Division of labor within the DNA damage tolerance system reveals non-epistatic and clinically actionable targets for precision cancer medicine

Crosslink repair depends on the Fanconi anemia pathway and translesion synthesis polymerases that replicate over unhooked crosslinks. Translesion synthesis is regulated via ubiquitination of PCNA, and independently via translesion synthesis polymerase REV1. The division of labor between PCNA-ubiquit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research Jg. 50; H. 13; S. 7420 - 7435
Hauptverfasser: Spanjaard, Aldo, Shah, Ronak, de Groot, Daniël, Buoninfante, Olimpia Alessandra, Morris, Ben, Lieftink, Cor, Pritchard, Colin, Zürcher, Lisa M, Ormel, Shirley, Catsman, Joyce J I, de Korte-Grimmerink, Renske, Siteur, Bjørn, Proost, Natalie, Boadum, Terry, van de Ven, Marieke, Song, Ji-Ying, Kreft, Maaike, van den Berk, Paul C M, Beijersbergen, Roderick L, Jacobs, Heinz
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Oxford University Press 22.07.2022
Schlagworte:
ISSN:0305-1048, 1362-4962, 1362-4962
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Crosslink repair depends on the Fanconi anemia pathway and translesion synthesis polymerases that replicate over unhooked crosslinks. Translesion synthesis is regulated via ubiquitination of PCNA, and independently via translesion synthesis polymerase REV1. The division of labor between PCNA-ubiquitination and REV1 in interstrand crosslink repair is unclear. Inhibition of either of these pathways has been proposed as a strategy to increase cytotoxicity of platinating agents in cancer treatment. Here, we defined the importance of PCNA-ubiquitination and REV1 for DNA in mammalian ICL repair. In mice, loss of PCNA-ubiquitination, but not REV1, resulted in germ cell defects and hypersensitivity to cisplatin. Loss of PCNA-ubiquitination, but not REV1 sensitized mammalian cancer cell lines to cisplatin. We identify polymerase Kappa as essential in tolerating DNA damage-induced lesions, in particular cisplatin lesions. Polk-deficient tumors were controlled by cisplatin treatment and it significantly delayed tumor outgrowth and increased overall survival of tumor bearing mice. Our results indicate that PCNA-ubiquitination and REV1 play distinct roles in DNA damage tolerance. Moreover, our results highlight POLK as a critical TLS polymerase in tolerating multiple genotoxic lesions, including cisplatin lesions. The relative frequent loss of Polk in cancers indicates an exploitable vulnerability for precision cancer medicine.
AbstractList Crosslink repair depends on the Fanconi anemia pathway and translesion synthesis polymerases that replicate over unhooked crosslinks. Translesion synthesis is regulated via ubiquitination of PCNA, and independently via translesion synthesis polymerase REV1. The division of labor between PCNA-ubiquitination and REV1 in interstrand crosslink repair is unclear. Inhibition of either of these pathways has been proposed as a strategy to increase cytotoxicity of platinating agents in cancer treatment. Here, we defined the importance of PCNA-ubiquitination and REV1 for DNA in mammalian ICL repair. In mice, loss of PCNA-ubiquitination, but not REV1, resulted in germ cell defects and hypersensitivity to cisplatin. Loss of PCNA-ubiquitination, but not REV1 sensitized mammalian cancer cell lines to cisplatin. We identify polymerase Kappa as essential in tolerating DNA damage-induced lesions, in particular cisplatin lesions. Polk-deficient tumors were controlled by cisplatin treatment and it significantly delayed tumor outgrowth and increased overall survival of tumor bearing mice. Our results indicate that PCNA-ubiquitination and REV1 play distinct roles in DNA damage tolerance. Moreover, our results highlight POLK as a critical TLS polymerase in tolerating multiple genotoxic lesions, including cisplatin lesions. The relative frequent loss of Polk in cancers indicates an exploitable vulnerability for precision cancer medicine. Graphical AbstractHuman and murine cell lines and mice rely on PCNA-ubiquitination, though not REV1, to tolerate cisplatin-induced DNA interstrand crosslinks. TLS polymerase Kappa deficiency sensitises tumors to cisplatin in vitro and in vivo.
Crosslink repair depends on the Fanconi anemia pathway and translesion synthesis polymerases that replicate over unhooked crosslinks. Translesion synthesis is regulated via ubiquitination of PCNA, and independently via translesion synthesis polymerase REV1. The division of labor between PCNA-ubiquitination and REV1 in interstrand crosslink repair is unclear. Inhibition of either of these pathways has been proposed as a strategy to increase cytotoxicity of platinating agents in cancer treatment. Here, we defined the importance of PCNA-ubiquitination and REV1 for DNA in mammalian ICL repair. In mice, loss of PCNA-ubiquitination, but not REV1, resulted in germ cell defects and hypersensitivity to cisplatin. Loss of PCNA-ubiquitination, but not REV1 sensitized mammalian cancer cell lines to cisplatin. We identify polymerase Kappa as essential in tolerating DNA damage-induced lesions, in particular cisplatin lesions. Polk-deficient tumors were controlled by cisplatin treatment and it significantly delayed tumor outgrowth and increased overall survival of tumor bearing mice. Our results indicate that PCNA-ubiquitination and REV1 play distinct roles in DNA damage tolerance. Moreover, our results highlight POLK as a critical TLS polymerase in tolerating multiple genotoxic lesions, including cisplatin lesions. The relative frequent loss of Polk in cancers indicates an exploitable vulnerability for precision cancer medicine.
Crosslink repair depends on the Fanconi anemia pathway and translesion synthesis polymerases that replicate over unhooked crosslinks. Translesion synthesis is regulated via ubiquitination of PCNA, and independently via translesion synthesis polymerase REV1. The division of labor between PCNA-ubiquitination and REV1 in interstrand crosslink repair is unclear. Inhibition of either of these pathways has been proposed as a strategy to increase cytotoxicity of platinating agents in cancer treatment. Here, we defined the importance of PCNA-ubiquitination and REV1 for DNA in mammalian ICL repair. In mice, loss of PCNA-ubiquitination, but not REV1, resulted in germ cell defects and hypersensitivity to cisplatin. Loss of PCNA-ubiquitination, but not REV1 sensitized mammalian cancer cell lines to cisplatin. We identify polymerase Kappa as essential in tolerating DNA damage-induced lesions, in particular cisplatin lesions. Polk-deficient tumors were controlled by cisplatin treatment and it significantly delayed tumor outgrowth and increased overall survival of tumor bearing mice. Our results indicate that PCNA-ubiquitination and REV1 play distinct roles in DNA damage tolerance. Moreover, our results highlight POLK as a critical TLS polymerase in tolerating multiple genotoxic lesions, including cisplatin lesions. The relative frequent loss of Polk in cancers indicates an exploitable vulnerability for precision cancer medicine.Crosslink repair depends on the Fanconi anemia pathway and translesion synthesis polymerases that replicate over unhooked crosslinks. Translesion synthesis is regulated via ubiquitination of PCNA, and independently via translesion synthesis polymerase REV1. The division of labor between PCNA-ubiquitination and REV1 in interstrand crosslink repair is unclear. Inhibition of either of these pathways has been proposed as a strategy to increase cytotoxicity of platinating agents in cancer treatment. Here, we defined the importance of PCNA-ubiquitination and REV1 for DNA in mammalian ICL repair. In mice, loss of PCNA-ubiquitination, but not REV1, resulted in germ cell defects and hypersensitivity to cisplatin. Loss of PCNA-ubiquitination, but not REV1 sensitized mammalian cancer cell lines to cisplatin. We identify polymerase Kappa as essential in tolerating DNA damage-induced lesions, in particular cisplatin lesions. Polk-deficient tumors were controlled by cisplatin treatment and it significantly delayed tumor outgrowth and increased overall survival of tumor bearing mice. Our results indicate that PCNA-ubiquitination and REV1 play distinct roles in DNA damage tolerance. Moreover, our results highlight POLK as a critical TLS polymerase in tolerating multiple genotoxic lesions, including cisplatin lesions. The relative frequent loss of Polk in cancers indicates an exploitable vulnerability for precision cancer medicine.
Author Pritchard, Colin
Shah, Ronak
Morris, Ben
Buoninfante, Olimpia Alessandra
Proost, Natalie
Boadum, Terry
Zürcher, Lisa M
van den Berk, Paul C M
van de Ven, Marieke
Kreft, Maaike
Jacobs, Heinz
Siteur, Bjørn
Song, Ji-Ying
de Groot, Daniël
Spanjaard, Aldo
Ormel, Shirley
Catsman, Joyce J I
de Korte-Grimmerink, Renske
Beijersbergen, Roderick L
Lieftink, Cor
Author_xml – sequence: 1
  givenname: Aldo
  surname: Spanjaard
  fullname: Spanjaard, Aldo
– sequence: 2
  givenname: Ronak
  surname: Shah
  fullname: Shah, Ronak
– sequence: 3
  givenname: Daniël
  surname: de Groot
  fullname: de Groot, Daniël
– sequence: 4
  givenname: Olimpia Alessandra
  surname: Buoninfante
  fullname: Buoninfante, Olimpia Alessandra
– sequence: 5
  givenname: Ben
  surname: Morris
  fullname: Morris, Ben
– sequence: 6
  givenname: Cor
  surname: Lieftink
  fullname: Lieftink, Cor
– sequence: 7
  givenname: Colin
  surname: Pritchard
  fullname: Pritchard, Colin
– sequence: 8
  givenname: Lisa M
  surname: Zürcher
  fullname: Zürcher, Lisa M
– sequence: 9
  givenname: Shirley
  surname: Ormel
  fullname: Ormel, Shirley
– sequence: 10
  givenname: Joyce J I
  surname: Catsman
  fullname: Catsman, Joyce J I
– sequence: 11
  givenname: Renske
  surname: de Korte-Grimmerink
  fullname: de Korte-Grimmerink, Renske
– sequence: 12
  givenname: Bjørn
  surname: Siteur
  fullname: Siteur, Bjørn
– sequence: 13
  givenname: Natalie
  surname: Proost
  fullname: Proost, Natalie
– sequence: 14
  givenname: Terry
  surname: Boadum
  fullname: Boadum, Terry
– sequence: 15
  givenname: Marieke
  surname: van de Ven
  fullname: van de Ven, Marieke
– sequence: 16
  givenname: Ji-Ying
  surname: Song
  fullname: Song, Ji-Ying
– sequence: 17
  givenname: Maaike
  surname: Kreft
  fullname: Kreft, Maaike
– sequence: 18
  givenname: Paul C M
  surname: van den Berk
  fullname: van den Berk, Paul C M
– sequence: 19
  givenname: Roderick L
  surname: Beijersbergen
  fullname: Beijersbergen, Roderick L
– sequence: 20
  givenname: Heinz
  orcidid: 0000-0001-6227-9850
  surname: Jacobs
  fullname: Jacobs, Heinz
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35819193$$D View this record in MEDLINE/PubMed
BookMark eNptkU1vEzEQhi1URNPCiTvyEQkttdfr7PqCVLV8SRVc4GyNvbOJwWsH20mVP8FvxlFSBIjTHPzO84z8XpCzEAMS8pyz15wpcRUgXa2-g5WdfEQWXCzbplPL9owsmGCy4awbzslFzt8Y4x2X3RNyLuTAFVdiQX7eup3LLgYaJ-rBxETvXVm7QMsa6e2nazrCDCukJXpMECzSvM8FZ5pwh-Azrdc0uHG5QHGWQhip9S44C97vKdhS2WB8BUBaYcl0qopNQnu02gMy0RlHZ13Ap-TxVKH47DQvydd3b7_cfGjuPr__eHN911jBeWnGvjfcSBxlD6aVSk3SyK6fJKCxRg5TN4AyrRo7ib2YhOlkL4D1PVMK5TiJS_LmyN1sTXVbDCWB15vkZkh7HcHpv1-CW-tV3GklmBCKVcDLEyDFH1vMRc8uW_QeAsZt1u1yGORS9e1Qoy_-dP2WPJRQA_wYsCnmnHDS1h1-Mx7UzmvO9KFoXYvWp6Lrzqt_dh6w_0v_AvjUsEM
CitedBy_id crossref_primary_10_1186_s13059_024_03451_z
crossref_primary_10_1038_s41594_024_01395_3
crossref_primary_10_1186_s12929_024_01044_3
crossref_primary_10_1093_pnasnexus_pgae242
crossref_primary_10_1016_j_molcel_2023_07_008
crossref_primary_10_1186_s12894_024_01410_1
crossref_primary_10_1038_s41389_024_00525_2
crossref_primary_10_1073_pnas_2216055120
Cites_doi 10.1016/j.molcel.2010.02.009
10.1016/j.cell.2008.08.030
10.1038/nature21671
10.1016/j.urolonc.2011.09.010
10.1158/0008-5472.CAN-03-3489
10.1016/j.celrep.2012.09.029
10.1038/nature09104
10.1007/s12035-017-0507-5
10.1093/nar/25.10.1913
10.1158/0008-5472.CAN-04-1328
10.1093/nar/gku1301
10.1016/j.dnarep.2011.08.005
10.1038/nprot.2013.143
10.1038/nature13619
10.1038/s41467-020-16096-w
10.1038/s41591-019-0432-4
10.1016/j.molcel.2006.03.022
10.1038/nm.4409
10.1016/j.jmb.2018.04.023
10.1186/s41021-016-0067-3
10.1084/jem.20052227
10.1126/sciadv.aaz7808
10.1038/nrm.2016.48
10.1038/nrm3562
10.1073/pnas.1011412107
10.1016/j.molcel.2012.05.001
10.1038/s41586-019-1607-3
10.1073/pnas.1011409107
10.1073/pnas.1706508114
10.1530/ERC-18-0289
10.1016/0076-6879(93)25052-4
10.1128/MCB.00993-09
10.1073/pnas.1605828113
10.1038/nature00991
10.1093/emboj/cdg626
10.1083/jcb.201702006
10.1093/nar/gki279
10.1084/jem.20070902
10.1038/nature11863
10.1038/nature14131
10.1016/j.cell.2019.05.028
10.1002/j.1460-2075.1991.tb07953.x
10.18632/oncotarget.24777
10.1038/nrc3088
10.1073/pnas.2016064117
10.1038/srep19552
10.1016/j.molcel.2020.11.029
10.1074/jbc.M117.792192
10.1371/journal.pone.0120334
10.1038/s41588-019-0471-2
10.1158/0008-5472.CAN-09-1947
10.1038/nprot.2006.5
10.1002/eji.201243191
10.1182/blood-2017-01-764274
10.1016/j.tig.2018.12.007
10.1016/j.molcel.2008.03.024
10.1074/jbc.C300023200
10.1038/s41586-019-1450-6
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
– notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkac545
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 7435
ExternalDocumentID PMC9303390
35819193
10_1093_nar_gkac545
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: NKI-2017-10032; NKI2017-10796
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAVAP
AAYXX
ABEJV
ABGNP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUTJ
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFYAG
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
BAWUL
BAYMD
BCNDV
CAG
CIDKT
CITATION
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EMOBN
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVT
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROZ
RPM
RXO
SV3
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
CGR
CUY
CVF
ECM
EIF
ESTFP
NPM
7X8
5PM
ID FETCH-LOGICAL-c311t-d77b1b5ed57ab2599f5b547f5aebcb58f48a9b29d45e73f3b4573a077099e5df3
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000823445500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-1048
1362-4962
IngestDate Tue Sep 30 16:23:51 EDT 2025
Fri Sep 05 08:20:04 EDT 2025
Sat Nov 01 14:17:05 EDT 2025
Sat Nov 29 04:15:09 EST 2025
Tue Nov 18 21:38:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by/4.0
The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c311t-d77b1b5ed57ab2599f5b547f5aebcb58f48a9b29d45e73f3b4573a077099e5df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors are Joint First Authors.
These authors are Joint Second Authors.
ORCID 0000-0001-6227-9850
OpenAccessLink http://dx.doi.org/10.1093/nar/gkac545
PMID 35819193
PQID 2688569728
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9303390
proquest_miscellaneous_2688569728
pubmed_primary_35819193
crossref_citationtrail_10_1093_nar_gkac545
crossref_primary_10_1093_nar_gkac545
PublicationCentury 2000
PublicationDate 2022-07-22
PublicationDateYYYYMMDD 2022-07-22
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-22
  day: 22
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Dirac (2022072200035905900_B17) 2003; 278
Batlle (2022072200035905900_B50) 2017; 23
Hill (2022072200035905900_B28) 2019; 51
Langerak (2022072200035905900_B14) 2007; 204
Guo (2022072200035905900_B42) 2003; 22
Wang (2022072200035905900_B20) 2019; 574
Yang (2022072200035905900_B56) 2015; 10
Rolink (2022072200035905900_B15) 1991; 10
Ceccaldi (2022072200035905900_B2) 2016; 17
Edmunds (2022072200035905900_B9) 2008; 30
Wojtaszek (2022072200035905900_B12) 2019; 178
Xie (2022072200035905900_B46) 2010; 107
Gallina (2022072200035905900_B52) 2021; 81
Krijger (2022072200035905900_B25) 2013; 43
Ran (2022072200035905900_B23) 2013; 8
Linder (2022072200035905900_B51) 2019; 26
Pilzecker (2022072200035905900_B6) 2017; 114
Chatterjee (2022072200035905900_B31) 2020; 117
Krijger (2022072200035905900_B43) 2011; 10
Jha (2022072200035905900_B37) 2018; 430
Chou (2022072200035905900_B22) 2010; 70
Williams (2022072200035905900_B38) 2012; 47
Walter (2022072200035905900_B30) 2015; 520
Zan (2022072200035905900_B27) 2012; 2
Ross (2022072200035905900_B10) 2005; 33
Hoege (2022072200035905900_B7) 2002; 419
Kanemaru (2022072200035905900_B35) 2017; 39
Zhuo (2022072200035905900_B36) 2018; 55
Yang (2022072200035905900_B41) 2017; 216
Voorwerk (2022072200035905900_B58) 2019; 25
Mailand (2022072200035905900_B8) 2013; 14
Ogi (2022072200035905900_B48) 2010; 37
Olive (2022072200035905900_B24) 2006; 1
Jansen (2022072200035905900_B26) 2006; 203
Tsui (2022072200035905900_B3) 2019; 35
Martín-Pardillos (2022072200035905900_B11) 2017; 130
Deans (2022072200035905900_B1) 2011; 11
Hicks (2022072200035905900_B45) 2010; 30
Wellenstein (2022072200035905900_B19) 2019; 572
Abbondanzo (2022072200035905900_B16) 1993
Kottemann (2022072200035905900_B4) 2013; 493
Doles (2022072200035905900_B57) 2010; 107
Mizutani (2022072200035905900_B40) 2004; 64
Xiang (2022072200035905900_B49) 2017; 543
Räschle (2022072200035905900_B5) 2008; 134
Jolly (2022072200035905900_B21) 1997; 25
Flach (2022072200035905900_B29) 2014; 512
Nayak (2022072200035905900_B34) 2020; 6
Thakar (2022072200035905900_B44) 2020; 11
Huang (2022072200035905900_B55) 2016; 6
Wit (2022072200035905900_B39) 2015; 43
Avkin (2022072200035905900_B32) 2006; 22
Richardson (2022072200035905900_B47) 2012; 30
Hampp (2022072200035905900_B33) 2016; 113
Bassett (2022072200035905900_B54) 2004; 64
Buoninfante (2022072200035905900_B18) 2018; 9
Sanders (2022072200035905900_B13) 2017; 292
Silverstein (2022072200035905900_B53) 2010; 465
References_xml – volume: 37
  start-page: 714
  year: 2010
  ident: 2022072200035905900_B48
  article-title: Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.02.009
– volume: 134
  start-page: 969
  year: 2008
  ident: 2022072200035905900_B5
  article-title: Mechanism of replication-coupled DNA interstrand crosslink repair
  publication-title: Cell
  doi: 10.1016/j.cell.2008.08.030
– volume: 543
  start-page: 573
  year: 2017
  ident: 2022072200035905900_B49
  article-title: RNA m6A methylation regulates the ultraviolet-induced DNA damage response
  publication-title: Nature
  doi: 10.1038/nature21671
– volume: 30
  start-page: 95
  year: 2012
  ident: 2022072200035905900_B47
  article-title: Testicular cancer: a narrative review of the role of socioeconomic position from risk to survivorship
  publication-title: Urol. Oncol.
  doi: 10.1016/j.urolonc.2011.09.010
– volume: 64
  start-page: 3144
  year: 2004
  ident: 2022072200035905900_B40
  article-title: Extensive chromosomal breaks are induced by tamoxifen and estrogen in DNA repair-deficient cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-03-3489
– volume: 2
  start-page: 1220
  year: 2012
  ident: 2022072200035905900_B27
  article-title: Rev1 recruits ung to switch regions and enhances dU glycosylation for immunoglobulin class switch DNA recombination
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2012.09.029
– volume: 465
  start-page: 1039
  year: 2010
  ident: 2022072200035905900_B53
  article-title: Structural basis for the suppression of skin cancers by DNA polymerase eta
  publication-title: Nature
  doi: 10.1038/nature09104
– volume: 55
  start-page: 2506
  year: 2018
  ident: 2022072200035905900_B36
  article-title: Translesion synthesis DNA polymerase kappa is indispensable for DNA repair synthesis in cisplatin exposed dorsal root ganglion neurons
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-017-0507-5
– volume: 25
  start-page: 1913
  year: 1997
  ident: 2022072200035905900_B21
  article-title: Rapid methods for the analysis of immunoglobulin gene hypermutation: application to transgenic and gene targeted mice
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/25.10.1913
– volume: 64
  start-page: 6469
  year: 2004
  ident: 2022072200035905900_B54
  article-title: The role of DNA polymerase η in translesion synthesis past platinum-DNA adducts in human fibroblasts
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-04-1328
– volume: 43
  start-page: 282
  year: 2015
  ident: 2022072200035905900_B39
  article-title: Roles of PCNA ubiquitination and TLS polymerases κ and η in the bypass of methyl methanesulfonate-induced DNA damage
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1301
– volume: 10
  start-page: 1051
  year: 2011
  ident: 2022072200035905900_B43
  article-title: PCNA ubiquitination-independent activation of polymerase η during somatic hypermutation and DNA damage tolerance
  publication-title: DNA Repair (Amst.)
  doi: 10.1016/j.dnarep.2011.08.005
– volume: 8
  start-page: 2281
  year: 2013
  ident: 2022072200035905900_B23
  article-title: Genome engineering using the CRISPR-Cas9 system
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2013.143
– volume: 512
  start-page: 198
  year: 2014
  ident: 2022072200035905900_B29
  article-title: Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells
  publication-title: Nature
  doi: 10.1038/nature13619
– volume: 11
  start-page: 2147
  year: 2020
  ident: 2022072200035905900_B44
  article-title: Ubiquitinated-PCNA protects replication forks from DNA2-mediated degradation by regulating okazaki fragment maturation and chromatin assembly
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16096-w
– volume: 25
  start-page: 920
  year: 2019
  ident: 2022072200035905900_B58
  article-title: Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0432-4
– volume: 22
  start-page: 407
  year: 2006
  ident: 2022072200035905900_B32
  article-title: p53 and p21 regulate error-prone DNA repair to yield a lower mutation load
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.03.022
– volume: 23
  start-page: 1124
  year: 2017
  ident: 2022072200035905900_B50
  article-title: Cancer stem cells revisited
  publication-title: Nat. Med.
  doi: 10.1038/nm.4409
– volume: 430
  start-page: 1577
  year: 2018
  ident: 2022072200035905900_B37
  article-title: Structural basis for human DNA polymerase kappa to bypass cisplatin intrastrand cross-link (Pt-GG) lesion as an efficient and accurate extender
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2018.04.023
– volume: 39
  start-page: 6
  year: 2017
  ident: 2022072200035905900_B35
  article-title: DNA polymerase kappa protects human cells against MMC-induced genotoxicity through error-free translesion DNA synthesis
  publication-title: Genes Environ
  doi: 10.1186/s41021-016-0067-3
– volume: 203
  start-page: 319
  year: 2006
  ident: 2022072200035905900_B26
  article-title: Strand-biased defect in C/G transversions in hypermutating immunoglobulin genes in Rev1-deficient mice
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20052227
– volume: 6
  start-page: eaaz7808
  year: 2020
  ident: 2022072200035905900_B34
  article-title: Inhibition of the translesion synthesis polymerase REV1 exploits replication gaps as a cancer vulnerability
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz7808
– volume: 17
  start-page: 337
  year: 2016
  ident: 2022072200035905900_B2
  article-title: The fanconi anaemia pathway: new players and new functions
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2016.48
– volume: 14
  start-page: 269
  year: 2013
  ident: 2022072200035905900_B8
  article-title: Regulation of PCNA-protein interactions for genome stability
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3562
– volume: 107
  start-page: 20792
  year: 2010
  ident: 2022072200035905900_B46
  article-title: Error-prone translesion synthesis mediates acquired chemoresistance
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1011412107
– volume: 47
  start-page: 140
  year: 2012
  ident: 2022072200035905900_B38
  article-title: Replication-Independent repair of DNA interstrand crosslinks
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.05.001
– volume: 574
  start-page: 268
  year: 2019
  ident: 2022072200035905900_B20
  article-title: Inducing and exploiting vulnerabilities for the treatment of liver cancer
  publication-title: Nature
  doi: 10.1038/s41586-019-1607-3
– volume: 107
  start-page: 20786
  year: 2010
  ident: 2022072200035905900_B57
  article-title: Suppression of Rev3, the catalytic subunit of Pol{zeta}, sensitizes drug-resistant lung tumors to chemotherapy
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1011409107
– volume: 114
  start-page: E6875
  year: 2017
  ident: 2022072200035905900_B6
  article-title: DNA damage tolerance in hematopoietic stem and progenitor cells in mice
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1706508114
– volume: 26
  start-page: R31
  year: 2019
  ident: 2022072200035905900_B51
  article-title: Enzalutamide therapy for advanced prostate cancer: efficacy, resistance and beyond
  publication-title: Endocr. Relat. Cancer
  doi: 10.1530/ERC-18-0289
– start-page: 803
  volume-title: Guide to Techniques in Mouse Development, Methods in Enzymology
  year: 1993
  ident: 2022072200035905900_B16
  article-title: 49]Derivation of embryonic stem cell lines
  doi: 10.1016/0076-6879(93)25052-4
– volume: 30
  start-page: 1217
  year: 2010
  ident: 2022072200035905900_B45
  article-title: Differential roles for DNA polymerases eta, zeta, and REV1 in lesion bypass of intrastrand versus interstrand DNA cross-links
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00993-09
– volume: 113
  start-page: E4311
  year: 2016
  ident: 2022072200035905900_B33
  article-title: DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1605828113
– volume: 419
  start-page: 135
  year: 2002
  ident: 2022072200035905900_B7
  article-title: RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO
  publication-title: Nature
  doi: 10.1038/nature00991
– volume: 22
  start-page: 6621
  year: 2003
  ident: 2022072200035905900_B42
  article-title: Mouse rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdg626
– volume: 216
  start-page: 3097
  year: 2017
  ident: 2022072200035905900_B41
  article-title: DNA repair factor RAD18 and DNA polymerase Polκ confer tolerance of oncogenic DNA replication stress
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201702006
– volume: 33
  start-page: 1280
  year: 2005
  ident: 2022072200035905900_B10
  article-title: Vertebrate DNA damage tolerance requires the C-terminus but not BRCT or transferase domains of REV1
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki279
– volume: 204
  start-page: 1989
  year: 2007
  ident: 2022072200035905900_B14
  article-title: A/T mutagenesis in hypermutated immunoglobulin genes strongly depends on PCNAK164 modification
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20070902
– volume: 493
  start-page: 356
  year: 2013
  ident: 2022072200035905900_B4
  article-title: Fanconi anaemia and the repair of watson and crick DNA crosslinks
  publication-title: Nature
  doi: 10.1038/nature11863
– volume: 520
  start-page: 549
  year: 2015
  ident: 2022072200035905900_B30
  article-title: Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells
  publication-title: Nature
  doi: 10.1038/nature14131
– volume: 178
  start-page: 152
  year: 2019
  ident: 2022072200035905900_B12
  article-title: A small molecule targeting mutagenic translesion synthesis improves chemotherapy
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.028
– volume: 10
  start-page: 327
  year: 1991
  ident: 2022072200035905900_B15
  article-title: Long-term proliferating early pre b cell lines and clones with the potential to develop to surface Ig-positive, mitogen reactive b cells in vitro and in vivo
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1991.tb07953.x
– volume: 9
  start-page: 18832
  year: 2018
  ident: 2022072200035905900_B18
  article-title: Precision cancer therapy: profiting from tumor specific defects in the DNA damage tolerance system
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.24777
– volume: 11
  start-page: 467
  year: 2011
  ident: 2022072200035905900_B1
  article-title: DNA interstrand crosslink repair and cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3088
– volume: 117
  start-page: 28918
  year: 2020
  ident: 2022072200035905900_B31
  article-title: REV1 inhibitor JH-RE-06 enhances tumor cell response to chemotherapy by triggering senescence hallmarks
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.2016064117
– volume: 6
  start-page: 19552
  year: 2016
  ident: 2022072200035905900_B55
  article-title: Exome sequencing reveals recurrent REV3L mutations in cisplatin-resistant squamous cell carcinoma of head and neck
  publication-title: Sci. Rep.
  doi: 10.1038/srep19552
– volume: 81
  start-page: 442
  year: 2021
  ident: 2022072200035905900_B52
  article-title: The ubiquitin ligase RFWD3 is required for translesion DNA synthesis
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.11.029
– volume: 292
  start-page: 10347
  year: 2017
  ident: 2022072200035905900_B13
  article-title: Pharmacological targeting of RAD6 enzyme-mediated translesion synthesis overcomes resistance to platinum-based drugs
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.792192
– volume: 10
  start-page: e0120334
  year: 2015
  ident: 2022072200035905900_B56
  article-title: REV3L, a promising target in regulating the chemosensitivity of cervical cancer cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0120334
– volume: 51
  start-page: 1283
  year: 2019
  ident: 2022072200035905900_B28
  article-title: DNA cross-link repair safeguards genomic stability during premeiotic germ cell development
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0471-2
– volume: 70
  start-page: 440
  year: 2010
  ident: 2022072200035905900_B22
  article-title: Drug combination studies and their synergy quantification using the chou-talalay method
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-09-1947
– volume: 1
  start-page: 23
  year: 2006
  ident: 2022072200035905900_B24
  article-title: The comet assay: a method to measure DNA damage in individual cells
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2006.5
– volume: 43
  start-page: 2765
  year: 2013
  ident: 2022072200035905900_B25
  article-title: Rev1 is essential in generating g to c transversions downstream of the ung2 pathway but not the msh2+ung2 hybrid pathway
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201243191
– volume: 130
  start-page: 1523
  year: 2017
  ident: 2022072200035905900_B11
  article-title: Genomic and functional integrity of the hematopoietic system requires tolerance of oxidative DNA lesions
  publication-title: Blood
  doi: 10.1182/blood-2017-01-764274
– volume: 35
  start-page: 199
  year: 2019
  ident: 2022072200035905900_B3
  article-title: The fanconi anemia pathway and fertility
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2018.12.007
– volume: 30
  start-page: 519
  year: 2008
  ident: 2022072200035905900_B9
  article-title: PCNA ubiquitination and REV1 define temporally distinct mechanisms for controlling translesion synthesis in the avian cell line DT40
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.03.024
– volume: 278
  start-page: 11731
  year: 2003
  ident: 2022072200035905900_B17
  article-title: Reversal of senescence in mouse fibroblasts through lentiviral suppression of p53
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C300023200
– volume: 572
  start-page: 538
  year: 2019
  ident: 2022072200035905900_B19
  article-title: Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis
  publication-title: Nature
  doi: 10.1038/s41586-019-1450-6
SSID ssj0014154
Score 2.4427369
Snippet Crosslink repair depends on the Fanconi anemia pathway and translesion synthesis polymerases that replicate over unhooked crosslinks. Translesion synthesis is...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 7420
SubjectTerms Animals
Cisplatin - therapeutic use
DNA Damage
DNA Repair
DNA Replication
DNA-Directed DNA Polymerase - metabolism
Genome Integrity, Repair and
Humans
Mice
Neoplasms - drug therapy
Neoplasms - genetics
Precision Medicine
Proliferating Cell Nuclear Antigen - metabolism
Ubiquitination
Title Division of labor within the DNA damage tolerance system reveals non-epistatic and clinically actionable targets for precision cancer medicine
URI https://www.ncbi.nlm.nih.gov/pubmed/35819193
https://www.proquest.com/docview/2688569728
https://pubmed.ncbi.nlm.nih.gov/PMC9303390
Volume 50
WOSCitedRecordID wos000823445500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014154
  issn: 0305-1048
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014154
  issn: 0305-1048
  databaseCode: TOX
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECWctEB7Kdqki7sYLBDk0EBItNAUj85i9BDYPTiAbwIpUbVTW3K9BMlP9Lv6WZ0hKdluckgPvQiGRIuy55kezsx7Q8iBkn6WC8m8KGXCi7Ig9xQTbS9UqfC10Foqo65_yXu9eDgU3xqN3xUX5mbCiyK-vRWz_2pqOAfGRursP5i7vimcgNdgdDiC2eH4KMOfjy1fHN1AY2ITa3XljOe9zlEmp1iosywnem4IA1bNGVksGsWUi7Lw9Az9ykrMtaJPTu6OLA_C8K1sEbnRc0CpAdurB6vIUj3fztlfVxxfeFS8ZTrOMFuxEUgz-XtZXEtpS-07k6ysL4zkyBaBF7LmFWUaw2blsqLJm4T_aV0ucrrCMHOOsMER_cl4OhtLpPMsFvCJ5nIz2hGYythgIwDqG5aXcCu4fuCcW9WtnG2F3nBjjeaRod_d__OwwloFFrZ3v_-QKbNCl9si3b1-0r26vEwGF8PB4eynh_3LMM_vmrnskCcBZwLX10F_WOezwE2y7ZXdkzqmKMx4DPMdu9m2faN7G56_63Y3HKHBS_LC7WBoxyLvFWnoYo_sdwq5LKd39JCammKTrNkjz86qfoL75FcFTFrm1ACTWmBSACYFYFILTFoDk1pgUgdMugVMCmaka2DSNTCpAyYFYNIamNQCk1bAfE2uuheDs6-e6wbipaHvL72Mc-UrpjPGpYJNu8iZYhHPmdQqVSzOo1gKFYgsYpqHeagixkN5wjnsgTTL8vAN2YXn1O8IhXcEyAn3URyR61zleZDBypQq8N6jQDbJl8oOSeqk8rFjyySxJRthAkZLnNGa5KAePLMKMQ8P-1wZNIEvHtNystDlapEE7ThmbcGDuEneWgPXN0J1QgF7rCbhW6avB6A6_PaVYjwyKvECnNNQnLx_xLwfyPP1b-0j2V3OV_oTeZreLMeLeYvs8GHcMsGqlkH1HzoE6YI
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Division+of+labor+within+the+DNA+damage+tolerance+system+reveals+non-epistatic+and+clinically+actionable+targets+for+precision+cancer+medicine&rft.jtitle=Nucleic+acids+research&rft.au=Spanjaard%2C+Aldo&rft.au=Shah%2C+Ronak&rft.au=de+Groot%2C+Dani%C3%ABl&rft.au=Buoninfante%2C+Olimpia+Alessandra&rft.date=2022-07-22&rft.issn=1362-4962&rft.eissn=1362-4962&rft.volume=50&rft.issue=13&rft.spage=7420&rft_id=info:doi/10.1093%2Fnar%2Fgkac545&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon