Improved Approximation Algorithms for Bounded-Degree Local Hamiltonians

The low-temperature properties of interacting quantum systems are believed to require exponential resources to compute in the general case. Quantifying the extent to which such properties can be approximated using efficient algorithms remains a significant open challenge. Here, we consider the task...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physical review letters Ročník 127; číslo 25; s. 250502
Hlavní autoři: Anshu, Anurag, Gosset, David, Morenz Korol, Karen J., Soleimanifar, Mehdi
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 17.12.2021
ISSN:0031-9007, 1079-7114, 1079-7114
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The low-temperature properties of interacting quantum systems are believed to require exponential resources to compute in the general case. Quantifying the extent to which such properties can be approximated using efficient algorithms remains a significant open challenge. Here, we consider the task of approximating the ground state energy of two-local quantum Hamiltonians with bounded-degree interaction graphs. Most existing algorithms optimize the energy over the set of product states. We propose and analyze a family of shallow quantum circuits that can be used to improve the approximation ratio achieved by a given product state. The algorithm takes as input an n-qubit product state with variance Var and improves its energy by an amount proportional to Var^{2}/n. In a typical case, this results in an extensive improvement in the estimated energy. We extend our results to k-local Hamiltonians and entangled initial states.
AbstractList The low-temperature properties of interacting quantum systems are believed to require exponential resources to compute in the general case. Quantifying the extent to which such properties can be approximated using efficient algorithms remains a significant open challenge. Here, we consider the task of approximating the ground state energy of two-local quantum Hamiltonians with bounded-degree interaction graphs. Most existing algorithms optimize the energy over the set of product states. We propose and analyze a family of shallow quantum circuits that can be used to improve the approximation ratio achieved by a given product state. The algorithm takes as input an n-qubit product state with variance Var and improves its energy by an amount proportional to Var^{2}/n. In a typical case, this results in an extensive improvement in the estimated energy. We extend our results to k-local Hamiltonians and entangled initial states.
The low-temperature properties of interacting quantum systems are believed to require exponential resources to compute in the general case. Quantifying the extent to which such properties can be approximated using efficient algorithms remains a significant open challenge. Here, we consider the task of approximating the ground state energy of two-local quantum Hamiltonians with bounded-degree interaction graphs. Most existing algorithms optimize the energy over the set of product states. We propose and analyze a family of shallow quantum circuits that can be used to improve the approximation ratio achieved by a given product state. The algorithm takes as input an n-qubit product state with variance Var and improves its energy by an amount proportional to Var^{2}/n. In a typical case, this results in an extensive improvement in the estimated energy. We extend our results to k-local Hamiltonians and entangled initial states.The low-temperature properties of interacting quantum systems are believed to require exponential resources to compute in the general case. Quantifying the extent to which such properties can be approximated using efficient algorithms remains a significant open challenge. Here, we consider the task of approximating the ground state energy of two-local quantum Hamiltonians with bounded-degree interaction graphs. Most existing algorithms optimize the energy over the set of product states. We propose and analyze a family of shallow quantum circuits that can be used to improve the approximation ratio achieved by a given product state. The algorithm takes as input an n-qubit product state with variance Var and improves its energy by an amount proportional to Var^{2}/n. In a typical case, this results in an extensive improvement in the estimated energy. We extend our results to k-local Hamiltonians and entangled initial states.
ArticleNumber 250502
Author Gosset, David
Morenz Korol, Karen J.
Anshu, Anurag
Soleimanifar, Mehdi
Author_xml – sequence: 1
  givenname: Anurag
  surname: Anshu
  fullname: Anshu, Anurag
– sequence: 2
  givenname: David
  surname: Gosset
  fullname: Gosset, David
– sequence: 3
  givenname: Karen J.
  surname: Morenz Korol
  fullname: Morenz Korol, Karen J.
– sequence: 4
  givenname: Mehdi
  surname: Soleimanifar
  fullname: Soleimanifar, Mehdi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35029412$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtOwzAQRS1UBOXxC1WWbFJm7LwssSkFSqVIIARry4kdGpTExXYr-HsMBQmxYeVZnDvjc4_IaDCDJmSCMEUEdn6_encPeltq76dI8ylNIQW6R8YIOY9zxGRExgAMYw6QH5Ij514AAGlWHJBDFlieIB2TxbJfW7PVKpqtw_DW9tK3Zohm3bOxrV_1LmqMjS7NZlBaxVf62WodlaaWXXQr-7bzZmjl4E7IfiM7p0-_32PydHP9OL-Ny7vFcj4r45oh-ljxTNGacUlRFk2SJZCotNIUkOVVWtQ8R5lWmFQ0ZYCcVnmWcFQs47oAXih2TM52e8NnXzfaedG3rtZdJwdtNk7QjAIUGEwDOvlGN1WvlVjbIGffxY98AC52QG2Nc1Y3om79l763su0EgvjsWvzqWoSuxa7rEM_-xH8u_BP8AAirhbI
CitedBy_id crossref_primary_10_1109_TQE_2024_3421294
crossref_primary_10_1287_ijoc_2023_1268
crossref_primary_10_1103_PRXQuantum_4_040337
Cites_doi 10.1007/s00220-016-2575-1
10.1038/ncomms5213
10.1145/2491533.2491549
10.1038/nature23879
10.1038/s41467-018-07090-4
10.1103/PhysRevLett.125.260505
10.22331/q-2017-04-25-6
10.1145/502090.502098
10.1063/1.5085428
10.1137/110842272
10.26421/QIC9.7-8-12
10.1038/s41567-020-01109-8
10.1016/S0020-0190(00)00032-6
10.1126/science.273.5278.1073
10.1145/1236457.1236459
10.1145/278298.278306
10.26421/QIC14.1-2-9
10.1145/273865.273901
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1103/PhysRevLett.127.250502
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 35029412
10_1103_PhysRevLett_127_250502
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
186
2-P
29O
3MX
3O-
41~
5VS
6TJ
85S
8NH
8WZ
9M8
A6W
AAYJJ
AAYXX
ABSSX
ABUFD
ACBEA
ACGFO
ACKIV
ACNCT
ADXHL
AECSF
AENEX
AEQTI
AETEA
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CITATION
CS3
D0L
DU5
EBS
EJD
ER.
F5P
H~9
MVM
N9A
NEJ
NHB
NPBMV
OHT
OK1
P0-
P2P
RNS
ROL
S7W
SJN
T9H
TN5
UBC
UBE
VOH
WH7
XOL
XSW
YNT
YYP
ZCG
ZPR
ZY4
~02
NPM
7X8
ID FETCH-LOGICAL-c311t-d96d2c39a21a8f46404d5be20137b58c971a5b14b2530192b76491d369e8098d3
IEDL.DBID 3MX
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000760569100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-9007
1079-7114
IngestDate Fri Jul 11 11:22:32 EDT 2025
Mon Jul 21 06:02:02 EDT 2025
Tue Nov 18 20:57:49 EST 2025
Sat Nov 29 07:41:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 25
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-d96d2c39a21a8f46404d5be20137b58c971a5b14b2530192b76491d369e8098d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 35029412
PQID 2620081001
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2620081001
pubmed_primary_35029412
crossref_citationtrail_10_1103_PhysRevLett_127_250502
crossref_primary_10_1103_PhysRevLett_127_250502
PublicationCentury 2000
PublicationDate 2021-12-17
PublicationDateYYYYMMDD 2021-12-17
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2021
References PhysRevLett.127.250502Cc2R1
PhysRevLett.127.250502Cc1R1
PhysRevLett.127.250502Cc5R1
PhysRevLett.127.250502Cc4R1
S. Gharibian (PhysRevLett.127.250502Cc12R1) 2019
PhysRevLett.127.250502Cc17R1
PhysRevLett.127.250502Cc28R1
V. V. Vazirani (PhysRevLett.127.250502Cc11R1) 2013
PhysRevLett.127.250502Cc14R1
S. Hallgren (PhysRevLett.127.250502Cc15R1) 2020
PhysRevLett.127.250502Cc18R1
PhysRevLett.127.250502Cc29R1
PhysRevLett.127.250502Cc19R1
PhysRevLett.127.250502Cc20R1
PhysRevLett.127.250502Cc30R1
PhysRevLett.127.250502Cc8R1
PhysRevLett.127.250502Cc7R1
A. Anshu (PhysRevLett.127.250502Cc13R1) 2020
PhysRevLett.127.250502Cc23R1
PhysRevLett.127.250502Cc24R1
PhysRevLett.127.250502Cc21R1
PhysRevLett.127.250502Cc22R1
References_xml – ident: PhysRevLett.127.250502Cc20R1
  doi: 10.1007/s00220-016-2575-1
– ident: PhysRevLett.127.250502Cc2R1
  doi: 10.1038/ncomms5213
– volume-title: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
  year: 2019
  ident: PhysRevLett.127.250502Cc12R1
– ident: PhysRevLett.127.250502Cc24R1
  doi: 10.1145/2491533.2491549
– ident: PhysRevLett.127.250502Cc4R1
  doi: 10.1038/nature23879
– ident: PhysRevLett.127.250502Cc5R1
  doi: 10.1038/s41467-018-07090-4
– ident: PhysRevLett.127.250502Cc7R1
  doi: 10.1103/PhysRevLett.125.260505
– ident: PhysRevLett.127.250502Cc17R1
  doi: 10.22331/q-2017-04-25-6
– volume-title: Approximation Algorithms
  year: 2013
  ident: PhysRevLett.127.250502Cc11R1
– ident: PhysRevLett.127.250502Cc29R1
  doi: 10.1145/502090.502098
– ident: PhysRevLett.127.250502Cc18R1
  doi: 10.1063/1.5085428
– ident: PhysRevLett.127.250502Cc14R1
  doi: 10.1137/110842272
– ident: PhysRevLett.127.250502Cc19R1
  doi: 10.26421/QIC9.7-8-12
– ident: PhysRevLett.127.250502Cc8R1
  doi: 10.1038/s41567-020-01109-8
– ident: PhysRevLett.127.250502Cc30R1
  doi: 10.1016/S0020-0190(00)00032-6
– ident: PhysRevLett.127.250502Cc1R1
  doi: 10.1126/science.273.5278.1073
– ident: PhysRevLett.127.250502Cc23R1
  doi: 10.1145/1236457.1236459
– ident: PhysRevLett.127.250502Cc21R1
  doi: 10.1145/278298.278306
– volume-title: Proceedings of 15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020)
  year: 2020
  ident: PhysRevLett.127.250502Cc13R1
– volume-title: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)
  year: 2020
  ident: PhysRevLett.127.250502Cc15R1
– ident: PhysRevLett.127.250502Cc28R1
  doi: 10.26421/QIC14.1-2-9
– ident: PhysRevLett.127.250502Cc22R1
  doi: 10.1145/273865.273901
SSID ssj0001268
Score 2.4828014
Snippet The low-temperature properties of interacting quantum systems are believed to require exponential resources to compute in the general case. Quantifying the...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 250502
Title Improved Approximation Algorithms for Bounded-Degree Local Hamiltonians
URI https://www.ncbi.nlm.nih.gov/pubmed/35029412
https://www.proquest.com/docview/2620081001
Volume 127
WOSCitedRecordID wos000760569100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABR
  databaseName: American Physical Society
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: 3MX
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://journals.aps.org/
  providerName: American Physical Society
– providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: ER.
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5FFLz4ftQXK3hNm9dukmN99qBFRKG3JY9ZLWgr3Vr8-Sa7tSgo4iW3yYbJbOabZOYbhE4cc8wqbjCxvMBCKoI1pAWWICl4bw3ntmo2IXs91e_r2wYiP7_gU8LbMRPyDqaxuqVFmWxFn12zRyoRWxbwm_786KUsq49eHvMOiJyVBP8-zXdv9AvErFzN5er_F7mGVmawMunUdrCOGjDcQEtVeqcrN9FVfXcAPulEDvH3QV2wmHSeH0fjweTppUwCeE1OY48l8PgcQhQOyXX0c0k3XoEEhBjsqNxCD5cX92ddPGuhgB2ndIK9zjxzXBtGjSpEJojwqQUWiQZtqpyW1KSWCstSHsGelZnQ1PNMgyJaeb6NFoajIeyipHCy4KCcICaEbMKpTHqT-QJkahQQ3kTppypzN-MXj20unvMqziA8_6KkPCgpr5XURO253GvNsPGnxPHnTuXhZ4gvHGYIo7cyj-z6AeMEQ2iinXoL53PyIKkFZXv__t4-WmYxk4UyTOUBWpiM3-AQLbrpZFCOjyoLDKPsqw8N4Nlq
linkProvider American Physical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Approximation+Algorithms+for+Bounded-Degree+Local+Hamiltonians&rft.jtitle=Physical+review+letters&rft.au=Anshu%2C+Anurag&rft.au=Gosset%2C+David&rft.au=Morenz+Korol%2C+Karen+J&rft.au=Soleimanifar%2C+Mehdi&rft.date=2021-12-17&rft.eissn=1079-7114&rft.volume=127&rft.issue=25&rft.spage=250502&rft_id=info:doi/10.1103%2FPhysRevLett.127.250502&rft_id=info%3Apmid%2F35029412&rft.externalDocID=35029412
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon