Improved Approximation Algorithms for Bounded-Degree Local Hamiltonians

The low-temperature properties of interacting quantum systems are believed to require exponential resources to compute in the general case. Quantifying the extent to which such properties can be approximated using efficient algorithms remains a significant open challenge. Here, we consider the task...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters Vol. 127; no. 25; p. 250502
Main Authors: Anshu, Anurag, Gosset, David, Morenz Korol, Karen J., Soleimanifar, Mehdi
Format: Journal Article
Language:English
Published: United States 17.12.2021
ISSN:0031-9007, 1079-7114, 1079-7114
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The low-temperature properties of interacting quantum systems are believed to require exponential resources to compute in the general case. Quantifying the extent to which such properties can be approximated using efficient algorithms remains a significant open challenge. Here, we consider the task of approximating the ground state energy of two-local quantum Hamiltonians with bounded-degree interaction graphs. Most existing algorithms optimize the energy over the set of product states. We propose and analyze a family of shallow quantum circuits that can be used to improve the approximation ratio achieved by a given product state. The algorithm takes as input an n-qubit product state with variance Var and improves its energy by an amount proportional to Var^{2}/n. In a typical case, this results in an extensive improvement in the estimated energy. We extend our results to k-local Hamiltonians and entangled initial states.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0031-9007
1079-7114
1079-7114
DOI:10.1103/PhysRevLett.127.250502