Machine learning predictive classification models for the carcinogenic activity of activated metabolites derived from aromatic amines and nitroaromatics

A 3D-QSAR study based on DFT descriptors and machine learning calculations is presented in this work. Our goal has been to build predictive models for classifying the carcinogenic activity of a set of aromatic amines (AA) and nitroaromatic (NA) compounds. As the main result, we stress that calculati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Toxicology in vitro Ročník 81; s. 105347
Hlavní autoři: Halabi, Andrés, Rincón, Elizabeth, Chamorro, Eduardo
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Elsevier Ltd 01.06.2022
Elsevier Science Ltd
Témata:
ISSN:0887-2333, 1879-3177, 1879-3177
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A 3D-QSAR study based on DFT descriptors and machine learning calculations is presented in this work. Our goal has been to build predictive models for classifying the carcinogenic activity of a set of aromatic amines (AA) and nitroaromatic (NA) compounds. As the main result, we stress that calculations must consider both the activated metabolites (derived from AA and NA species) and the water solvent to obtain reliable predictive classification models. We have obtained eight decision tree models that presented an accuracy of over 90% by using either Gázquez-Vela chemical potential (μ+) or the chemical hardness (η) of the activated metabolites in aqueous solvent. •Activated metabolites and solvent information is needed for predicting carcinogenic activity of nitro and aromatic amines.•Our models predicts carcinogenic activity with over 90% accuracy accordingly with high Cohen's kappa statistic values•For activated metabolites in the aqueous solvent phase, the electron-accepting chemical potential and hardness are essential.
AbstractList A 3D-QSAR study based on DFT descriptors and machine learning calculations is presented in this work. Our goal has been to build predictive models for classifying the carcinogenic activity of a set of aromatic amines (AA) and nitroaromatic (NA) compounds. As the main result, we stress that calculations must consider both the activated metabolites (derived from AA and NA species) and the water solvent to obtain reliable predictive classification models. We have obtained eight decision tree models that presented an accuracy of over 90% by using either Gázquez-Vela chemical potential (μ ) or the chemical hardness (η) of the activated metabolites in aqueous solvent.
A 3D-QSAR study based on DFT descriptors and machine learning calculations is presented in this work. Our goal has been to build predictive models for classifying the carcinogenic activity of a set of aromatic amines (AA) and nitroaromatic (NA) compounds. As the main result, we stress that calculations must consider both the activated metabolites (derived from AA and NA species) and the water solvent to obtain reliable predictive classification models. We have obtained eight decision tree models that presented an accuracy of over 90% by using either Gázquez-Vela chemical potential (μ+) or the chemical hardness (η) of the activated metabolites in aqueous solvent.A 3D-QSAR study based on DFT descriptors and machine learning calculations is presented in this work. Our goal has been to build predictive models for classifying the carcinogenic activity of a set of aromatic amines (AA) and nitroaromatic (NA) compounds. As the main result, we stress that calculations must consider both the activated metabolites (derived from AA and NA species) and the water solvent to obtain reliable predictive classification models. We have obtained eight decision tree models that presented an accuracy of over 90% by using either Gázquez-Vela chemical potential (μ+) or the chemical hardness (η) of the activated metabolites in aqueous solvent.
A 3D-QSAR study based on DFT descriptors and machine learning calculations is presented in this work. Our goal has been to build predictive models for classifying the carcinogenic activity of a set of aromatic amines (AA) and nitroaromatic (NA) compounds. As the main result, we stress that calculations must consider both the activated metabolites (derived from AA and NA species) and the water solvent to obtain reliable predictive classification models. We have obtained eight decision tree models that presented an accuracy of over 90% by using either Gázquez-Vela chemical potential (μ+) or the chemical hardness (η) of the activated metabolites in aqueous solvent.
A 3D-QSAR study based on DFT descriptors and machine learning calculations is presented in this work. Our goal has been to build predictive models for classifying the carcinogenic activity of a set of aromatic amines (AA) and nitroaromatic (NA) compounds. As the main result, we stress that calculations must consider both the activated metabolites (derived from AA and NA species) and the water solvent to obtain reliable predictive classification models. We have obtained eight decision tree models that presented an accuracy of over 90% by using either Gázquez-Vela chemical potential (μ+) or the chemical hardness (η) of the activated metabolites in aqueous solvent. •Activated metabolites and solvent information is needed for predicting carcinogenic activity of nitro and aromatic amines.•Our models predicts carcinogenic activity with over 90% accuracy accordingly with high Cohen's kappa statistic values•For activated metabolites in the aqueous solvent phase, the electron-accepting chemical potential and hardness are essential.
ArticleNumber 105347
Author Chamorro, Eduardo
Rincón, Elizabeth
Halabi, Andrés
Author_xml – sequence: 1
  givenname: Andrés
  surname: Halabi
  fullname: Halabi, Andrés
  email: andres.halabi@alumnos.uach.cl
  organization: Facultad de Ciencias, Instituto de Ciencias Químicas, Universidad Austral de Chile, Independencia 631, Valdivia 5090000, Chile
– sequence: 2
  givenname: Elizabeth
  surname: Rincón
  fullname: Rincón, Elizabeth
  email: elizabethrincon@uach.cl
  organization: Facultad de Ciencias, Instituto de Ciencias Químicas, Universidad Austral de Chile, Independencia 631, Valdivia 5090000, Chile
– sequence: 3
  givenname: Eduardo
  surname: Chamorro
  fullname: Chamorro, Eduardo
  email: echamorro@unab.cl
  organization: Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Avenida Republica 275, Santiago 8370146, Chile
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35318113$$D View this record in MEDLINE/PubMed
BookMark eNp9kb1uHCEUhVHkKF47eYA0EVKaNLvhZwZmlSqynB_JUZqkRgxc7LuagQ2wlvwmedywGW_jwhTA1T3fAd1zQc5iikDIW842nHH1cbepeL8RTIhW97LTL8iKD3q7llzrM7Jiw6DXQkp5Ti5K2THG-kGwV-Rc9pIPnMsV-fvDujuMQCewOWK8pfsMHl0zBuomWwoGdLZiinROHqZCQ8q03rWuzQ5juoWIjtojgfWBprDcbQVPZ6h2TBNWKNRDbp6ehpxmatvWTBs3t8cLtdHTiDWnU6O8Ji-DnQq8eTwvye8v17-uvq1vfn79fvX5Zu0k53XtRC-D4tILB6zzri3luedBCR56OerRDYp7PUgfulGHrZLcQxdGwTrVanlJPiy--5z-HKBUM2NxME02QjoUI1QnpJD9VjTp-yfSXTrk2H7XVEoPvVRaNdW7R9VhnMGbfcbZ5gdzmnkT6EXgciolQzAO6_8J12xxMpyZY7pmZ9oYzTFds6TbSP6EPJk_x3xamBYd3CNkUxxCdC3kDK4an_AZ-h8nt8BZ
CitedBy_id crossref_primary_10_1016_j_comptc_2023_114211
crossref_primary_10_1016_j_scitotenv_2025_179133
crossref_primary_10_1016_j_watres_2024_121259
crossref_primary_10_1016_j_comptc_2024_114782
crossref_primary_10_1002_adsu_202300509
crossref_primary_10_1016_j_chemphys_2024_112346
crossref_primary_10_1016_j_surfin_2022_102226
crossref_primary_10_1007_s11356_024_34800_x
Cites_doi 10.1002/1097-0142(19810515)47:10<2327::AID-CNCR2820471003>3.0.CO;2-Z
10.1021/cr040109f
10.1021/cr9901079
10.1021/jp065459f
10.1002/jat.2550150305
10.3390/ijms12085098
10.1021/cr078014b
10.1080/1062936X.2018.1505778
10.1016/j.tiv.2019.03.017
10.1186/1758-2946-6-10
10.1021/cr990029p
10.1021/jo800572a
10.1021/cr100149p
10.1002/jat.2980
10.3390/ijerph13111141
10.1021/ja983494x
10.1093/carcin/18.5.1085
10.1128/MMBR.00006-10
10.1093/nar/gkt1109
10.1021/cr9904009
10.1007/s00214-020-2546-7
10.1021/cr100222q
10.1002/qua.20307
10.1093/carcin/16.9.2037
10.1023/B:JCAM.0000035186.90683.f2
10.1016/j.mrrev.2004.08.002
10.1021/jm00349a001
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright Elsevier Science Ltd. Jun 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Science Ltd. Jun 2022
DBID AAYXX
CITATION
NPM
7TK
7U7
C1K
7X8
DOI 10.1016/j.tiv.2022.105347
DatabaseName CrossRef
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Toxicology Abstracts
Neurosciences Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Toxicology Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Public Health
Pharmacy, Therapeutics, & Pharmacology
EISSN 1879-3177
ExternalDocumentID 35318113
10_1016_j_tiv_2022_105347
S0887233322000443
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATCM
AAXUO
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMT
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPCBC
SPT
SSJ
SSP
SSZ
T5K
UNMZH
WUQ
ZXP
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
BNPGV
NPM
SSH
7TK
7U7
C1K
7X8
ID FETCH-LOGICAL-c311t-c253f613d2ce04dcccc6d1d1f621f53b7bc861d783df4b7f9631de4fb2046b7f3
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795483700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0887-2333
1879-3177
IngestDate Thu Oct 02 10:29:34 EDT 2025
Sat Jul 26 02:20:38 EDT 2025
Mon Jul 21 05:58:05 EDT 2025
Sat Nov 29 07:11:22 EST 2025
Tue Nov 18 22:33:32 EST 2025
Fri Feb 23 02:41:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Aromatic amines
SPAARC
WEKA
Carcinogenic activity
DFT
QSAR
Nitroaromatics
Machine learning
RandomTree
Solvent Effects
JCHAIDStar
Activated Metabolites
Carcinogenic potency
J48Consolidated
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c311t-c253f613d2ce04dcccc6d1d1f621f53b7bc861d783df4b7f9631de4fb2046b7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 35318113
PQID 2667853676
PQPubID 2047453
ParticipantIDs proquest_miscellaneous_2642323592
proquest_journals_2667853676
pubmed_primary_35318113
crossref_citationtrail_10_1016_j_tiv_2022_105347
crossref_primary_10_1016_j_tiv_2022_105347
elsevier_sciencedirect_doi_10_1016_j_tiv_2022_105347
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
2022-Jun
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Toxicology in vitro
PublicationTitleAlternate Toxicol In Vitro
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Kovacic, Somanathan (bb0100) 2014; 34
Huang, Sun, Zhao, Zhang, Zhong, Peng (bb0080) 2021; 22
Nelson (bb0135) 1982; 25
Chattaraj, Giri, Duley (bb0040) 2011; 111
Gazquez, Cedillo, Vela (bb0065) 2007; 111
Parr, Weitao (bb0145) 1989
Chattaraj, Roy (bb0030) 2007; 107
Leave-One-Out Cross-Validation (bb0110) 2010
Domingo, Chamorro, Perez (bb0050) 2008; 73
Ju, Parales (bb0090) 2010; 74
Marwood, Meyer, Josephy (bb0120) 1995; 16
Racz, Bajusz, Heberger (bb0165) 2018; 29
Stavros, Hawkins, Rizzo, Stone (bb0185) 2014; 42
Kadlubar (bb0095) 1983; 48
Benigni, Giuliani, Franke, Gruska (bb0020) 2000; 100
Putz, Ionascu, Putz, Ostafe (bb0160) 2011; 12
Geerlings, Chamorro, Chattaraj, De Proft, Gazquez, Liu, Morell, Toro-Labbe, Vela, Ayers (bb0075) 2020; 139
IARC (bb0085) 2021; vol. 127
Wysocka, Olszyna, Komorowska, Popowska (bb0200) 2017; 56
Frank, Hall, Witten (bb0055) 2016
Limited (bb0115) 2021; 1
Shimada, Hayes, Yamazaki, Amin, Hecht, Guengerich, Sutter (bb0170) 1996; 56
Benigni, Bossa (bb0015) 2011; 111
Tomasi, Mennucci, Cammi (bb0190) 2005; 105
Some Nitrobenzenes and Other Industrial Chemicals (bb0175) 2020; vol. 123
Chattaraj, Sarkar, Roy (bb0035) 2006; 106
Song, Zhang, Liang, Cui, Li, Si, Duan, Zhai (bb0180) 2016; 13
OECD (bb0140) 2014
Geerlings, De Proft, Langenaeker (bb0070) 2003; 103
McKee, Traul, Przygoda (bb0125) 1995; 15
Pedretti, Villa, Vistoli (bb0155) 2004; 18
Claxton, Matthews, Warren (bb0045) 2004; 567
Wan, Chen, Zhang, Shen, Luo, Deng, Xiao, Zhou, Deng, Yang, Xiao, Huang, Tian, He, Wang (bb0195) 2019; 58
Ayers, Anderson, Bartolotti (bb0010) 2005; 101
Krstajic, Buturovic, Leahy, Thomas (bb0105) 2014; 6
Parr, Von Szentpaly, Liu (bb0150) 1999; 121
Frisch, Trucks, Schlegel, Scuseria, Robb, Cheeseman, Scalmani, Barone, Mennucci, Petersson, Nakatsuji, Li, Caricato, Marenich, Bloino, Janesko, Gomperts, Mennucci, Hratchian, Ortiz, Izmaylov, Sonnenberg, Williams-Young, Ding, Lipparini, Egidi, Goings, Peng, Petrone, Henderson, Ranasinhe, Zakrzewski, Gao, Rega, Zheng, Liang, Hada, Ehara, Toyota, Fukuda, Hasegawa, Ishida, Nakajima, Honda, Kitao, Nakai, Vreven, Throssell, Montgomery, Peralta, Ogliaro, Bearpark, Heyd, Brothers, Kudin, Staroverov, Keith, Kobayashi, Normand, Raghavachari, Rendell, Burant, Iyengar, Tomasi, Cossi, Millam, Klene, Adamo, Cammi, Ochterski, Martin, Morokuma, Farkas, Foresman, Fox (bb0060) 2022
Chakraborty, Pan, Chattaraj (bb0025) 2013
Miller, Miller (bb0130) 1981; 47
Anderson, Hammons, Kadlubar, Potter, Kaderlik, Ilett, Minchin, Teitel, Chou, Martin, Guengerich, Barone, Lang, Peterson (bb0005) 1997; 18
Domingo (10.1016/j.tiv.2022.105347_bb0050) 2008; 73
Leave-One-Out Cross-Validation (10.1016/j.tiv.2022.105347_bb0110) 2010
Wysocka (10.1016/j.tiv.2022.105347_bb0200) 2017; 56
Frisch (10.1016/j.tiv.2022.105347_bb0060) 2022
Ju (10.1016/j.tiv.2022.105347_bb0090) 2010; 74
Putz (10.1016/j.tiv.2022.105347_bb0160) 2011; 12
Chattaraj (10.1016/j.tiv.2022.105347_bb0030) 2007; 107
Nelson (10.1016/j.tiv.2022.105347_bb0135) 1982; 25
Tomasi (10.1016/j.tiv.2022.105347_bb0190) 2005; 105
Shimada (10.1016/j.tiv.2022.105347_bb0170) 1996; 56
Ayers (10.1016/j.tiv.2022.105347_bb0010) 2005; 101
IARC (10.1016/j.tiv.2022.105347_bb0085) 2021; vol. 127
Parr (10.1016/j.tiv.2022.105347_bb0145) 1989
Stavros (10.1016/j.tiv.2022.105347_bb0185) 2014; 42
Gazquez (10.1016/j.tiv.2022.105347_bb0065) 2007; 111
Parr (10.1016/j.tiv.2022.105347_bb0150) 1999; 121
Chattaraj (10.1016/j.tiv.2022.105347_bb0040) 2011; 111
Frank (10.1016/j.tiv.2022.105347_bb0055) 2016
Geerlings (10.1016/j.tiv.2022.105347_bb0070) 2003; 103
Kovacic (10.1016/j.tiv.2022.105347_bb0100) 2014; 34
Benigni (10.1016/j.tiv.2022.105347_bb0015) 2011; 111
Geerlings (10.1016/j.tiv.2022.105347_bb0075) 2020; 139
Limited (10.1016/j.tiv.2022.105347_bb0115) 2021; 1
Marwood (10.1016/j.tiv.2022.105347_bb0120) 1995; 16
Some Nitrobenzenes and Other Industrial Chemicals (10.1016/j.tiv.2022.105347_bb0175) 2020; vol. 123
Song (10.1016/j.tiv.2022.105347_bb0180) 2016; 13
Pedretti (10.1016/j.tiv.2022.105347_bb0155) 2004; 18
Chakraborty (10.1016/j.tiv.2022.105347_bb0025) 2013
Claxton (10.1016/j.tiv.2022.105347_bb0045) 2004; 567
OECD (10.1016/j.tiv.2022.105347_bb0140) 2014
Racz (10.1016/j.tiv.2022.105347_bb0165) 2018; 29
Miller (10.1016/j.tiv.2022.105347_bb0130) 1981; 47
Anderson (10.1016/j.tiv.2022.105347_bb0005) 1997; 18
Krstajic (10.1016/j.tiv.2022.105347_bb0105) 2014; 6
Huang (10.1016/j.tiv.2022.105347_bb0080) 2021; 22
Benigni (10.1016/j.tiv.2022.105347_bb0020) 2000; 100
Chattaraj (10.1016/j.tiv.2022.105347_bb0035) 2006; 106
Wan (10.1016/j.tiv.2022.105347_bb0195) 2019; 58
McKee (10.1016/j.tiv.2022.105347_bb0125) 1995; 15
Kadlubar (10.1016/j.tiv.2022.105347_bb0095) 1983; 48
References_xml – volume: 101
  start-page: 520
  year: 2005
  end-page: 534
  ident: bb0010
  article-title: Perturbative perspectives on the chemical reaction prediction problem
  publication-title: Int. J. Quantum Chem.
– volume: 58
  start-page: 13
  year: 2019
  end-page: 25
  ident: bb0195
  article-title: Mechanism-based structure-activity relationship (SAR) analysis of aromatic amines and nitroaromatics carcinogenicity via statistical analyses based on CPDB
  publication-title: Toxicol. in Vitro
– volume: 567
  start-page: 347
  year: 2004
  end-page: 399
  ident: bb0045
  article-title: The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicity
  publication-title: Mutation Res. Rev. Mutation Res.
– volume: 121
  start-page: 1922
  year: 1999
  end-page: 1924
  ident: bb0150
  article-title: Electrophilicity index
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 159
  year: 1995
  end-page: 165
  ident: bb0125
  article-title: Evaluation of coal liquids derived from the EDS process in carcinogenesis screening-tests
  publication-title: J. Appl. Toxicol.
– volume: 42
  start-page: 3450
  year: 2014
  end-page: 3463
  ident: bb0185
  article-title: Base-displaced intercalation of the 2-amino-3-methylimidazo 4,5-f quinolone N-2-dG adduct in the NarI DNA recognition sequence
  publication-title: Nucleic Acids Res.
– start-page: 143
  year: 2013
  end-page: 179
  ident: bb0025
  article-title: Biological activity and toxicity: a conceptual DFT approach
  publication-title: Applications of Density Functional Theory to Biological and Bioinorganic Chemistry
– volume: 18
  start-page: 167
  year: 2004
  end-page: 173
  ident: bb0155
  article-title: VEGA - an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming
  publication-title: J. Comput. Aided Mol. Des.
– volume: 56
  start-page: 289
  year: 2017
  end-page: 305
  ident: bb0200
  article-title: Nitroaromatic compounds - characteristics and methods of biodegradation
  publication-title: Postepy Mikrobiologii
– year: 2022
  ident: bb0060
  article-title: Gaussian 16
– volume: 47
  start-page: 2327
  year: 1981
  end-page: 2345
  ident: bb0130
  article-title: Searches for ultimate chemical carcinogens and their reactions with cellular macromolecules
  publication-title: Cancer
– volume: 139
  start-page: 18
  year: 2020
  ident: bb0075
  article-title: Conceptual density functional theory: status, prospects, issues
  publication-title: Theor. Chem. Accounts
– year: 2016
  ident: bb0055
  article-title: The WEKA Workbench. Online Appendix for "Data Mining: Practical Machine Learning Tools and Techniques"
– volume: vol. 127
  year: 2021
  ident: bb0085
  article-title: Some Aromatic Amines and Related Compounds. IARC Monographs on the Identification of Carcinogenic Hazards to Humans
– year: 2014
  ident: bb0140
  article-title: Structure-Activity Relationship [(Q)SAR] Models
– volume: 107
  start-page: PR46
  year: 2007
  end-page: PR74
  ident: bb0030
  article-title: Update 1 of: Electrophilicity index
  publication-title: Chem. Rev.
– volume: 105
  start-page: 2999
  year: 2005
  end-page: 3093
  ident: bb0190
  article-title: Quantum mechanical continuum solvation models
  publication-title: Chem. Rev.
– volume: 100
  start-page: 3697
  year: 2000
  end-page: 3714
  ident: bb0020
  article-title: Quantitative structure-activity relationships of mutagenic and carcinogenic aromatic amines
  publication-title: Chem. Rev.
– volume: 12
  start-page: 5098
  year: 2011
  end-page: 5134
  ident: bb0160
  article-title: Alert-QSAR. Implications for electrophilic theory of chemical carcinogenesis
  publication-title: Int. J. Mol. Sci.
– volume: vol. 123
  year: 2020
  ident: bb0175
  article-title: IARC Monographs on the Identification of Carcinogenic Hazards to Humans
– volume: 111
  start-page: PR43
  year: 2011
  end-page: PR75
  ident: bb0040
  article-title: Update 2 of: Electrophilicity index
  publication-title: Chem. Rev.
– volume: 25
  start-page: 753
  year: 1982
  end-page: 765
  ident: bb0135
  article-title: Metabolic-activation and drug toxicity
  publication-title: J. Med. Chem.
– volume: 34
  start-page: 810
  year: 2014
  end-page: 824
  ident: bb0100
  article-title: Nitroaromatic compounds: Environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism
  publication-title: J. Appl. Toxicol.
– volume: 13
  start-page: 14
  year: 2016
  ident: bb0180
  article-title: QSAR study for carcinogenic potency of aromatic amines based on GEP and MLPs
  publication-title: Int. J. Environ. Res. Public Health
– volume: 22
  start-page: 14
  year: 2021
  ident: bb0080
  article-title: Quantitative structure-activity relationship (QSAR) studies on the toxic effects of nitroaromatic compounds (NACs): a systematic review
  publication-title: Int. J. Mol. Sci.
– year: 1989
  ident: bb0145
  article-title: Density-Functional Theory of Atoms and Molecules
– volume: 111
  start-page: 2507
  year: 2011
  end-page: 2536
  ident: bb0015
  article-title: Mechanisms of chemical carcinogenicity and mutagenicity: a review with implications for predictive toxicology
  publication-title: Chem. Rev.
– volume: 111
  start-page: 1966
  year: 2007
  end-page: 1970
  ident: bb0065
  article-title: Electrodonating and electroaccepting powers
  publication-title: J. Phys. Chem. A
– start-page: 600
  year: 2010
  end-page: 601
  ident: bb0110
  publication-title: Encyclopedia of Machine Learning
– volume: 106
  start-page: 2065
  year: 2006
  end-page: 2091
  ident: bb0035
  article-title: Electrophilicity index
  publication-title: Chem. Rev.
– volume: 103
  start-page: 1793
  year: 2003
  end-page: 1873
  ident: bb0070
  article-title: Conceptual density functional theory
  publication-title: Chem. Rev.
– volume: 29
  start-page: 661
  year: 2018
  end-page: 674
  ident: bb0165
  article-title: Modelling methods and cross-validation variants in QSAR: a multi-level analysis
  publication-title: SAR QSAR Environ. Res.
– volume: 74
  year: 2010
  ident: bb0090
  article-title: Nitroaromatic compounds, from synthesis to biodegradation
  publication-title: Microbiol. Mol. Biol. Rev.
– volume: 56
  start-page: 2979
  year: 1996
  end-page: 2984
  ident: bb0170
  article-title: Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1
  publication-title: Cancer Res.
– volume: 18
  start-page: 1085
  year: 1997
  end-page: 1092
  ident: bb0005
  article-title: Metabolic activation of aromatic amines by human pancreas
  publication-title: Carcinogenesis
– volume: 1
  year: 2021
  ident: bb0115
  article-title: in
– volume: 73
  start-page: 4615
  year: 2008
  end-page: 4624
  ident: bb0050
  article-title: Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions
  publication-title: J. Org. Chem.
– volume: 16
  start-page: 2037
  year: 1995
  end-page: 2043
  ident: bb0120
  article-title: Escherichia-coli lacz strains engineered for detection of frameshift mutations induced by aromatic-amines and nitroaromatic compounds
  publication-title: Carcinogenesis
– volume: 48
  year: 1983
  ident: bb0095
  article-title: Aromatic-amines and nitroaromatic hydrocarbons as environmental carcinogens - metabolic-activation, carcinogen-DNA adduct formation, and methods for adduct detection
  publication-title: Br. J. Cancer
– volume: 6
  start-page: 15
  year: 2014
  ident: bb0105
  article-title: Cross-validation pitfalls when selecting and assessing regression and classification models
  publication-title: J. Cheminformatics
– start-page: 600
  year: 2010
  ident: 10.1016/j.tiv.2022.105347_bb0110
– volume: 22
  start-page: 14
  year: 2021
  ident: 10.1016/j.tiv.2022.105347_bb0080
  article-title: Quantitative structure-activity relationship (QSAR) studies on the toxic effects of nitroaromatic compounds (NACs): a systematic review
  publication-title: Int. J. Mol. Sci.
– volume: 47
  start-page: 2327
  year: 1981
  ident: 10.1016/j.tiv.2022.105347_bb0130
  article-title: Searches for ultimate chemical carcinogens and their reactions with cellular macromolecules
  publication-title: Cancer
  doi: 10.1002/1097-0142(19810515)47:10<2327::AID-CNCR2820471003>3.0.CO;2-Z
– volume: 106
  start-page: 2065
  year: 2006
  ident: 10.1016/j.tiv.2022.105347_bb0035
  article-title: Electrophilicity index
  publication-title: Chem. Rev.
  doi: 10.1021/cr040109f
– volume: 48
  year: 1983
  ident: 10.1016/j.tiv.2022.105347_bb0095
  article-title: Aromatic-amines and nitroaromatic hydrocarbons as environmental carcinogens - metabolic-activation, carcinogen-DNA adduct formation, and methods for adduct detection
  publication-title: Br. J. Cancer
– volume: 100
  start-page: 3697
  year: 2000
  ident: 10.1016/j.tiv.2022.105347_bb0020
  article-title: Quantitative structure-activity relationships of mutagenic and carcinogenic aromatic amines
  publication-title: Chem. Rev.
  doi: 10.1021/cr9901079
– volume: 111
  start-page: 1966
  year: 2007
  ident: 10.1016/j.tiv.2022.105347_bb0065
  article-title: Electrodonating and electroaccepting powers
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp065459f
– volume: 15
  start-page: 159
  year: 1995
  ident: 10.1016/j.tiv.2022.105347_bb0125
  article-title: Evaluation of coal liquids derived from the EDS process in carcinogenesis screening-tests
  publication-title: J. Appl. Toxicol.
  doi: 10.1002/jat.2550150305
– volume: vol. 127
  year: 2021
  ident: 10.1016/j.tiv.2022.105347_bb0085
– volume: 12
  start-page: 5098
  year: 2011
  ident: 10.1016/j.tiv.2022.105347_bb0160
  article-title: Alert-QSAR. Implications for electrophilic theory of chemical carcinogenesis
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms12085098
– volume: 107
  start-page: PR46
  year: 2007
  ident: 10.1016/j.tiv.2022.105347_bb0030
  article-title: Update 1 of: Electrophilicity index
  publication-title: Chem. Rev.
  doi: 10.1021/cr078014b
– volume: 29
  start-page: 661
  year: 2018
  ident: 10.1016/j.tiv.2022.105347_bb0165
  article-title: Modelling methods and cross-validation variants in QSAR: a multi-level analysis
  publication-title: SAR QSAR Environ. Res.
  doi: 10.1080/1062936X.2018.1505778
– volume: 58
  start-page: 13
  year: 2019
  ident: 10.1016/j.tiv.2022.105347_bb0195
  article-title: Mechanism-based structure-activity relationship (SAR) analysis of aromatic amines and nitroaromatics carcinogenicity via statistical analyses based on CPDB
  publication-title: Toxicol. in Vitro
  doi: 10.1016/j.tiv.2019.03.017
– volume: 6
  start-page: 15
  year: 2014
  ident: 10.1016/j.tiv.2022.105347_bb0105
  article-title: Cross-validation pitfalls when selecting and assessing regression and classification models
  publication-title: J. Cheminformatics
  doi: 10.1186/1758-2946-6-10
– volume: 1
  year: 2021
  ident: 10.1016/j.tiv.2022.105347_bb0115
– year: 1989
  ident: 10.1016/j.tiv.2022.105347_bb0145
– volume: 56
  start-page: 2979
  year: 1996
  ident: 10.1016/j.tiv.2022.105347_bb0170
  article-title: Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1
  publication-title: Cancer Res.
– volume: 103
  start-page: 1793
  year: 2003
  ident: 10.1016/j.tiv.2022.105347_bb0070
  article-title: Conceptual density functional theory
  publication-title: Chem. Rev.
  doi: 10.1021/cr990029p
– year: 2016
  ident: 10.1016/j.tiv.2022.105347_bb0055
– volume: 73
  start-page: 4615
  year: 2008
  ident: 10.1016/j.tiv.2022.105347_bb0050
  article-title: Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study
  publication-title: J. Org. Chem.
  doi: 10.1021/jo800572a
– year: 2014
  ident: 10.1016/j.tiv.2022.105347_bb0140
– volume: 111
  start-page: PR43
  year: 2011
  ident: 10.1016/j.tiv.2022.105347_bb0040
  article-title: Update 2 of: Electrophilicity index
  publication-title: Chem. Rev.
  doi: 10.1021/cr100149p
– volume: 34
  start-page: 810
  year: 2014
  ident: 10.1016/j.tiv.2022.105347_bb0100
  article-title: Nitroaromatic compounds: Environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism
  publication-title: J. Appl. Toxicol.
  doi: 10.1002/jat.2980
– volume: 13
  start-page: 14
  year: 2016
  ident: 10.1016/j.tiv.2022.105347_bb0180
  article-title: QSAR study for carcinogenic potency of aromatic amines based on GEP and MLPs
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph13111141
– volume: 121
  start-page: 1922
  year: 1999
  ident: 10.1016/j.tiv.2022.105347_bb0150
  article-title: Electrophilicity index
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja983494x
– volume: 18
  start-page: 1085
  year: 1997
  ident: 10.1016/j.tiv.2022.105347_bb0005
  article-title: Metabolic activation of aromatic amines by human pancreas
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/18.5.1085
– volume: 74
  year: 2010
  ident: 10.1016/j.tiv.2022.105347_bb0090
  article-title: Nitroaromatic compounds, from synthesis to biodegradation
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.00006-10
– volume: 42
  start-page: 3450
  year: 2014
  ident: 10.1016/j.tiv.2022.105347_bb0185
  article-title: Base-displaced intercalation of the 2-amino-3-methylimidazo 4,5-f quinolone N-2-dG adduct in the NarI DNA recognition sequence
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1109
– start-page: 143
  year: 2013
  ident: 10.1016/j.tiv.2022.105347_bb0025
  article-title: Biological activity and toxicity: a conceptual DFT approach
– year: 2022
  ident: 10.1016/j.tiv.2022.105347_bb0060
– volume: 105
  start-page: 2999
  year: 2005
  ident: 10.1016/j.tiv.2022.105347_bb0190
  article-title: Quantum mechanical continuum solvation models
  publication-title: Chem. Rev.
  doi: 10.1021/cr9904009
– volume: 139
  start-page: 18
  year: 2020
  ident: 10.1016/j.tiv.2022.105347_bb0075
  article-title: Conceptual density functional theory: status, prospects, issues
  publication-title: Theor. Chem. Accounts
  doi: 10.1007/s00214-020-2546-7
– volume: vol. 123
  year: 2020
  ident: 10.1016/j.tiv.2022.105347_bb0175
– volume: 111
  start-page: 2507
  year: 2011
  ident: 10.1016/j.tiv.2022.105347_bb0015
  article-title: Mechanisms of chemical carcinogenicity and mutagenicity: a review with implications for predictive toxicology
  publication-title: Chem. Rev.
  doi: 10.1021/cr100222q
– volume: 101
  start-page: 520
  year: 2005
  ident: 10.1016/j.tiv.2022.105347_bb0010
  article-title: Perturbative perspectives on the chemical reaction prediction problem
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.20307
– volume: 16
  start-page: 2037
  year: 1995
  ident: 10.1016/j.tiv.2022.105347_bb0120
  article-title: Escherichia-coli lacz strains engineered for detection of frameshift mutations induced by aromatic-amines and nitroaromatic compounds
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/16.9.2037
– volume: 18
  start-page: 167
  year: 2004
  ident: 10.1016/j.tiv.2022.105347_bb0155
  article-title: VEGA - an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1023/B:JCAM.0000035186.90683.f2
– volume: 567
  start-page: 347
  year: 2004
  ident: 10.1016/j.tiv.2022.105347_bb0045
  article-title: The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicity
  publication-title: Mutation Res. Rev. Mutation Res.
  doi: 10.1016/j.mrrev.2004.08.002
– volume: 25
  start-page: 753
  year: 1982
  ident: 10.1016/j.tiv.2022.105347_bb0135
  article-title: Metabolic-activation and drug toxicity
  publication-title: J. Med. Chem.
  doi: 10.1021/jm00349a001
– volume: 56
  start-page: 289
  year: 2017
  ident: 10.1016/j.tiv.2022.105347_bb0200
  article-title: Nitroaromatic compounds - characteristics and methods of biodegradation
  publication-title: Postepy Mikrobiologii
SSID ssj0005820
Score 2.383121
Snippet A 3D-QSAR study based on DFT descriptors and machine learning calculations is presented in this work. Our goal has been to build predictive models for...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105347
SubjectTerms Activated Metabolites
Amines
Aromatic amines
Carcinogenic activity
Carcinogenic potency
Carcinogens
Chemical potential
Classification
Decision trees
DFT
J48Consolidated
JCHAIDStar
Learning algorithms
Machine learning
Metabolites
Nitroaromatics
Prediction models
QSAR
RandomTree
Solvent Effects
Solvents
SPAARC
Structure-activity relationships
WEKA
Title Machine learning predictive classification models for the carcinogenic activity of activated metabolites derived from aromatic amines and nitroaromatics
URI https://dx.doi.org/10.1016/j.tiv.2022.105347
https://www.ncbi.nlm.nih.gov/pubmed/35318113
https://www.proquest.com/docview/2667853676
https://www.proquest.com/docview/2642323592
Volume 81
WOSCitedRecordID wos000795483700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3177
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005820
  issn: 0887-2333
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwELa6DgkkhGAwKIzpkNAe2DLFcRI7j2MqAiSmShSpb9Fix1KnNZmarir_hFf-Kec4TrqiTYBEH6zWceKk9-V8tr-7I-RtEvk6ozz2Mq2EFyaSe0kmMs_XgdI8ohnTWZ1sgp-dickkGfV6P50vzPKSF4VYrZKr_ypqrENhG9fZvxB3e1GswO8odCxR7Fj-keC_1PTI3OWDML7mZjOmpghJYysbcpAVe50Gp2qZhtLkFSpKvLIJ4iqbvBKGKCDrJGhom87yBaLG-C1XhwqfZol1tYfKORY2-OvMEOnrPQnUFvPSHajWzeBxuZpKG_1pWhwuTbtOFSIup45raffxOz7-FP9orHrPik1OmiMpzMq5dd0ZKoP-cn1ZA2fELf3KrrU5f5uO3ORUYsBs6Izj3KpswRMcSZpkMI1Ot2lgfhse7ErFBVoDy2PTqclyzGzEz42o219NV6anIKg3vdkW2Q54lIg-2T75NJx87nhEwsb-dLfmts5rEuFGR7cZP7dNbmojZ_yYPGpmJ3BiUfWE9PJih9w_dUkBd8jByIY6_34E485zrzqCAxh1QdCx4UO7HgzWze0p-dHAEhwsoYMl3IQlWFgCwhIQlrAOS3CwhFJDC0tYgyU0sAQDS3DoAwtLQFjCTVg-I98-DMenH70mK4gnGaULTwYR02iEqkDmfqgkfmJFFdVxQHXEMp5JEVPFBVM6zLjGEYaqPNRZ4Icx_ma7pF-URf6CgAwSGWucIkVUo10WCsZknik00JSf8HN_QHwnrlQ2IfNN5pbL1HEjL1J80NRIOLUSHpB37SlXNl7MXY1Dh4G0MXitIZsiYO86bc_hJW0UT5Wioc3R9I55PCBv2sOIDrMBeF7k5bVpY2gZLEqCAXlucdbeJMPBWFDKXv7bPb0iD7q3eI_0F_Pr_DW5J5eLaTXfJ1t8IvabN-cXh1v2ig
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+predictive+classification+models+for+the+carcinogenic+activity+of+activated+metabolites+derived+from+aromatic+amines+and+nitroaromatics&rft.jtitle=Toxicology+in+vitro&rft.au=Halabi%2C+Andr%C3%A9s&rft.au=Rinc%C3%B3n%2C+Elizabeth&rft.au=Chamorro%2C+Eduardo&rft.date=2022-06-01&rft.pub=Elsevier+Ltd&rft.issn=0887-2333&rft.eissn=1879-3177&rft.volume=81&rft_id=info:doi/10.1016%2Fj.tiv.2022.105347&rft.externalDocID=S0887233322000443
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-2333&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-2333&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-2333&client=summon