I/O-Efficient Algorithms for Degeneracy Computation on Massive Networks

Degeneracy is an important concept to measure the sparsity of a graph which has been widely used in many network analysis applications. Many network analysis algorithms, such as clique enumeration and truss decomposition, perform very well in graphs having small degeneracies. In this paper, we propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering Jg. 34; H. 7; S. 3335 - 3348
Hauptverfasser: Li, Rong-Hua, Song, Qiushuo, Xiao, Xiaokui, Qin, Lu, Wang, Guoren, Yu, Jeffrey Xu, Mao, Rui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1041-4347, 1558-2191
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Degeneracy is an important concept to measure the sparsity of a graph which has been widely used in many network analysis applications. Many network analysis algorithms, such as clique enumeration and truss decomposition, perform very well in graphs having small degeneracies. In this paper, we propose an I/O-efficient algorithm to compute the degeneracy of the massive graph that cannot be fully kept in the main memory. The proposed algorithm only uses <inline-formula><tex-math notation="LaTeX">O(n)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="wang-ieq1-3021484.gif"/> </inline-formula> memory, where <inline-formula><tex-math notation="LaTeX">n</tex-math> <mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href="wang-ieq2-3021484.gif"/> </inline-formula> denotes the number of nodes of the graph. We also develop an I/O-efficient algorithm to incrementally maintain the degeneracy on dynamic graphs. Extensive experiments show that our algorithms significantly outperform the state-of-the-art degeneracy computation algorithms in terms of both running time and I/O costs. The results also demonstrate high scalability of the proposed algorithms. For example, in a real-world web graph with 930 million nodes and 13.3 billion edges, the proposed algorithm takes only 633 seconds and uses less than 4.5GB memory to compute the degeneracy.
AbstractList Degeneracy is an important concept to measure the sparsity of a graph which has been widely used in many network analysis applications. Many network analysis algorithms, such as clique enumeration and truss decomposition, perform very well in graphs having small degeneracies. In this paper, we propose an I/O-efficient algorithm to compute the degeneracy of the massive graph that cannot be fully kept in the main memory. The proposed algorithm only uses [Formula Omitted] memory, where [Formula Omitted] denotes the number of nodes of the graph. We also develop an I/O-efficient algorithm to incrementally maintain the degeneracy on dynamic graphs. Extensive experiments show that our algorithms significantly outperform the state-of-the-art degeneracy computation algorithms in terms of both running time and I/O costs. The results also demonstrate high scalability of the proposed algorithms. For example, in a real-world web graph with 930 million nodes and 13.3 billion edges, the proposed algorithm takes only 633 seconds and uses less than 4.5GB memory to compute the degeneracy.
Degeneracy is an important concept to measure the sparsity of a graph which has been widely used in many network analysis applications. Many network analysis algorithms, such as clique enumeration and truss decomposition, perform very well in graphs having small degeneracies. In this paper, we propose an I/O-efficient algorithm to compute the degeneracy of the massive graph that cannot be fully kept in the main memory. The proposed algorithm only uses <inline-formula><tex-math notation="LaTeX">O(n)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="wang-ieq1-3021484.gif"/> </inline-formula> memory, where <inline-formula><tex-math notation="LaTeX">n</tex-math> <mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href="wang-ieq2-3021484.gif"/> </inline-formula> denotes the number of nodes of the graph. We also develop an I/O-efficient algorithm to incrementally maintain the degeneracy on dynamic graphs. Extensive experiments show that our algorithms significantly outperform the state-of-the-art degeneracy computation algorithms in terms of both running time and I/O costs. The results also demonstrate high scalability of the proposed algorithms. For example, in a real-world web graph with 930 million nodes and 13.3 billion edges, the proposed algorithm takes only 633 seconds and uses less than 4.5GB memory to compute the degeneracy.
Author Xiao, Xiaokui
Wang, Guoren
Song, Qiushuo
Qin, Lu
Yu, Jeffrey Xu
Mao, Rui
Li, Rong-Hua
Author_xml – sequence: 1
  givenname: Rong-Hua
  orcidid: 0000-0001-8658-6599
  surname: Li
  fullname: Li, Rong-Hua
  email: lironghuabit@126.com
  organization: Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Qiushuo
  surname: Song
  fullname: Song, Qiushuo
  email: qsong98@gmail.com
  organization: Shenzhen Institute of Computing Sciences, Guangdong Province Key Laboratory of Popular High Performance Computers, Shenzhen University, Shenzhen, Guangdong, China
– sequence: 3
  givenname: Xiaokui
  orcidid: 0000-0003-0914-4580
  surname: Xiao
  fullname: Xiao, Xiaokui
  email: xkxiao@ntu.edu.sg
  organization: National University of Singapore, Singapore
– sequence: 4
  givenname: Lu
  orcidid: 0000-0001-6068-5062
  surname: Qin
  fullname: Qin, Lu
  email: Lu.Qin@uts.edu.au
  organization: University of Technology, Sydney, NSW, Australia
– sequence: 5
  givenname: Guoren
  orcidid: 0000-0002-0181-8379
  surname: Wang
  fullname: Wang, Guoren
  email: wanggrbit@126.com
  organization: Beijing Institute of Technology, Beijing, China
– sequence: 6
  givenname: Jeffrey Xu
  orcidid: 0000-0002-9738-827X
  surname: Yu
  fullname: Yu, Jeffrey Xu
  email: yu@se.cuhk.edu.hk
  organization: Chinese University of Hong Kong, Hong Kong
– sequence: 7
  givenname: Rui
  orcidid: 0000-0002-3645-5520
  surname: Mao
  fullname: Mao, Rui
  email: mao@szu.edu.cn
  organization: Shenzhen Institute of Computing Sciences, Guangdong Province Key Laboratory of Popular High Performance Computers, Shenzhen University, Shenzhen, Guangdong, China
BookMark eNo9kE1PAjEQhhuDiYj-AONlE88LnX5su0cCqESUC56b3e4UF2GL7aLx37sEYjLJzOF5ZybPNek1vkFC7oAOAWg-Wr1MZ0NGGR1yykBocUH6IKVOGeTQ62YqIBVcqCtyHeOGUqqVhj55mo-W6cy52tbYtMl4u_ahbj92MXE-JFNcY4OhsL_JxO_2h7Zoa98kXb0WMdbfmLxh--PDZ7whl67YRrw99wF5f5ytJs_pYvk0n4wXqeUAbWqriknR_VFIngnuQORYam0rV5YlV06UVgh0yqJAVmlZyixTsnKqBMFtlfMBeTjt3Qf_dcDYmo0_hKY7aVimmKZSUdZRcKJs8DEGdGYf6l0Rfg1Qc_Rljr7M0Zc5--oy96dMjYj_fA464zznf0qJaEM
CODEN ITKEEH
Cites_doi 10.1109/ICDE.2011.5767911
10.1145/1341531.1341547
10.1007/978-3-642-12683-3_30
10.1145/2402.322385
10.1109/TKDE.2013.158
10.7155/jgaa.00273
10.1109/TPDS.2012.124
10.1145/48529.48535
10.1007/978-3-642-54423-1_22
10.1145/2736277.2741119
10.1145/1242572.1242635
10.1007/s41019-018-0068-2
10.14778/2311906.2311909
10.1016/j.tcs.2011.12.006
10.1145/2043652.2043654
10.1109/ICDE.2016.7498245
10.1145/2543629
10.1007/978-3-540-92248-3_18
10.14778/2140436.2140442
10.1145/2612669.2612674
10.1145/3087556.3087580
10.1007/978-3-642-20662-7_31
10.1007/978-3-662-49529-2_32
10.1007/978-3-642-15763-9_48
10.1109/ICDE.2017.48
10.14778/2735479.2735484
10.1145/1513876.1513879
10.1515/9781400841356.349
10.1007/s00778-017-0467-4
10.1007/s00453-008-9204-0
10.1073/pnas.0507655102
10.1145/2463676.2463704
10.1007/978-3-642-23719-5_56
10.1137/0214017
10.1201/b16132-57
10.1145/2588555.2610495
10.1112/jlms/s1-39.1.12
10.1038/ncomms10168
10.1007/978-1-4612-0515-9
10.1109/ICDE.2016.7498235
10.4153/CJM-1970-125-1
10.1145/2783258.2783299
10.14778/2536336.2536344
10.1016/0378-8733(83)90028-x
10.1007/BF02523189
10.1007/BF01758774
10.1103/PhysRevLett.96.040601
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2020.3021484
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library (LUT)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 3348
ExternalDocumentID 10_1109_TKDE_2020_3021484
9186339
Genre orig-research
GrantInformation_xml – fundername: ARC
  grantid: FT200100787
– fundername: Research Grants Council of the Hong Kong SAR, China
  grantid: 14202919; 14203618
– fundername: NSFC
  grantid: 61772346; U1809206; 61732003
– fundername: National Key R&D Program of China
  grantid: 2018YFB1004402
– fundername: Beijing Institute of Technology Research Fund Program for Young Scholars
  funderid: 10.13039/501100012236
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
1OL
5VS
9M8
AAYXX
ABFSI
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
H~9
ICLAB
IFJZH
RNI
RZB
TAF
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c311t-cdd254434a53643f149eb88cdfbbb37f4bc44ef7ce4e2d85b56675df7b143cd93
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000805787100023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Sun Nov 30 03:58:07 EST 2025
Sat Nov 29 02:36:02 EST 2025
Wed Aug 27 02:24:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-cdd254434a53643f149eb88cdfbbb37f4bc44ef7ce4e2d85b56675df7b143cd93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6068-5062
0000-0001-8658-6599
0000-0002-3645-5520
0000-0003-0914-4580
0000-0002-9738-827X
0000-0002-0181-8379
PQID 2672805702
PQPubID 85438
PageCount 14
ParticipantIDs proquest_journals_2672805702
ieee_primary_9186339
crossref_primary_10_1109_TKDE_2020_3021484
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref10
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
Gibson (ref11)
ref4
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref2
ref1
ref39
ref38
ref24
ref23
ref25
ref20
ref22
ref21
Downey (ref26) 1999
Goldberg (ref3) 1984
ref28
ref27
ref29
Batagelj (ref32) 2003
References_xml – ident: ref39
  doi: 10.1109/ICDE.2011.5767911
– ident: ref9
  doi: 10.1145/1341531.1341547
– ident: ref10
  doi: 10.1007/978-3-642-12683-3_30
– ident: ref31
  doi: 10.1145/2402.322385
– ident: ref46
  doi: 10.1109/TKDE.2013.158
– ident: ref42
  doi: 10.7155/jgaa.00273
– ident: ref40
  doi: 10.1109/TPDS.2012.124
– ident: ref38
  doi: 10.1145/48529.48535
– ident: ref12
  doi: 10.1007/978-3-642-54423-1_22
– ident: ref7
  doi: 10.1145/2736277.2741119
– ident: ref4
  doi: 10.1145/1242572.1242635
– ident: ref8
  doi: 10.1007/s41019-018-0068-2
– year: 2003
  ident: ref32
  article-title: An O(m) algorithm for cores decomposition of networks
– ident: ref19
  doi: 10.14778/2311906.2311909
– ident: ref35
  doi: 10.1016/j.tcs.2011.12.006
– ident: ref43
  doi: 10.1145/2043652.2043654
– ident: ref21
  doi: 10.1109/ICDE.2016.7498245
– ident: ref2
  doi: 10.1145/2543629
– ident: ref27
  doi: 10.1007/978-3-540-92248-3_18
– ident: ref34
  doi: 10.14778/2140436.2140442
– ident: ref45
  doi: 10.1145/2612669.2612674
– ident: ref48
  doi: 10.1145/3087556.3087580
– ident: ref1
  doi: 10.1007/978-3-642-20662-7_31
– ident: ref14
  doi: 10.1007/978-3-662-49529-2_32
– ident: ref29
  doi: 10.1007/978-3-642-15763-9_48
– start-page: 721
  volume-title: Proc. 31st Int. Conf. Very Large Data Bases
  ident: ref11
  article-title: Discovering large dense subgraphs in massive graphs
– year: 1984
  ident: ref3
  article-title: Finding a maximum density subgraph
– ident: ref24
  doi: 10.1109/ICDE.2017.48
– ident: ref22
  doi: 10.14778/2735479.2735484
– ident: ref5
  doi: 10.1145/1513876.1513879
– ident: ref49
  doi: 10.1515/9781400841356.349
– ident: ref23
  doi: 10.1007/s00778-017-0467-4
– ident: ref28
  doi: 10.1007/s00453-008-9204-0
– ident: ref41
  doi: 10.1073/pnas.0507655102
– ident: ref17
  doi: 10.1145/2463676.2463704
– ident: ref13
  doi: 10.1007/978-3-642-23719-5_56
– ident: ref18
  doi: 10.1137/0214017
– ident: ref16
  doi: 10.1201/b16132-57
– ident: ref20
  doi: 10.1145/2588555.2610495
– ident: ref15
  doi: 10.1112/jlms/s1-39.1.12
– ident: ref44
  doi: 10.1038/ncomms10168
– volume-title: Parameterized Complexity
  year: 1999
  ident: ref26
  doi: 10.1007/978-1-4612-0515-9
– ident: ref33
  doi: 10.1109/ICDE.2016.7498235
– ident: ref36
  doi: 10.4153/CJM-1970-125-1
– ident: ref6
  doi: 10.1145/2783258.2783299
– ident: ref47
  doi: 10.14778/2536336.2536344
– ident: ref37
  doi: 10.1016/0378-8733(83)90028-x
– ident: ref30
  doi: 10.1007/BF02523189
– ident: ref25
  doi: 10.1007/BF01758774
– ident: ref50
  doi: 10.1103/PhysRevLett.96.040601
SSID ssj0008781
Score 2.4058201
Snippet Degeneracy is an important concept to measure the sparsity of a graph which has been widely used in many network analysis applications. Many network analysis...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 3335
SubjectTerms <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> k</tex-math> <mml:math> <mml:mi>k</mml:mi> </mml:math> <inline-graphic xlink:href="wang-ieq3-3021484.gif" xlink:type="simple"/> </inline-formula>-core
Algorithms
Clustering algorithms
Complexity theory
Degeneracy
Electronic mail
Enumeration
Graph theory
Graphs
Heuristic algorithms
I/O-efficient algorithm
massive graphs
Memory management
Network analysis
Nodes
Prediction algorithms
Social network services
Title I/O-Efficient Algorithms for Degeneracy Computation on Massive Networks
URI https://ieeexplore.ieee.org/document/9186339
https://www.proquest.com/docview/2672805702
Volume 34
WOSCitedRecordID wos000805787100023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library (LUT)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4B4kEPoqARRdODJ-OErd3aHYmAGiN6wITbsv4YkigYfpj43_vaDaLRi8kOS7Y1y_va1-9r-94DOI9FELMoo56vOfNQfwWeRJ7upSzSGTNUGqldsQk-GIjRKH4qweUmFsYY4w6fmSt76_by9Uyt7FJZK_ZFRGlchjLnUR6rtfG6gruCpKguUBNRxosdTL8dt4b33R4qwQAFqs0QJtiPOcgVVfnlid300q_-78f2YLegkaST474PJTOtQXVdooEUI7YGO9_yDdbh5q716PVc0ghsj3Rex7P5ZPnytiBIXUnXjF0OavVJ8oYcaASvB2TY6BXJID8zvjiA535veH3rFZUUPEV9f-kprW0qMsrSkCIFyVAWGSmE0pmUkvKMScWYybgyzARahBJJHg91xiXSKaVjegiV6WxqjoCYtI1PBQtTjSBLlaqMhQodA-UB9krZgIu1bZP3PGFG4oRGO04sEIkFIimAaEDdGnPzYmHHBjTXaCTFkFokQWQraYW8HRz__dUJbAc2NsGdpW1CZTlfmVPYUh_LyWJ-5nrLF2d5vaY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2VRQIOlFUUCvjACRGa2E7tHCsoi2gLhyJxi-IlgAQtagsSf8_YSSsQXJByiJTEiubZ4_dszwzAUSJpwps5CyIjeID6iwYKeXqQ8abJuWXKKuOLTYheTz48JHcVOJnFwlhr_eEze-pu_V6-Gep3t1TWSCLZZCyZg4WYcxoW0VozvyuFL0mK-gJVEeOi3MOMwqTRvzlvoxakKFFdjjDJf8xCvqzKL1_sJ5iL6v9-bQ1WSyJJWgXy61Cxgw2oTos0kHLMbsDKt4yDm3B53bgN2j5tBLZHWi-Pw9Hz5Ol1TJC8knP76LNQ609SNORhI3h1kWOjXyS94tT4eAvuL9r9s6ugrKUQaBZFk0Ab45KRMZ7FDElIjsLIKim1yZVSTORcac5tLrTllhoZK6R5Ija5UEiotEnYNswPhgO7A8RmIT6VPM4Mwqx0pnMea3QNTFDsl6oGx1Pbpm9FyozUS40wSR0QqQMiLYGowaYz5uzF0o41qE_RSMtBNU5p09XSikVId__-6hCWrvrdTtq57t3swTJ1kQr-ZG0d5iejd7sPi_pj8jweHfie8wVwlcDt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=I%2FO-Efficient+Algorithms+for+Degeneracy+Computation+on+Massive+Networks&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Li%2C+Ronghua&rft.au=Song%2C+Qiushuo&rft.au=Xiao%2C+Xiaokui&rft.au=Qin%2C+Lu&rft.date=2022-07-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTKDE.2020.3021484&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2020_3021484
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon