A Comparative Study of Cuckoo Algorithm and Ant Colony Algorithm in Optimal Path Problems

Finding the optimal path can be realized through a wide range of algorithms, which is demanded in many fields. Among countless algorithms that are used for solving the optimal path problem, the ant colony optimization (ACO) is one of the algorithms used to solve the approximate optimal path solution...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:MATEC web of conferences Ročník 232; s. 3003
Hlavní autor: Wang, Guanyu
Médium: Journal Article Konferenční příspěvek
Jazyk:angličtina
Vydáno: Les Ulis EDP Sciences 01.01.2018
Témata:
ISSN:2261-236X, 2274-7214, 2261-236X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Finding the optimal path can be realized through a wide range of algorithms, which is demanded in many fields. Among countless algorithms that are used for solving the optimal path problem, the ant colony optimization (ACO) is one of the algorithms used to solve the approximate optimal path solution, while the cuckoo search (CS) algorithm is a swarm intelligence algorithm featuring Levy flight, whose core idea is derived from the cuckoo nesting property. In order to provide more ideas and directions for future research on optimal path problems, this paper discusses in detail the advantages and disadvantages of the two algorithms for solving the optimal path problem and their scopes of application by comparing principles and flows of the two algorithms.
Bibliografie:ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/201823203003