Parkinson’s disease diagnosis and stage prediction based on gait signal analysis using EMD and CNN–LSTM network
Parkinson’s disease (PD) diagnosis is a complex and challenging task which needs the assessment of various motor and non-motor symptoms. As gait impairment is one of the early and important symptoms of PD, in a clinical setting, physicians generally evaluate the gait abnormality based on visual obse...
Uloženo v:
| Vydáno v: | Engineering applications of artificial intelligence Ročník 114; s. 105099 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.09.2022
|
| Témata: | |
| ISSN: | 0952-1976 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Parkinson’s disease (PD) diagnosis is a complex and challenging task which needs the assessment of various motor and non-motor symptoms. As gait impairment is one of the early and important symptoms of PD, in a clinical setting, physicians generally evaluate the gait abnormality based on visual observations along with other numerous manifestations to assess the severity of PD. As such kind of assessment majorly depends on the experience and expertise of the physicians, there is scope for bias in assessment, leading to misdiagnosis. In this context, to assist the physicians to diagnose PD effectively, this study aims to design and investigate a gait analysis based classifier model using a hybrid convolutional neural network-long short term memory (CNN–LSTM) network to predict the severity rating of PD. For evaluation, we utilize the openly available gait dataset from Physionet that consists of vertical ground reaction force (VGRF) signals from three different walking tests. Firstly, the prominent VGRF signals obtained using the variability analysis are decomposed using the empirical mode decomposition (EMD) technique to extract the significant intrinsic mode functions (IMFs) that contain the vital gait features. Secondly, through the power spectral analysis the dominant IMFs of the selected VGRF signals are extracted to train the CNN–LSTM classifier model. To address the data overfitting problem in the classifier model, the proposed approach employs L2 regularization along with dropout techniques. Moreover, to solve the stochastic cost function, CNN–LSTM network utilizes the Adam optimizer for its minimal memory requirement and tuning. Finally, the experiments conducted using the gait patterns from 93 PD subjects and 73 healthy controls substantiate that the proposed CNN–LSTM classifier model can achieve a maximum multi-class classification accuracy of 98.32% and offer superior performance compared to several other similar methods which have used gait pattern to diagnose PD.
[Display omitted]
•PD stage prediction based on gait classification using CNN–LSTM network is proposed.•The VGRF signals are decomposed using EMD technique to extract dominant IMFs.•L2 regularization along with dropout layer is employed to address the data overfitting problem.•The multi-class classification accuracy of 98.32% is achieved using Adam optimizer. |
|---|---|
| AbstractList | Parkinson’s disease (PD) diagnosis is a complex and challenging task which needs the assessment of various motor and non-motor symptoms. As gait impairment is one of the early and important symptoms of PD, in a clinical setting, physicians generally evaluate the gait abnormality based on visual observations along with other numerous manifestations to assess the severity of PD. As such kind of assessment majorly depends on the experience and expertise of the physicians, there is scope for bias in assessment, leading to misdiagnosis. In this context, to assist the physicians to diagnose PD effectively, this study aims to design and investigate a gait analysis based classifier model using a hybrid convolutional neural network-long short term memory (CNN–LSTM) network to predict the severity rating of PD. For evaluation, we utilize the openly available gait dataset from Physionet that consists of vertical ground reaction force (VGRF) signals from three different walking tests. Firstly, the prominent VGRF signals obtained using the variability analysis are decomposed using the empirical mode decomposition (EMD) technique to extract the significant intrinsic mode functions (IMFs) that contain the vital gait features. Secondly, through the power spectral analysis the dominant IMFs of the selected VGRF signals are extracted to train the CNN–LSTM classifier model. To address the data overfitting problem in the classifier model, the proposed approach employs L2 regularization along with dropout techniques. Moreover, to solve the stochastic cost function, CNN–LSTM network utilizes the Adam optimizer for its minimal memory requirement and tuning. Finally, the experiments conducted using the gait patterns from 93 PD subjects and 73 healthy controls substantiate that the proposed CNN–LSTM classifier model can achieve a maximum multi-class classification accuracy of 98.32% and offer superior performance compared to several other similar methods which have used gait pattern to diagnose PD.
[Display omitted]
•PD stage prediction based on gait classification using CNN–LSTM network is proposed.•The VGRF signals are decomposed using EMD technique to extract dominant IMFs.•L2 regularization along with dropout layer is employed to address the data overfitting problem.•The multi-class classification accuracy of 98.32% is achieved using Adam optimizer. |
| ArticleNumber | 105099 |
| Author | B. Vidya Sasikumar P. |
| Author_xml | – sequence: 1 orcidid: 0000-0002-5047-6598 surname: B. Vidya fullname: B. Vidya – sequence: 2 surname: Sasikumar P. fullname: Sasikumar P. email: sasikumar.p@vit.ac.in |
| BookMark | eNqFkEtOwzAQhr0oEm3hCsgXaLGdRxOJBaiUh9QWJLq3Jsk4chucyA6g7noHVlyvJ8GhsGHT1cxY8438fwPSM7VBQi44G3PG48v1GE0JTQN6LJgQ_jFiadojfZZGYsTTSXxKBs6tGWNBEsZ94p7BbrRxtdnvvhwttENw6CuUpnbaUTAFdS2USBuLhc5bXRua-Z2C-qYE3VKnSwOV34Rq2yFvTpuSzha3P_B0udzvPucvqwU12H7UdnNGThRUDs9_65Cs7mar6cNo_nT_OL2Zj_KAi9b_NosB4kKgihUUOSBXgJFKRFBE6IeMBzxRSRYGaTRJVBammfCBQ56IUAXBkMSHs7mtnbOoZGP1K9it5Ex2tuRa_tmSnS15sOXBq39grlvogrcWdHUcvz7g6LO9a7TS5RpN7u1ZzFtZ1PrYiW9l75Kk |
| CitedBy_id | crossref_primary_10_1016_j_dsp_2023_104362 crossref_primary_10_1016_j_energy_2025_134751 crossref_primary_10_1088_1361_6579_ad9af5 crossref_primary_10_1016_j_asoc_2024_112283 crossref_primary_10_1016_j_engappai_2024_109656 crossref_primary_10_1002_aisy_202300845 crossref_primary_10_1007_s00170_023_12381_2 crossref_primary_10_1109_ACCESS_2025_3543749 crossref_primary_10_1016_j_engappai_2025_111157 crossref_primary_10_1016_j_engappai_2025_110342 crossref_primary_10_3390_app14198860 crossref_primary_10_3390_bioengineering11050440 crossref_primary_10_1007_s13042_023_02050_x crossref_primary_10_3390_jcm14072245 crossref_primary_10_1016_j_compeleceng_2025_110433 crossref_primary_10_3390_s22218441 crossref_primary_10_1080_08839514_2024_2389375 crossref_primary_10_32604_cmc_2024_051551 crossref_primary_10_1016_j_engappai_2023_105886 crossref_primary_10_1016_j_measurement_2024_115746 crossref_primary_10_1016_j_compbiomed_2025_110334 crossref_primary_10_1007_s11517_024_03148_2 crossref_primary_10_3390_rs17060988 crossref_primary_10_1016_j_bspc_2024_107196 crossref_primary_10_1016_j_inffus_2025_103456 crossref_primary_10_3390_diagnostics13091662 crossref_primary_10_1016_j_bspc_2025_107659 crossref_primary_10_1016_j_bspc_2024_105998 crossref_primary_10_1007_s11042_024_18186_z crossref_primary_10_1016_j_bspc_2023_105057 crossref_primary_10_1016_j_engappai_2023_107669 crossref_primary_10_7717_peerj_cs_2857 crossref_primary_10_1007_s00521_024_09516_1 crossref_primary_10_7759_cureus_47118 crossref_primary_10_3390_s24041196 crossref_primary_10_1016_j_optlaseng_2025_109309 crossref_primary_10_1155_2023_3578867 crossref_primary_10_3389_fphy_2022_1048833 crossref_primary_10_1007_s11227_025_07226_6 crossref_primary_10_1016_j_engappai_2023_107012 crossref_primary_10_3389_fninf_2024_1451529 crossref_primary_10_1007_s44174_024_00243_8 |
| Cites_doi | 10.1016/j.knosys.2018.01.004 10.1016/j.bspc.2021.102497 10.1016/j.energy.2019.05.230 10.1016/j.clinph.2018.10.010 10.1016/j.engappai.2021.104242 10.1016/j.engappai.2020.103955 10.1016/j.bspc.2020.102070 10.1016/j.icte.2016.10.005 10.1016/j.bspc.2020.102132 10.1016/j.patrec.2019.11.036 10.3389/fnagi.2021.633752 10.1016/j.bspc.2018.08.035 10.1016/j.bspc.2019.101819 10.1016/j.medengphy.2021.03.005 10.1016/j.neucom.2018.03.032 10.1186/s40035-017-0099-z 10.3390/s19020242 10.1016/j.knosys.2017.10.017 10.1162/neco.1997.9.8.1735 10.1109/JBHI.2015.2450232 10.1016/j.cmpb.2021.106038 10.1111/j.1460-9568.2005.04298.x 10.1002/mds.20507 10.1016/j.bspc.2020.102393 10.1016/j.cmpb.2019.105033 10.1371/journal.pone.0175951 10.1016/j.knosys.2020.105488 10.1016/j.future.2020.11.020 10.1109/TNSRE.2009.2033062 10.3389/fphys.2020.587057 10.1016/j.future.2018.02.009 10.1016/j.bspc.2019.101683 10.1016/j.cmpb.2017.04.007 10.1016/j.eswa.2012.01.084 10.1111/j.1460-9568.2007.05810.x |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2022.105099 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| ExternalDocumentID | 10_1016_j_engappai_2022_105099 S0952197622002433 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SSH SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c312t-19b6aa6d2ef6fadcae1fae5f823d5ee1fb1318f8b439578fb49b210541824f33 |
| ISICitedReferencesCount | 52 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000838697900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Sat Nov 29 07:07:38 EST 2025 Tue Nov 18 21:59:32 EST 2025 Sun Apr 06 06:54:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | VGRF EMD Gait analysis Parkinson’s disease CNN–LSTM |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-19b6aa6d2ef6fadcae1fae5f823d5ee1fb1318f8b439578fb49b210541824f33 |
| ORCID | 0000-0002-5047-6598 |
| ParticipantIDs | crossref_primary_10_1016_j_engappai_2022_105099 crossref_citationtrail_10_1016_j_engappai_2022_105099 elsevier_sciencedirect_doi_10_1016_j_engappai_2022_105099 |
| PublicationCentury | 2000 |
| PublicationDate | September 2022 2022-09-00 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Balaji, Brindha, Elumalai, Umesh (b31) 2021; 91 Lee, Lim (b21) 2012; 39 Balaji, Brindha, Balakrishnan (b11) 2020; 94 Khoury, Attal, Amirat, Oukhellou, Mohammed (b12) 2019; 19 Wu, Krishnan (b20) 2009; 18 Veeraragavan, Gopalai, Gouwanda, Ahmad (b40) 2020; 11 Zhao, Mao, Chen (b6) 2019; 47 Hussein, Palangi, Ward, Wang (b38) 2019; 130 Hochreiter, Schmidhuber (b37) 1997; 9 Zhao, Qi, Li, Dong, Yu (b18) 2018; 315 Prabhu, Karunakar, Anitha, Pradhan (b23) 2018 Ashour, El-Attar, Dey, Abd El-Kader, Abd El-Naby (b25) 2020; 131 Yogev, Giladi, Peretz, Springer, Simon, Hausdorff (b28) 2005; 22 El Maachi, Bilodeau, Bouachir (b16) 2020; 143 Balaji, Brindha, Elumalai, Vikrama (b17) 2021; 108 Zhang, Wang, Lv, Fan, Song (b19) 2021; 102 Farashi (b9) 2020; 62 Joshi, Khajuria, Joshi (b14) 2017; 145 Maiti, Manna, Dunbar (b5) 2017; 6 Cantürk (b10) 2021; 66 Kamran, Naz, Razzak, Imran (b8) 2021; 117 Alam, Garg, Munia, Fazel-Rezai, Tavakolian (b13) 2017; 12 Camps, Sama, Martin, Rodriguez-Martin, Perez-Lopez, Arostegui, Cabestany, Catala, Alcaine, Mestre (b2) 2018; 139 Yurdakul, Subathra, George (b24) 2020; 62 Mei, Desrosiers, Frasnelli (b1) 2021; 13 Oktay, Kocer (b26) 2020; 56 Hausdorff, Lowenthal, Herman, Gruendlinger, Peretz, Giladi (b29) 2007; 26 Kim, Cho (b35) 2019; 182 Chen, Hua, Zhang, Liu, Wen (b36) 2020; 57 Sharma, Parashar, Joshi (b34) 2021; 66 Frenkel-Toledo, Giladi, Peretz, Herman, Gruendlinger, Hausdorff (b30) 2005; 20 Zhao, Qi, Dong, Yu (b41) 2018; 145 Perumal, Sankar (b22) 2016; 2 Vican, Kreković, Jambrošić (b33) 2021; 203 Goyal, Khandnor, Aseri, Classification, prediction (b3) 2020; 96 Wahid, Begg, Hass, Halgamuge, Ackland (b7) 2015; 19 Abdulhay, Arunkumar, Narasimhan, Vellaiappan, Venkatraman (b39) 2018; 83 Arivazhagan, Amrutha, Jebarani (b32) 2021; 101 (b27) 2021 Li, Li, Wang, Li, Zhong (b15) 2020; 194 Ricciardi, Amboni, De Santis, Improta, Volpe, Iuppariello, Ricciardelli, D’Addio, Vitale, Barone (b4) 2019; 180 Chen (10.1016/j.engappai.2022.105099_b36) 2020; 57 Wu (10.1016/j.engappai.2022.105099_b20) 2009; 18 Camps (10.1016/j.engappai.2022.105099_b2) 2018; 139 Lee (10.1016/j.engappai.2022.105099_b21) 2012; 39 Prabhu (10.1016/j.engappai.2022.105099_b23) 2018 Sharma (10.1016/j.engappai.2022.105099_b34) 2021; 66 Yogev (10.1016/j.engappai.2022.105099_b28) 2005; 22 (10.1016/j.engappai.2022.105099_b27) 2021 Goyal (10.1016/j.engappai.2022.105099_b3) 2020; 96 Balaji (10.1016/j.engappai.2022.105099_b31) 2021; 91 Kamran (10.1016/j.engappai.2022.105099_b8) 2021; 117 Ashour (10.1016/j.engappai.2022.105099_b25) 2020; 131 Frenkel-Toledo (10.1016/j.engappai.2022.105099_b30) 2005; 20 Yurdakul (10.1016/j.engappai.2022.105099_b24) 2020; 62 Abdulhay (10.1016/j.engappai.2022.105099_b39) 2018; 83 Balaji (10.1016/j.engappai.2022.105099_b17) 2021; 108 Wahid (10.1016/j.engappai.2022.105099_b7) 2015; 19 Oktay (10.1016/j.engappai.2022.105099_b26) 2020; 56 Khoury (10.1016/j.engappai.2022.105099_b12) 2019; 19 Hausdorff (10.1016/j.engappai.2022.105099_b29) 2007; 26 Vican (10.1016/j.engappai.2022.105099_b33) 2021; 203 Alam (10.1016/j.engappai.2022.105099_b13) 2017; 12 Mei (10.1016/j.engappai.2022.105099_b1) 2021; 13 El Maachi (10.1016/j.engappai.2022.105099_b16) 2020; 143 Li (10.1016/j.engappai.2022.105099_b15) 2020; 194 Arivazhagan (10.1016/j.engappai.2022.105099_b32) 2021; 101 Zhao (10.1016/j.engappai.2022.105099_b6) 2019; 47 Zhao (10.1016/j.engappai.2022.105099_b41) 2018; 145 Veeraragavan (10.1016/j.engappai.2022.105099_b40) 2020; 11 Maiti (10.1016/j.engappai.2022.105099_b5) 2017; 6 Perumal (10.1016/j.engappai.2022.105099_b22) 2016; 2 Balaji (10.1016/j.engappai.2022.105099_b11) 2020; 94 Zhang (10.1016/j.engappai.2022.105099_b19) 2021; 102 Hussein (10.1016/j.engappai.2022.105099_b38) 2019; 130 Ricciardi (10.1016/j.engappai.2022.105099_b4) 2019; 180 Cantürk (10.1016/j.engappai.2022.105099_b10) 2021; 66 Farashi (10.1016/j.engappai.2022.105099_b9) 2020; 62 Zhao (10.1016/j.engappai.2022.105099_b18) 2018; 315 Hochreiter (10.1016/j.engappai.2022.105099_b37) 1997; 9 Joshi (10.1016/j.engappai.2022.105099_b14) 2017; 145 Kim (10.1016/j.engappai.2022.105099_b35) 2019; 182 |
| References_xml | – volume: 96 year: 2020 ident: b3 article-title: And monitoring of Parkinson’s disease using computer assisted technologies: A comparative analysis publication-title: Eng. Appl. Artif. Intell. – volume: 102 year: 2021 ident: b19 article-title: Computer vision detection of foreign objects in coal processing using attention CNN publication-title: Eng. Appl. Artif. Intell. – volume: 139 start-page: 119 year: 2018 end-page: 131 ident: b2 article-title: Deep learning for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit publication-title: Knowl.-Based Syst. – volume: 83 start-page: 366 year: 2018 end-page: 373 ident: b39 article-title: Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease publication-title: Future Gener. Comput. Syst. – volume: 2 start-page: 168 year: 2016 end-page: 174 ident: b22 article-title: Gait and tremor assessment for patients with Parkinson’s disease using wearable sensors publication-title: ICT Express – volume: 91 start-page: 54 year: 2021 end-page: 64 ident: b31 article-title: Data-driven gait analysis for diagnosis and severity rating of Parkinson’s disease publication-title: Med. Eng. Phys. – volume: 18 start-page: 150 year: 2009 end-page: 158 ident: b20 article-title: Statistical analysis of gait rhythm in patients with Parkinson’s disease publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 117 start-page: 234 year: 2021 end-page: 244 ident: b8 article-title: Handwriting dynamics assessment using deep neural network for early identification of parkinson’s disease publication-title: Future Gener. Comput. Syst. – volume: 26 start-page: 2369 year: 2007 end-page: 2375 ident: b29 article-title: Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease publication-title: Eur. J. Neurosci. – volume: 66 year: 2021 ident: b34 article-title: Dephnn: a novel hybrid neural network for electroencephalogram (EEG)- based screening of depression publication-title: Biomed. Signal Process. Control – volume: 180 year: 2019 ident: b4 article-title: Using gait analysis’ parameters to classify Parkinsonism: A data mining approach publication-title: Comput. Methods Programs Biomed. – volume: 62 year: 2020 ident: b24 article-title: Detection of Parkinson’s disease from gait using neighborhood representation local binary patterns publication-title: Biomed. Signal Process. Control – volume: 94 year: 2020 ident: b11 article-title: Supervised machine learning based gait classification system for early detection and stage classification of Parkinson’s disease publication-title: Appl. Soft Comput. – volume: 22 start-page: 1248 year: 2005 end-page: 1256 ident: b28 article-title: Dual tasking, gait rhythmicity, and Parkinson’s disease: which aspects of gait are attention demanding? publication-title: Eur. J. Neurosci. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b37 article-title: Long short-term memory publication-title: Neural Comput. – volume: 145 start-page: 91 year: 2018 end-page: 97 ident: b41 article-title: Dual channel LSTM based multi-feature extraction in gait for diagnosis of neurodegenerative diseases publication-title: Knowl.-Based Syst. – volume: 6 start-page: 1 year: 2017 end-page: 35 ident: b5 article-title: Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments publication-title: Transl. Neurodegener. – volume: 62 year: 2020 ident: b9 article-title: Distinguishing between parkinson’s disease patients and healthy individuals using a comprehensive set of time, frequency and time-frequency features extracted from vertical ground reaction force data publication-title: Biomed. Signal Process. Control – volume: 131 start-page: 23 year: 2020 end-page: 29 ident: b25 article-title: Long short term memory based patient-dependent model for FOG detection in Parkinson’s disease publication-title: Pattern Recognit. Lett. – volume: 108 year: 2021 ident: b17 article-title: Automatic and non-invasive Parkinson’s disease diagnosis and severity rating using LSTM network publication-title: Appl. Soft Comput. – volume: 19 start-page: 242 year: 2019 ident: b12 article-title: Data-driven based approach to aid Parkinson’s disease diagnosis publication-title: Sensors – volume: 130 start-page: 25 year: 2019 end-page: 37 ident: b38 article-title: Optimized deep neural network architecture for robust detection of epileptic seizures using eeg signals publication-title: Clin. Neurophysiol. – volume: 315 start-page: 1 year: 2018 end-page: 8 ident: b18 article-title: A hybrid spatio-temporal model for detection and severity rating of Parkinson’s disease from gait data publication-title: Neurocomputing – volume: 11 year: 2020 ident: b40 article-title: Parkinson’s disease diagnosis and severity assessment using ground reaction forces and neural networks publication-title: Front. Physiol. – year: 2018 ident: b23 article-title: Classification of gait signals into different neurodegenerative diseases using statistical analysis and recurrence quantification analysis publication-title: Pattern Recognit. Lett. – volume: 20 start-page: 1109 year: 2005 end-page: 1114 ident: b30 article-title: Treadmill walking as an external pacemaker to improve gait rhythm and stability in Parkinson’s disease publication-title: Mov. Disord.: Off. J. Mov. Disord. Soc. – volume: 182 start-page: 72 year: 2019 end-page: 81 ident: b35 article-title: Predicting residential energy consumption using CNN-LSTM neural networks publication-title: Energy – volume: 194 year: 2020 ident: b15 article-title: A comprehensive exploration of semantic relation extraction via pretrained CNNs publication-title: Knowl.-Based Syst. – volume: 203 year: 2021 ident: b33 article-title: Can empirical mode decomposition improve heartbeat detection in fetal phonocardiography signals? publication-title: Comput. Methods Programs Biomed. – volume: 143 year: 2020 ident: b16 article-title: Deep 1D-convnet for accurate Parkinson disease detection and severity prediction from gait publication-title: Expert Syst. Appl. – volume: 47 start-page: 312 year: 2019 end-page: 323 ident: b6 article-title: Speech emotion recognition using deep 1D & 2D CNN LSTM networks publication-title: Biomed. Signal Process. Control – volume: 57 year: 2020 ident: b36 article-title: Automated arrhythmia classification based on a combination network of CNN and LSTM publication-title: Biomed. Signal Process. Control – volume: 145 start-page: 135 year: 2017 end-page: 145 ident: b14 article-title: An automatic non-invasive method for Parkinson’s disease classification publication-title: Comput. Methods Programs Biomed. – volume: 19 start-page: 1794 year: 2015 end-page: 1802 ident: b7 article-title: Classification of Parkinson’s disease gait using spatial–temporal gait features publication-title: IEEE J. Biomed. Health Inf. – volume: 66 year: 2021 ident: b10 article-title: A computerized method to assess Parkinson’s disease severity from gait variability based on gender publication-title: Biomed. Signal Process. Control – volume: 101 start-page: 1 year: 2021 end-page: 11 ident: b32 article-title: Universal steganalysis of spatial content-independent and content-adaptive steganographic algorithms using normalized feature derived from empirical mode decomposed components publication-title: Signal Process., Image Commun. – year: 2021 ident: b27 article-title: Gait in parkinson’s disease – volume: 39 start-page: 7338 year: 2012 end-page: 7344 ident: b21 article-title: Parkinson’s disease classification using gait characteristics and wavelet-based feature extraction publication-title: Expert Syst. Appl. – volume: 12 year: 2017 ident: b13 article-title: Vertical ground reaction force marker for Parkinson’s disease publication-title: PLoS One – volume: 56 year: 2020 ident: b26 article-title: Differential diagnosis of Parkinson and essential tremor with convolutional LSTM networks publication-title: Biomed. Signal Process. Control – volume: 13 start-page: 184 year: 2021 ident: b1 article-title: Machine learning for the diagnosis of Parkinson’s disease: A review of literature publication-title: Front. Aging Neurosci. – volume: 145 start-page: 91 year: 2018 ident: 10.1016/j.engappai.2022.105099_b41 article-title: Dual channel LSTM based multi-feature extraction in gait for diagnosis of neurodegenerative diseases publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.01.004 – volume: 66 year: 2021 ident: 10.1016/j.engappai.2022.105099_b10 article-title: A computerized method to assess Parkinson’s disease severity from gait variability based on gender publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102497 – volume: 182 start-page: 72 year: 2019 ident: 10.1016/j.engappai.2022.105099_b35 article-title: Predicting residential energy consumption using CNN-LSTM neural networks publication-title: Energy doi: 10.1016/j.energy.2019.05.230 – volume: 130 start-page: 25 issue: 1 year: 2019 ident: 10.1016/j.engappai.2022.105099_b38 article-title: Optimized deep neural network architecture for robust detection of epileptic seizures using eeg signals publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2018.10.010 – volume: 102 year: 2021 ident: 10.1016/j.engappai.2022.105099_b19 article-title: Computer vision detection of foreign objects in coal processing using attention CNN publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104242 – volume: 96 year: 2020 ident: 10.1016/j.engappai.2022.105099_b3 article-title: And monitoring of Parkinson’s disease using computer assisted technologies: A comparative analysis publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103955 – volume: 62 year: 2020 ident: 10.1016/j.engappai.2022.105099_b24 article-title: Detection of Parkinson’s disease from gait using neighborhood representation local binary patterns publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102070 – volume: 143 year: 2020 ident: 10.1016/j.engappai.2022.105099_b16 article-title: Deep 1D-convnet for accurate Parkinson disease detection and severity prediction from gait publication-title: Expert Syst. Appl. – volume: 2 start-page: 168 issue: 4 year: 2016 ident: 10.1016/j.engappai.2022.105099_b22 article-title: Gait and tremor assessment for patients with Parkinson’s disease using wearable sensors publication-title: ICT Express doi: 10.1016/j.icte.2016.10.005 – volume: 62 year: 2020 ident: 10.1016/j.engappai.2022.105099_b9 article-title: Distinguishing between parkinson’s disease patients and healthy individuals using a comprehensive set of time, frequency and time-frequency features extracted from vertical ground reaction force data publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102132 – volume: 131 start-page: 23 year: 2020 ident: 10.1016/j.engappai.2022.105099_b25 article-title: Long short term memory based patient-dependent model for FOG detection in Parkinson’s disease publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2019.11.036 – volume: 13 start-page: 184 year: 2021 ident: 10.1016/j.engappai.2022.105099_b1 article-title: Machine learning for the diagnosis of Parkinson’s disease: A review of literature publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2021.633752 – volume: 47 start-page: 312 year: 2019 ident: 10.1016/j.engappai.2022.105099_b6 article-title: Speech emotion recognition using deep 1D & 2D CNN LSTM networks publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.08.035 – volume: 57 year: 2020 ident: 10.1016/j.engappai.2022.105099_b36 article-title: Automated arrhythmia classification based on a combination network of CNN and LSTM publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.101819 – volume: 91 start-page: 54 year: 2021 ident: 10.1016/j.engappai.2022.105099_b31 article-title: Data-driven gait analysis for diagnosis and severity rating of Parkinson’s disease publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2021.03.005 – year: 2018 ident: 10.1016/j.engappai.2022.105099_b23 article-title: Classification of gait signals into different neurodegenerative diseases using statistical analysis and recurrence quantification analysis publication-title: Pattern Recognit. Lett. – volume: 315 start-page: 1 year: 2018 ident: 10.1016/j.engappai.2022.105099_b18 article-title: A hybrid spatio-temporal model for detection and severity rating of Parkinson’s disease from gait data publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.03.032 – volume: 6 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.engappai.2022.105099_b5 article-title: Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments publication-title: Transl. Neurodegener. doi: 10.1186/s40035-017-0099-z – volume: 19 start-page: 242 issue: 2 year: 2019 ident: 10.1016/j.engappai.2022.105099_b12 article-title: Data-driven based approach to aid Parkinson’s disease diagnosis publication-title: Sensors doi: 10.3390/s19020242 – volume: 139 start-page: 119 year: 2018 ident: 10.1016/j.engappai.2022.105099_b2 article-title: Deep learning for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.10.017 – volume: 94 year: 2020 ident: 10.1016/j.engappai.2022.105099_b11 article-title: Supervised machine learning based gait classification system for early detection and stage classification of Parkinson’s disease publication-title: Appl. Soft Comput. – volume: 108 year: 2021 ident: 10.1016/j.engappai.2022.105099_b17 article-title: Automatic and non-invasive Parkinson’s disease diagnosis and severity rating using LSTM network publication-title: Appl. Soft Comput. – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.engappai.2022.105099_b37 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 19 start-page: 1794 issue: 6 year: 2015 ident: 10.1016/j.engappai.2022.105099_b7 article-title: Classification of Parkinson’s disease gait using spatial–temporal gait features publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2015.2450232 – volume: 203 year: 2021 ident: 10.1016/j.engappai.2022.105099_b33 article-title: Can empirical mode decomposition improve heartbeat detection in fetal phonocardiography signals? publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2021.106038 – volume: 22 start-page: 1248 issue: 5 year: 2005 ident: 10.1016/j.engappai.2022.105099_b28 article-title: Dual tasking, gait rhythmicity, and Parkinson’s disease: which aspects of gait are attention demanding? publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2005.04298.x – volume: 20 start-page: 1109 issue: 9 year: 2005 ident: 10.1016/j.engappai.2022.105099_b30 article-title: Treadmill walking as an external pacemaker to improve gait rhythm and stability in Parkinson’s disease publication-title: Mov. Disord.: Off. J. Mov. Disord. Soc. doi: 10.1002/mds.20507 – volume: 66 year: 2021 ident: 10.1016/j.engappai.2022.105099_b34 article-title: Dephnn: a novel hybrid neural network for electroencephalogram (EEG)- based screening of depression publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102393 – volume: 180 year: 2019 ident: 10.1016/j.engappai.2022.105099_b4 article-title: Using gait analysis’ parameters to classify Parkinsonism: A data mining approach publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.105033 – volume: 12 issue: 5 year: 2017 ident: 10.1016/j.engappai.2022.105099_b13 article-title: Vertical ground reaction force marker for Parkinson’s disease publication-title: PLoS One doi: 10.1371/journal.pone.0175951 – volume: 194 year: 2020 ident: 10.1016/j.engappai.2022.105099_b15 article-title: A comprehensive exploration of semantic relation extraction via pretrained CNNs publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105488 – volume: 101 start-page: 1 year: 2021 ident: 10.1016/j.engappai.2022.105099_b32 article-title: Universal steganalysis of spatial content-independent and content-adaptive steganographic algorithms using normalized feature derived from empirical mode decomposed components publication-title: Signal Process., Image Commun. – volume: 117 start-page: 234 year: 2021 ident: 10.1016/j.engappai.2022.105099_b8 article-title: Handwriting dynamics assessment using deep neural network for early identification of parkinson’s disease publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.11.020 – volume: 18 start-page: 150 issue: 2 year: 2009 ident: 10.1016/j.engappai.2022.105099_b20 article-title: Statistical analysis of gait rhythm in patients with Parkinson’s disease publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2009.2033062 – volume: 11 year: 2020 ident: 10.1016/j.engappai.2022.105099_b40 article-title: Parkinson’s disease diagnosis and severity assessment using ground reaction forces and neural networks publication-title: Front. Physiol. doi: 10.3389/fphys.2020.587057 – volume: 83 start-page: 366 year: 2018 ident: 10.1016/j.engappai.2022.105099_b39 article-title: Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.02.009 – volume: 56 year: 2020 ident: 10.1016/j.engappai.2022.105099_b26 article-title: Differential diagnosis of Parkinson and essential tremor with convolutional LSTM networks publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.101683 – volume: 145 start-page: 135 year: 2017 ident: 10.1016/j.engappai.2022.105099_b14 article-title: An automatic non-invasive method for Parkinson’s disease classification publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.04.007 – volume: 39 start-page: 7338 issue: 8 year: 2012 ident: 10.1016/j.engappai.2022.105099_b21 article-title: Parkinson’s disease classification using gait characteristics and wavelet-based feature extraction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.01.084 – volume: 26 start-page: 2369 issue: 8 year: 2007 ident: 10.1016/j.engappai.2022.105099_b29 article-title: Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2007.05810.x – year: 2021 ident: 10.1016/j.engappai.2022.105099_b27 |
| SSID | ssj0003846 |
| Score | 2.5397177 |
| Snippet | Parkinson’s disease (PD) diagnosis is a complex and challenging task which needs the assessment of various motor and non-motor symptoms. As gait impairment is... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105099 |
| SubjectTerms | CNN–LSTM EMD Gait analysis Parkinson’s disease VGRF |
| Title | Parkinson’s disease diagnosis and stage prediction based on gait signal analysis using EMD and CNN–LSTM network |
| URI | https://dx.doi.org/10.1016/j.engappai.2022.105099 |
| Volume | 114 |
| WOSCitedRecordID | wos000838697900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0003846 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbcpEOXvoumj4BDN0GqJerFMUhdJEVjBIhReBNIiTSUBGpgOUG6Zeof6NS_l1_S40tSAqNphi4CTfhImff5jjzeA6EPYSZyURHmkyov_ZiOuU_lWPoxS0gpQ5EJyXWxiWw6zedzejga_XSxMBenWdPkl5f07L-yGvqA2Sp09h7s7gaFDmgD0-EJbIfnPzFexTGbkC7rx0Bbdw2jLK3Ksa42iZlhY7hQcVLqrkbDQKm0Sl0fLFi98pRrh84kYNOWnGuzwuTgkybenU7dBOTr0ezAa4xD-Q1Tf5_s0BvelGvng6X2UtI1QwZpQTvzQOB9q6sfndI4Ym19otzBvcNgaKmAQ65zxepNjpEfUlPvpZO-YTyQn6FKR0PXinZjZTgORLOAN2Z1oKYIeoKbubRv6bjO89A5tR0XbpxCjVOYcR6gzShLKEjHzZ39yfxLp9NJbkK-3C8YxJqvf6P125zB1mX2FD22Zw68Y7DyDI1E8xw9secPbKV7C12uxIfre4HaDk3XV79bbHGEOxxhgALWOMI9jrDGEYaGwhE2OMIOR1jjCAOONDHg6Prql0IQtgh6iWafJ7PdPd_W6fBLEkYrWBCeMpZWkZCpZFXJRCiZSGQekSoR8IGHoDlkzmN1KZxLHlMewTLFcLaNJSGv0EbzvRGvEeYgNiIGOoGkZVzxFL4GLSppOa5imtItlLhVLUqbw16VUjkt_s7XLfSxozszWVzupKCOaYXdi5o9ZgF4vIP2zb1ne4se9X-Yd2hjtTwX79HD8mJVt8ttC8Y_SGyytw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parkinson%E2%80%99s+disease+diagnosis+and+stage+prediction+based+on+gait+signal+analysis+using+EMD+and+CNN%E2%80%93LSTM+network&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=B.+Vidya&rft.au=Sasikumar+P.&rft.date=2022-09-01&rft.issn=0952-1976&rft.volume=114&rft.spage=105099&rft_id=info:doi/10.1016%2Fj.engappai.2022.105099&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2022_105099 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |