Adaptive QSMO-Based Sensorless Drive for IPM Motor with NN-Based Transient Position Error Compensation
In commercial electrical equipment, the popular sensorless drive scheme for the interior permanent magnet synchronous motor, based on the quasi-sliding mode observer (QSMO) and phase-locked loop (PLL), still faces challenges such as position errors and limited applicability across a wide speed range...
Uloženo v:
| Vydáno v: | Electronics (Basel) Ročník 13; číslo 15; s. 3085 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.08.2024
|
| Témata: | |
| ISSN: | 2079-9292, 2079-9292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In commercial electrical equipment, the popular sensorless drive scheme for the interior permanent magnet synchronous motor, based on the quasi-sliding mode observer (QSMO) and phase-locked loop (PLL), still faces challenges such as position errors and limited applicability across a wide speed range. To address these problems, this paper analyzes the frequency domain model of the QSMO. A QSMO-based parameter adaptation method is proposed to adjust the boundary layer and widen the speed operating range, considering the QSMO bandwidth. A QSMO-based phase lag compensation method is proposed to mitigate steady-state position errors, considering the QSMO phase lag. Then, the PLL model is analyzed to select the estimated speed difference for transient position error compensation. Specifically, a transient position error compensator based on a feedback time delay neural network (FB-TDNN) is proposed. Based on the back propagation learning algorithm, the specific structure and optimal parameters of the FB-TDNN are determined during the offline training process. The proposed parameter adaptation method and two position error compensation methods were validated through simulations in simulated wide-speed operation scenarios, including sudden speed changes. Overall, the proposed scheme fully mitigates steady-state position errors, substantially mitigates transient position errors, and exhibits good stability across a wide speed range. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2079-9292 2079-9292 |
| DOI: | 10.3390/electronics13153085 |