using EMD technique to extract dominant IMFs.•L2 regularization along with dropout layer is employed to address the data overfitting problem.•The multi-class classification accuracy of 98.32% is achieved using Adam optimizer.
ArticleNumber 105099
Author B. Vidya
Sasikumar P.
Author_xml – sequence: 1
  orcidid: 0000-0002-5047-6598
  surname: B. Vidya
  fullname: B. Vidya
– sequence: 2
  surname: Sasikumar P.
  fullname: Sasikumar P.
  email: sasikumar.p@vit.ac.in
BookMark eNqFkEtOwzAQhr0oEm3hCsgXaLGdRxOJBaiUh9QWJLq3Jsk4chucyA6g7noHVlyvJ8GhsGHT1cxY8438fwPSM7VBQi44G3PG48v1GE0JTQN6LJgQ_jFiadojfZZGYsTTSXxKBs6tGWNBEsZ94p7BbrRxtdnvvhwttENw6CuUpnbaUTAFdS2USBuLhc5bXRua-Z2C-qYE3VKnSwOV34Rq2yFvTpuSzha3P_B0udzvPucvqwU12H7UdnNGThRUDs9_65Cs7mar6cNo_nT_OL2Zj_KAi9b_NosB4kKgihUUOSBXgJFKRFBE6IeMBzxRSRYGaTRJVBammfCBQ56IUAXBkMSHs7mtnbOoZGP1K9it5Ex2tuRa_tmSnS15sOXBq39grlvogrcWdHUcvz7g6LO9a7TS5RpN7u1ZzFtZ1PrYiW9l75Kk
CitedBy_id crossref_primary_10_1016_j_dsp_2023_104362
crossref_primary_10_1016_j_energy_2025_134751
crossref_primary_10_1088_1361_6579_ad9af5
crossref_primary_10_1016_j_asoc_2024_112283
crossref_primary_10_1016_j_engappai_2024_109656
crossref_primary_10_1002_aisy_202300845
crossref_primary_10_1007_s00170_023_12381_2
crossref_primary_10_1109_ACCESS_2025_3543749
crossref_primary_10_1016_j_engappai_2025_111157
crossref_primary_10_1016_j_engappai_2025_110342
crossref_primary_10_3390_app14198860
crossref_primary_10_3390_bioengineering11050440
crossref_primary_10_1007_s13042_023_02050_x
crossref_primary_10_3390_jcm14072245
crossref_primary_10_1016_j_compeleceng_2025_110433
crossref_primary_10_3390_s22218441
crossref_primary_10_1080_08839514_2024_2389375
crossref_primary_10_32604_cmc_2024_051551
crossref_primary_10_1016_j_engappai_2023_105886
crossref_primary_10_1016_j_measurement_2024_115746
crossref_primary_10_1016_j_compbiomed_2025_110334
crossref_primary_10_1007_s11517_024_03148_2
crossref_primary_10_3390_rs17060988
crossref_primary_10_1016_j_bspc_2024_107196
crossref_primary_10_1016_j_inffus_2025_103456
crossref_primary_10_3390_diagnostics13091662
crossref_primary_10_1016_j_bspc_2025_107659
crossref_primary_10_1016_j_bspc_2024_105998
crossref_primary_10_1007_s11042_024_18186_z
crossref_primary_10_1016_j_bspc_2023_105057
crossref_primary_10_1016_j_engappai_2023_107669
crossref_primary_10_7717_peerj_cs_2857
crossref_primary_10_1007_s00521_024_09516_1
crossref_primary_10_7759_cureus_47118
crossref_primary_10_3390_s24041196
crossref_primary_10_1016_j_optlaseng_2025_109309
crossref_primary_10_1155_2023_3578867
crossref_primary_10_3389_fphy_2022_1048833
crossref_primary_10_1007_s11227_025_07226_6
crossref_primary_10_1016_j_engappai_2023_107012
crossref_primary_10_3389_fninf_2024_1451529
crossref_primary_10_1007_s44174_024_00243_8
Cites_doi 10.1016/j.knosys.2018.01.004
10.1016/j.bspc.2021.102497
10.1016/j.energy.2019.05.230
10.1016/j.clinph.2018.10.010
10.1016/j.engappai.2021.104242
10.1016/j.engappai.2020.103955
10.1016/j.bspc.2020.102070
10.1016/j.icte.2016.10.005
10.1016/j.bspc.2020.102132
10.1016/j.patrec.2019.11.036
10.3389/fnagi.2021.633752
10.1016/j.bspc.2018.08.035
10.1016/j.bspc.2019.101819
10.1016/j.medengphy.2021.03.005
10.1016/j.neucom.2018.03.032
10.1186/s40035-017-0099-z
10.3390/s19020242
10.1016/j.knosys.2017.10.017
10.1162/neco.1997.9.8.1735
10.1109/JBHI.2015.2450232
10.1016/j.cmpb.2021.106038
10.1111/j.1460-9568.2005.04298.x
10.1002/mds.20507
10.1016/j.bspc.2020.102393
10.1016/j.cmpb.2019.105033
10.1371/journal.pone.0175951
10.1016/j.knosys.2020.105488
10.1016/j.future.2020.11.020
10.1109/TNSRE.2009.2033062
10.3389/fphys.2020.587057
10.1016/j.future.2018.02.009
10.1016/j.bspc.2019.101683
10.1016/j.cmpb.2017.04.007
10.1016/j.eswa.2012.01.084
10.1111/j.1460-9568.2007.05810.x
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2022.105099
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
ExternalDocumentID 10_1016_j_engappai_2022_105099
S0952197622002433
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c312t-19b6aa6d2ef6fadcae1fae5f823d5ee1fb1318f8b439578fb49b210541824f33
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000838697900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 07:07:38 EST 2025
Tue Nov 18 21:59:32 EST 2025
Sun Apr 06 06:54:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords VGRF
EMD
Gait analysis
Parkinson’s disease
CNN–LSTM
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-19b6aa6d2ef6fadcae1fae5f823d5ee1fb1318f8b439578fb49b210541824f33
ORCID 0000-0002-5047-6598
ParticipantIDs crossref_primary_10_1016_j_engappai_2022_105099
crossref_citationtrail_10_1016_j_engappai_2022_105099
elsevier_sciencedirect_doi_10_1016_j_engappai_2022_105099
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Balaji, Brindha, Elumalai, Umesh (b31) 2021; 91
Lee, Lim (b21) 2012; 39
Balaji, Brindha, Balakrishnan (b11) 2020; 94
Khoury, Attal, Amirat, Oukhellou, Mohammed (b12) 2019; 19
Wu, Krishnan (b20) 2009; 18
Veeraragavan, Gopalai, Gouwanda, Ahmad (b40) 2020; 11
Zhao, Mao, Chen (b6) 2019; 47
Hussein, Palangi, Ward, Wang (b38) 2019; 130
Hochreiter, Schmidhuber (b37) 1997; 9
Zhao, Qi, Li, Dong, Yu (b18) 2018; 315
Prabhu, Karunakar, Anitha, Pradhan (b23) 2018
Ashour, El-Attar, Dey, Abd El-Kader, Abd El-Naby (b25) 2020; 131
Yogev, Giladi, Peretz, Springer, Simon, Hausdorff (b28) 2005; 22
El Maachi, Bilodeau, Bouachir (b16) 2020; 143
Balaji, Brindha, Elumalai, Vikrama (b17) 2021; 108
Zhang, Wang, Lv, Fan, Song (b19) 2021; 102
Farashi (b9) 2020; 62
Joshi, Khajuria, Joshi (b14) 2017; 145
Maiti, Manna, Dunbar (b5) 2017; 6
Cantürk (b10) 2021; 66
Kamran, Naz, Razzak, Imran (b8) 2021; 117
Alam, Garg, Munia, Fazel-Rezai, Tavakolian (b13) 2017; 12
Camps, Sama, Martin, Rodriguez-Martin, Perez-Lopez, Arostegui, Cabestany, Catala, Alcaine, Mestre (b2) 2018; 139
Yurdakul, Subathra, George (b24) 2020; 62
Mei, Desrosiers, Frasnelli (b1) 2021; 13
Oktay, Kocer (b26) 2020; 56
Hausdorff, Lowenthal, Herman, Gruendlinger, Peretz, Giladi (b29) 2007; 26
Kim, Cho (b35) 2019; 182
Chen, Hua, Zhang, Liu, Wen (b36) 2020; 57
Sharma, Parashar, Joshi (b34) 2021; 66
Frenkel-Toledo, Giladi, Peretz, Herman, Gruendlinger, Hausdorff (b30) 2005; 20
Zhao, Qi, Dong, Yu (b41) 2018; 145
Perumal, Sankar (b22) 2016; 2
Vican, Kreković, Jambrošić (b33) 2021; 203
Goyal, Khandnor, Aseri, Classification, prediction (b3) 2020; 96
Wahid, Begg, Hass, Halgamuge, Ackland (b7) 2015; 19
Abdulhay, Arunkumar, Narasimhan, Vellaiappan, Venkatraman (b39) 2018; 83
Arivazhagan, Amrutha, Jebarani (b32) 2021; 101
(b27) 2021
Li, Li, Wang, Li, Zhong (b15) 2020; 194
Ricciardi, Amboni, De Santis, Improta, Volpe, Iuppariello, Ricciardelli, D’Addio, Vitale, Barone (b4) 2019; 180
Chen (10.1016/j.engappai.2022.105099_b36) 2020; 57
Wu (10.1016/j.engappai.2022.105099_b20) 2009; 18
Camps (10.1016/j.engappai.2022.105099_b2) 2018; 139
Lee (10.1016/j.engappai.2022.105099_b21) 2012; 39
Prabhu (10.1016/j.engappai.2022.105099_b23) 2018
Sharma (10.1016/j.engappai.2022.105099_b34) 2021; 66
Yogev (10.1016/j.engappai.2022.105099_b28) 2005; 22
(10.1016/j.engappai.2022.105099_b27) 2021
Goyal (10.1016/j.engappai.2022.105099_b3) 2020; 96
Balaji (10.1016/j.engappai.2022.105099_b31) 2021; 91
Kamran (10.1016/j.engappai.2022.105099_b8) 2021; 117
Ashour (10.1016/j.engappai.2022.105099_b25) 2020; 131
Frenkel-Toledo (10.1016/j.engappai.2022.105099_b30) 2005; 20
Yurdakul (10.1016/j.engappai.2022.105099_b24) 2020; 62
Abdulhay (10.1016/j.engappai.2022.105099_b39) 2018; 83
Balaji (10.1016/j.engappai.2022.105099_b17) 2021; 108
Wahid (10.1016/j.engappai.2022.105099_b7) 2015; 19
Oktay (10.1016/j.engappai.2022.105099_b26) 2020; 56
Khoury (10.1016/j.engappai.2022.105099_b12) 2019; 19
Hausdorff (10.1016/j.engappai.2022.105099_b29) 2007; 26
Vican (10.1016/j.engappai.2022.105099_b33) 2021; 203
Alam (10.1016/j.engappai.2022.105099_b13) 2017; 12
Mei (10.1016/j.engappai.2022.105099_b1) 2021; 13
El Maachi (10.1016/j.engappai.2022.105099_b16) 2020; 143
Li (10.1016/j.engappai.2022.105099_b15) 2020; 194
Arivazhagan (10.1016/j.engappai.2022.105099_b32) 2021; 101
Zhao (10.1016/j.engappai.2022.105099_b6) 2019; 47
Zhao (10.1016/j.engappai.2022.105099_b41) 2018; 145
Veeraragavan (10.1016/j.engappai.2022.105099_b40) 2020; 11
Maiti (10.1016/j.engappai.2022.105099_b5) 2017; 6
Perumal (10.1016/j.engappai.2022.105099_b22) 2016; 2
Balaji (10.1016/j.engappai.2022.105099_b11) 2020; 94
Zhang (10.1016/j.engappai.2022.105099_b19) 2021; 102
Hussein (10.1016/j.engappai.2022.105099_b38) 2019; 130
Ricciardi (10.1016/j.engappai.2022.105099_b4) 2019; 180
Cantürk (10.1016/j.engappai.2022.105099_b10) 2021; 66
Farashi (10.1016/j.engappai.2022.105099_b9) 2020; 62
Zhao (10.1016/j.engappai.2022.105099_b18) 2018; 315
Hochreiter (10.1016/j.engappai.2022.105099_b37) 1997; 9
Joshi (10.1016/j.engappai.2022.105099_b14) 2017; 145
Kim (10.1016/j.engappai.2022.105099_b35) 2019; 182
References_xml – volume: 96
  year: 2020
  ident: b3
  article-title: And monitoring of Parkinson’s disease using computer assisted technologies: A comparative analysis
  publication-title: Eng. Appl. Artif. Intell.
– volume: 102
  year: 2021
  ident: b19
  article-title: Computer vision detection of foreign objects in coal processing using attention CNN
  publication-title: Eng. Appl. Artif. Intell.
– volume: 139
  start-page: 119
  year: 2018
  end-page: 131
  ident: b2
  article-title: Deep learning for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit
  publication-title: Knowl.-Based Syst.
– volume: 83
  start-page: 366
  year: 2018
  end-page: 373
  ident: b39
  article-title: Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease
  publication-title: Future Gener. Comput. Syst.
– volume: 2
  start-page: 168
  year: 2016
  end-page: 174
  ident: b22
  article-title: Gait and tremor assessment for patients with Parkinson’s disease using wearable sensors
  publication-title: ICT Express
– volume: 91
  start-page: 54
  year: 2021
  end-page: 64
  ident: b31
  article-title: Data-driven gait analysis for diagnosis and severity rating of Parkinson’s disease
  publication-title: Med. Eng. Phys.
– volume: 18
  start-page: 150
  year: 2009
  end-page: 158
  ident: b20
  article-title: Statistical analysis of gait rhythm in patients with Parkinson’s disease
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 117
  start-page: 234
  year: 2021
  end-page: 244
  ident: b8
  article-title: Handwriting dynamics assessment using deep neural network for early identification of parkinson’s disease
  publication-title: Future Gener. Comput. Syst.
– volume: 26
  start-page: 2369
  year: 2007
  end-page: 2375
  ident: b29
  article-title: Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease
  publication-title: Eur. J. Neurosci.
– volume: 66
  year: 2021
  ident: b34
  article-title: Dephnn: a novel hybrid neural network for electroencephalogram (EEG)- based screening of depression
  publication-title: Biomed. Signal Process. Control
– volume: 180
  year: 2019
  ident: b4
  article-title: Using gait analysis’ parameters to classify Parkinsonism: A data mining approach
  publication-title: Comput. Methods Programs Biomed.
– volume: 62
  year: 2020
  ident: b24
  article-title: Detection of Parkinson’s disease from gait using neighborhood representation local binary patterns
  publication-title: Biomed. Signal Process. Control
– volume: 94
  year: 2020
  ident: b11
  article-title: Supervised machine learning based gait classification system for early detection and stage classification of Parkinson’s disease
  publication-title: Appl. Soft Comput.
– volume: 22
  start-page: 1248
  year: 2005
  end-page: 1256
  ident: b28
  article-title: Dual tasking, gait rhythmicity, and Parkinson’s disease: which aspects of gait are attention demanding?
  publication-title: Eur. J. Neurosci.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b37
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 145
  start-page: 91
  year: 2018
  end-page: 97
  ident: b41
  article-title: Dual channel LSTM based multi-feature extraction in gait for diagnosis of neurodegenerative diseases
  publication-title: Knowl.-Based Syst.
– volume: 6
  start-page: 1
  year: 2017
  end-page: 35
  ident: b5
  article-title: Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments
  publication-title: Transl. Neurodegener.
– volume: 62
  year: 2020
  ident: b9
  article-title: Distinguishing between parkinson’s disease patients and healthy individuals using a comprehensive set of time, frequency and time-frequency features extracted from vertical ground reaction force data
  publication-title: Biomed. Signal Process. Control
– volume: 131
  start-page: 23
  year: 2020
  end-page: 29
  ident: b25
  article-title: Long short term memory based patient-dependent model for FOG detection in Parkinson’s disease
  publication-title: Pattern Recognit. Lett.
– volume: 108
  year: 2021
  ident: b17
  article-title: Automatic and non-invasive Parkinson’s disease diagnosis and severity rating using LSTM network
  publication-title: Appl. Soft Comput.
– volume: 19
  start-page: 242
  year: 2019
  ident: b12
  article-title: Data-driven based approach to aid Parkinson’s disease diagnosis
  publication-title: Sensors
– volume: 130
  start-page: 25
  year: 2019
  end-page: 37
  ident: b38
  article-title: Optimized deep neural network architecture for robust detection of epileptic seizures using eeg signals
  publication-title: Clin. Neurophysiol.
– volume: 315
  start-page: 1
  year: 2018
  end-page: 8
  ident: b18
  article-title: A hybrid spatio-temporal model for detection and severity rating of Parkinson’s disease from gait data
  publication-title: Neurocomputing
– volume: 11
  year: 2020
  ident: b40
  article-title: Parkinson’s disease diagnosis and severity assessment using ground reaction forces and neural networks
  publication-title: Front. Physiol.
– year: 2018
  ident: b23
  article-title: Classification of gait signals into different neurodegenerative diseases using statistical analysis and recurrence quantification analysis
  publication-title: Pattern Recognit. Lett.
– volume: 20
  start-page: 1109
  year: 2005
  end-page: 1114
  ident: b30
  article-title: Treadmill walking as an external pacemaker to improve gait rhythm and stability in Parkinson’s disease
  publication-title: Mov. Disord.: Off. J. Mov. Disord. Soc.
– volume: 182
  start-page: 72
  year: 2019
  end-page: 81
  ident: b35
  article-title: Predicting residential energy consumption using CNN-LSTM neural networks
  publication-title: Energy
– volume: 194
  year: 2020
  ident: b15
  article-title: A comprehensive exploration of semantic relation extraction via pretrained CNNs
  publication-title: Knowl.-Based Syst.
– volume: 203
  year: 2021
  ident: b33
  article-title: Can empirical mode decomposition improve heartbeat detection in fetal phonocardiography signals?
  publication-title: Comput. Methods Programs Biomed.
– volume: 143
  year: 2020
  ident: b16
  article-title: Deep 1D-convnet for accurate Parkinson disease detection and severity prediction from gait
  publication-title: Expert Syst. Appl.
– volume: 47
  start-page: 312
  year: 2019
  end-page: 323
  ident: b6
  article-title: Speech emotion recognition using deep 1D & 2D CNN LSTM networks
  publication-title: Biomed. Signal Process. Control
– volume: 57
  year: 2020
  ident: b36
  article-title: Automated arrhythmia classification based on a combination network of CNN and LSTM
  publication-title: Biomed. Signal Process. Control
– volume: 145
  start-page: 135
  year: 2017
  end-page: 145
  ident: b14
  article-title: An automatic non-invasive method for Parkinson’s disease classification
  publication-title: Comput. Methods Programs Biomed.
– volume: 19
  start-page: 1794
  year: 2015
  end-page: 1802
  ident: b7
  article-title: Classification of Parkinson’s disease gait using spatial–temporal gait features
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 66
  year: 2021
  ident: b10
  article-title: A computerized method to assess Parkinson’s disease severity from gait variability based on gender
  publication-title: Biomed. Signal Process. Control
– volume: 101
  start-page: 1
  year: 2021
  end-page: 11
  ident: b32
  article-title: Universal steganalysis of spatial content-independent and content-adaptive steganographic algorithms using normalized feature derived from empirical mode decomposed components
  publication-title: Signal Process., Image Commun.
– year: 2021
  ident: b27
  article-title: Gait in parkinson’s disease
– volume: 39
  start-page: 7338
  year: 2012
  end-page: 7344
  ident: b21
  article-title: Parkinson’s disease classification using gait characteristics and wavelet-based feature extraction
  publication-title: Expert Syst. Appl.
– volume: 12
  year: 2017
  ident: b13
  article-title: Vertical ground reaction force marker for Parkinson’s disease
  publication-title: PLoS One
– volume: 56
  year: 2020
  ident: b26
  article-title: Differential diagnosis of Parkinson and essential tremor with convolutional LSTM networks
  publication-title: Biomed. Signal Process. Control
– volume: 13
  start-page: 184
  year: 2021
  ident: b1
  article-title: Machine learning for the diagnosis of Parkinson’s disease: A review of literature
  publication-title: Front. Aging Neurosci.
– volume: 145
  start-page: 91
  year: 2018
  ident: 10.1016/j.engappai.2022.105099_b41
  article-title: Dual channel LSTM based multi-feature extraction in gait for diagnosis of neurodegenerative diseases
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.01.004
– volume: 66
  year: 2021
  ident: 10.1016/j.engappai.2022.105099_b10
  article-title: A computerized method to assess Parkinson’s disease severity from gait variability based on gender
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102497
– volume: 182
  start-page: 72
  year: 2019
  ident: 10.1016/j.engappai.2022.105099_b35
  article-title: Predicting residential energy consumption using CNN-LSTM neural networks
  publication-title: Energy
  doi: 10.1016/j.energy.2019.05.230
– volume: 130
  start-page: 25
  issue: 1
  year: 2019
  ident: 10.1016/j.engappai.2022.105099_b38
  article-title: Optimized deep neural network architecture for robust detection of epileptic seizures using eeg signals
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2018.10.010
– volume: 102
  year: 2021
  ident: 10.1016/j.engappai.2022.105099_b19
  article-title: Computer vision detection of foreign objects in coal processing using attention CNN
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104242
– volume: 96
  year: 2020
  ident: 10.1016/j.engappai.2022.105099_b3
  article-title: And monitoring of Parkinson’s disease using computer assisted technologies: A comparative analysis
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103955
– volume: 62
  year: 2020
  ident: 10.1016/j.engappai.2022.105099_b24
  article-title: Detection of Parkinson’s disease from gait using neighborhood representation local binary patterns
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102070
– volume: 143
  year: 2020
  ident: 10.1016/j.engappai.2022.105099_b16
  article-title: Deep 1D-convnet for accurate Parkinson disease detection and severity prediction from gait
  publication-title: Expert Syst. Appl.
– volume: 2
  start-page: 168
  issue: 4
  year: 2016
  ident: 10.1016/j.engappai.2022.105099_b22
  article-title: Gait and tremor assessment for patients with Parkinson’s disease using wearable sensors
  publication-title: ICT Express
  doi: 10.1016/j.icte.2016.10.005
– volume: 62
  year: 2020
  ident: 10.1016/j.engappai.2022.105099_b9
  article-title: Distinguishing between parkinson’s disease patients and healthy individuals using a comprehensive set of time, frequency and time-frequency features extracted from vertical ground reaction force data
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102132
– volume: 131
  start-page: 23
  year: 2020
  ident: 10.1016/j.engappai.2022.105099_b25
  article-title: Long short term memory based patient-dependent model for FOG detection in Parkinson’s disease
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.11.036
– volume: 13
  start-page: 184
  year: 2021
  ident: 10.1016/j.engappai.2022.105099_b1
  article-title: Machine learning for the diagnosis of Parkinson’s disease: A review of literature
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2021.633752
– volume: 47
  start-page: 312
  year: 2019
  ident: 10.1016/j.engappai.2022.105099_b6
  article-title: Speech emotion recognition using deep 1D & 2D CNN LSTM networks
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.08.035
– volume: 57
  year: 2020
  ident: 10.1016/j.engappai.2022.105099_b36
  article-title: Automated arrhythmia classification based on a combination network of CNN and LSTM
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.101819
– volume: 91
  start-page: 54
  year: 2021
  ident: 10.1016/j.engappai.2022.105099_b31
  article-title: Data-driven gait analysis for diagnosis and severity rating of Parkinson’s disease
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2021.03.005
– year: 2018
  ident: 10.1016/j.engappai.2022.105099_b23
  article-title: Classification of gait signals into different neurodegenerative diseases using statistical analysis and recurrence quantification analysis
  publication-title: Pattern Recognit. Lett.
– volume: 315
  start-page: 1
  year: 2018
  ident: 10.1016/j.engappai.2022.105099_b18
  article-title: A hybrid spatio-temporal model for detection and severity rating of Parkinson’s disease from gait data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.03.032
– volume: 6
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.engappai.2022.105099_b5
  article-title: Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments
  publication-title: Transl. Neurodegener.
  doi: 10.1186/s40035-017-0099-z
– volume: 19
  start-page: 242
  issue: 2
  year: 2019
  ident: 10.1016/j.engappai.2022.105099_b12
  article-title: Data-driven based approach to aid Parkinson’s disease diagnosis
  publication-title: Sensors
  doi: 10.3390/s19020242
– volume: 139
  start-page: 119
  year: 2018
  ident: 10.1016/j.engappai.2022.105099_b2
  article-title: Deep learning for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.10.017
– volume: 94
  year: 2020
  ident: 10.1016/j.engappai.2022.105099_b11
  article-title: Supervised machine learning based gait classification system for early detection and stage classification of Parkinson’s disease
  publication-title: Appl. Soft Comput.
– volume: 108
  year: 2021
  ident: 10.1016/j.engappai.2022.105099_b17
  article-title: Automatic and non-invasive Parkinson’s disease diagnosis and severity rating using LSTM network
  publication-title: Appl. Soft Comput.
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.engappai.2022.105099_b37
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 19
  start-page: 1794
  issue: 6
  year: 2015
  ident: 10.1016/j.engappai.2022.105099_b7
  article-title: Classification of Parkinson’s disease gait using spatial–temporal gait features
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2015.2450232
– volume: 203
  year: 2021
  ident: 10.1016/j.engappai.2022.105099_b33
  article-title: Can empirical mode decomposition improve heartbeat detection in fetal phonocardiography signals?
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2021.106038
– volume: 22
  start-page: 1248
  issue: 5
  year: 2005
  ident: 10.1016/j.engappai.2022.105099_b28
  article-title: Dual tasking, gait rhythmicity, and Parkinson’s disease: which aspects of gait are attention demanding?
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2005.04298.x
– volume: 20
  start-page: 1109
  issue: 9
  year: 2005
  ident: 10.1016/j.engappai.2022.105099_b30
  article-title: Treadmill walking as an external pacemaker to improve gait rhythm and stability in Parkinson’s disease
  publication-title: Mov. Disord.: Off. J. Mov. Disord. Soc.
  doi: 10.1002/mds.20507
– volume: 66
  year: 2021
  ident: 10.1016/j.engappai.2022.105099_b34
  article-title: Dephnn: a novel hybrid neural network for electroencephalogram (EEG)- based screening of depression
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102393
– volume: 180
  year: 2019
  ident: 10.1016/j.engappai.2022.105099_b4
  article-title: Using gait analysis’ parameters to classify Parkinsonism: A data mining approach
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.105033
– volume: 12
  issue: 5
  year: 2017
  ident: 10.1016/j.engappai.2022.105099_b13
  article-title: Vertical ground reaction force marker for Parkinson’s disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0175951
– volume: 194
  year: 2020
  ident: 10.1016/j.engappai.2022.105099_b15
  article-title: A comprehensive exploration of semantic relation extraction via pretrained CNNs
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105488
– volume: 101
  start-page: 1
  year: 2021
  ident: 10.1016/j.engappai.2022.105099_b32
  article-title: Universal steganalysis of spatial content-independent and content-adaptive steganographic algorithms using normalized feature derived from empirical mode decomposed components
  publication-title: Signal Process., Image Commun.
– volume: 117
  start-page: 234
  year: 2021
  ident: 10.1016/j.engappai.2022.105099_b8
  article-title: Handwriting dynamics assessment using deep neural network for early identification of parkinson’s disease
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.11.020
– volume: 18
  start-page: 150
  issue: 2
  year: 2009
  ident: 10.1016/j.engappai.2022.105099_b20
  article-title: Statistical analysis of gait rhythm in patients with Parkinson’s disease
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2009.2033062
– volume: 11
  year: 2020
  ident: 10.1016/j.engappai.2022.105099_b40
  article-title: Parkinson’s disease diagnosis and severity assessment using ground reaction forces and neural networks
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2020.587057
– volume: 83
  start-page: 366
  year: 2018
  ident: 10.1016/j.engappai.2022.105099_b39
  article-title: Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.02.009
– volume: 56
  year: 2020
  ident: 10.1016/j.engappai.2022.105099_b26
  article-title: Differential diagnosis of Parkinson and essential tremor with convolutional LSTM networks
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.101683
– volume: 145
  start-page: 135
  year: 2017
  ident: 10.1016/j.engappai.2022.105099_b14
  article-title: An automatic non-invasive method for Parkinson’s disease classification
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.04.007
– volume: 39
  start-page: 7338
  issue: 8
  year: 2012
  ident: 10.1016/j.engappai.2022.105099_b21
  article-title: Parkinson’s disease classification using gait characteristics and wavelet-based feature extraction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.01.084
– volume: 26
  start-page: 2369
  issue: 8
  year: 2007
  ident: 10.1016/j.engappai.2022.105099_b29
  article-title: Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2007.05810.x
– year: 2021
  ident: 10.1016/j.engappai.2022.105099_b27
SSID ssj0003846
Score 2.5397177
Snippet Parkinson’s disease (PD) diagnosis is a complex and challenging task which needs the assessment of various motor and non-motor symptoms. As gait impairment is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105099
SubjectTerms CNN–LSTM
EMD
Gait analysis
Parkinson’s disease
VGRF
Title Parkinson’s disease diagnosis and stage prediction based on gait signal analysis using EMD and CNN–LSTM network
URI https://dx.doi.org/10.1016/j.engappai.2022.105099
Volume 114
WOSCitedRecordID wos000838697900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0003846
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbcpEOXvoumj4BDN0GqJerFMUhdJEVjBIhReBNIiTSUBGpgOUG6Zeof6NS_l1_S40tSAqNphi4CTfhImff5jjzeA6EPYSZyURHmkyov_ZiOuU_lWPoxS0gpQ5EJyXWxiWw6zedzejga_XSxMBenWdPkl5f07L-yGvqA2Sp09h7s7gaFDmgD0-EJbIfnPzFexTGbkC7rx0Bbdw2jLK3Ksa42iZlhY7hQcVLqrkbDQKm0Sl0fLFi98pRrh84kYNOWnGuzwuTgkybenU7dBOTr0ezAa4xD-Q1Tf5_s0BvelGvng6X2UtI1QwZpQTvzQOB9q6sfndI4Ym19otzBvcNgaKmAQ65zxepNjpEfUlPvpZO-YTyQn6FKR0PXinZjZTgORLOAN2Z1oKYIeoKbubRv6bjO89A5tR0XbpxCjVOYcR6gzShLKEjHzZ39yfxLp9NJbkK-3C8YxJqvf6P125zB1mX2FD22Zw68Y7DyDI1E8xw9secPbKV7C12uxIfre4HaDk3XV79bbHGEOxxhgALWOMI9jrDGEYaGwhE2OMIOR1jjCAOONDHg6Prql0IQtgh6iWafJ7PdPd_W6fBLEkYrWBCeMpZWkZCpZFXJRCiZSGQekSoR8IGHoDlkzmN1KZxLHlMewTLFcLaNJSGv0EbzvRGvEeYgNiIGOoGkZVzxFL4GLSppOa5imtItlLhVLUqbw16VUjkt_s7XLfSxozszWVzupKCOaYXdi5o9ZgF4vIP2zb1ne4se9X-Yd2hjtTwX79HD8mJVt8ttC8Y_SGyytw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parkinson%E2%80%99s+disease+diagnosis+and+stage+prediction+based+on+gait+signal+analysis+using+EMD+and+CNN%E2%80%93LSTM+network&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=B.+Vidya&rft.au=Sasikumar+P.&rft.date=2022-09-01&rft.issn=0952-1976&rft.volume=114&rft.spage=105099&rft_id=info:doi/10.1016%2Fj.engappai.2022.105099&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2022_105099
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon