Machine learning predictive classification models for the carcinogenic activity of activated metabolites derived from aromatic amines and nitroaromatics
A 3D-QSAR study based on DFT descriptors and machine learning calculations is presented in this work. Our goal has been to build predictive models for classifying the carcinogenic activity of a set of aromatic amines (AA) and nitroaromatic (NA) compounds. As the main result, we stress that calculati...
Uloženo v:
| Vydáno v: | Toxicology in vitro Ročník 81; s. 105347 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Elsevier Ltd
01.06.2022
Elsevier Science Ltd |
| Témata: | |
| ISSN: | 0887-2333, 1879-3177, 1879-3177 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A 3D-QSAR study based on DFT descriptors and machine learning calculations is presented in this work. Our goal has been to build predictive models for classifying the carcinogenic activity of a set of aromatic amines (AA) and nitroaromatic (NA) compounds. As the main result, we stress that calculations must consider both the activated metabolites (derived from AA and NA species) and the water solvent to obtain reliable predictive classification models. We have obtained eight decision tree models that presented an accuracy of over 90% by using either Gázquez-Vela chemical potential (μ+) or the chemical hardness (η) of the activated metabolites in aqueous solvent.
•Activated metabolites and solvent information is needed for predicting carcinogenic activity of nitro and aromatic amines.•Our models predicts carcinogenic activity with over 90% accuracy accordingly with high Cohen's kappa statistic values•For activated metabolites in the aqueous solvent phase, the electron-accepting chemical potential and hardness are essential. |
|---|---|
| AbstractList | A 3D-QSAR study based on DFT descriptors and machine learning calculations is presented in this work. Our goal has been to build predictive models for classifying the carcinogenic activity of a set of aromatic amines (AA) and nitroaromatic (NA) compounds. As the main result, we stress that calculations must consider both the activated metabolites (derived from AA and NA species) and the water solvent to obtain reliable predictive classification models. We have obtained eight decision tree models that presented an accuracy of over 90% by using either Gázquez-Vela chemical potential (μ
) or the chemical hardness (η) of the activated metabolites in aqueous solvent. A 3D-QSAR study based on DFT descriptors and machine learning calculations is presented in this work. Our goal has been to build predictive models for classifying the carcinogenic activity of a set of aromatic amines (AA) and nitroaromatic (NA) compounds. As the main result, we stress that calculations must consider both the activated metabolites (derived from AA and NA species) and the water solvent to obtain reliable predictive classification models. We have obtained eight decision tree models that presented an accuracy of over 90% by using either Gázquez-Vela chemical potential (μ+) or the chemical hardness (η) of the activated metabolites in aqueous solvent.A 3D-QSAR study based on DFT descriptors and machine learning calculations is presented in this work. Our goal has been to build predictive models for classifying the carcinogenic activity of a set of aromatic amines (AA) and nitroaromatic (NA) compounds. As the main result, we stress that calculations must consider both the activated metabolites (derived from AA and NA species) and the water solvent to obtain reliable predictive classification models. We have obtained eight decision tree models that presented an accuracy of over 90% by using either Gázquez-Vela chemical potential (μ+) or the chemical hardness (η) of the activated metabolites in aqueous solvent. A 3D-QSAR study based on DFT descriptors and machine learning calculations is presented in this work. Our goal has been to build predictive models for classifying the carcinogenic activity of a set of aromatic amines (AA) and nitroaromatic (NA) compounds. As the main result, we stress that calculations must consider both the activated metabolites (derived from AA and NA species) and the water solvent to obtain reliable predictive classification models. We have obtained eight decision tree models that presented an accuracy of over 90% by using either Gázquez-Vela chemical potential (μ+) or the chemical hardness (η) of the activated metabolites in aqueous solvent. A 3D-QSAR study based on DFT descriptors and machine learning calculations is presented in this work. Our goal has been to build predictive models for classifying the carcinogenic activity of a set of aromatic amines (AA) and nitroaromatic (NA) compounds. As the main result, we stress that calculations must consider both the activated metabolites (derived from AA and NA species) and the water solvent to obtain reliable predictive classification models. We have obtained eight decision tree models that presented an accuracy of over 90% by using either Gázquez-Vela chemical potential (μ+) or the chemical hardness (η) of the activated metabolites in aqueous solvent. •Activated metabolites and solvent information is needed for predicting carcinogenic activity of nitro and aromatic amines.•Our models predicts carcinogenic activity with over 90% accuracy accordingly with high Cohen's kappa statistic values•For activated metabolites in the aqueous solvent phase, the electron-accepting chemical potential and hardness are essential. |
| ArticleNumber | 105347 |
| Author | Chamorro, Eduardo Rincón, Elizabeth Halabi, Andrés |
| Author_xml | – sequence: 1 givenname: Andrés surname: Halabi fullname: Halabi, Andrés email: andres.halabi@alumnos.uach.cl organization: Facultad de Ciencias, Instituto de Ciencias Químicas, Universidad Austral de Chile, Independencia 631, Valdivia 5090000, Chile – sequence: 2 givenname: Elizabeth surname: Rincón fullname: Rincón, Elizabeth email: elizabethrincon@uach.cl organization: Facultad de Ciencias, Instituto de Ciencias Químicas, Universidad Austral de Chile, Independencia 631, Valdivia 5090000, Chile – sequence: 3 givenname: Eduardo surname: Chamorro fullname: Chamorro, Eduardo email: echamorro@unab.cl organization: Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Avenida Republica 275, Santiago 8370146, Chile |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35318113$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kb1uHCEUhVHkKF47eYA0EVKaNLvhZwZmlSqynB_JUZqkRgxc7LuagQ2wlvwmedywGW_jwhTA1T3fAd1zQc5iikDIW842nHH1cbepeL8RTIhW97LTL8iKD3q7llzrM7Jiw6DXQkp5Ti5K2THG-kGwV-Rc9pIPnMsV-fvDujuMQCewOWK8pfsMHl0zBuomWwoGdLZiinROHqZCQ8q03rWuzQ5juoWIjtojgfWBprDcbQVPZ6h2TBNWKNRDbp6ehpxmatvWTBs3t8cLtdHTiDWnU6O8Ji-DnQq8eTwvye8v17-uvq1vfn79fvX5Zu0k53XtRC-D4tILB6zzri3luedBCR56OerRDYp7PUgfulGHrZLcQxdGwTrVanlJPiy--5z-HKBUM2NxME02QjoUI1QnpJD9VjTp-yfSXTrk2H7XVEoPvVRaNdW7R9VhnMGbfcbZ5gdzmnkT6EXgciolQzAO6_8J12xxMpyZY7pmZ9oYzTFds6TbSP6EPJk_x3xamBYd3CNkUxxCdC3kDK4an_AZ-h8nt8BZ |
| CitedBy_id | crossref_primary_10_1016_j_comptc_2023_114211 crossref_primary_10_1016_j_scitotenv_2025_179133 crossref_primary_10_1016_j_watres_2024_121259 crossref_primary_10_1016_j_comptc_2024_114782 crossref_primary_10_1002_adsu_202300509 crossref_primary_10_1016_j_chemphys_2024_112346 crossref_primary_10_1016_j_surfin_2022_102226 crossref_primary_10_1007_s11356_024_34800_x |
| Cites_doi | 10.1002/1097-0142(19810515)47:10<2327::AID-CNCR2820471003>3.0.CO;2-Z 10.1021/cr040109f 10.1021/cr9901079 10.1021/jp065459f 10.1002/jat.2550150305 10.3390/ijms12085098 10.1021/cr078014b 10.1080/1062936X.2018.1505778 10.1016/j.tiv.2019.03.017 10.1186/1758-2946-6-10 10.1021/cr990029p 10.1021/jo800572a 10.1021/cr100149p 10.1002/jat.2980 10.3390/ijerph13111141 10.1021/ja983494x 10.1093/carcin/18.5.1085 10.1128/MMBR.00006-10 10.1093/nar/gkt1109 10.1021/cr9904009 10.1007/s00214-020-2546-7 10.1021/cr100222q 10.1002/qua.20307 10.1093/carcin/16.9.2037 10.1023/B:JCAM.0000035186.90683.f2 10.1016/j.mrrev.2004.08.002 10.1021/jm00349a001 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. Copyright Elsevier Science Ltd. Jun 2022 |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Science Ltd. Jun 2022 |
| DBID | AAYXX CITATION NPM 7TK 7U7 C1K 7X8 |
| DOI | 10.1016/j.tiv.2022.105347 |
| DatabaseName | CrossRef PubMed Neurosciences Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Toxicology Abstracts Neurosciences Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Toxicology Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Public Health Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1879-3177 |
| ExternalDocumentID | 35318113 10_1016_j_tiv_2022_105347 S0887233322000443 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATCM AAXUO ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMT HVGLF HZ~ IHE J1W KCYFY KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPCBC SPT SSJ SSP SSZ T5K UNMZH WUQ ZXP ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS BNPGV NPM SSH 7TK 7U7 C1K 7X8 |
| ID | FETCH-LOGICAL-c311t-c253f613d2ce04dcccc6d1d1f621f53b7bc861d783df4b7f9631de4fb2046b7f3 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795483700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0887-2333 1879-3177 |
| IngestDate | Thu Oct 02 10:29:34 EDT 2025 Sat Jul 26 02:20:38 EDT 2025 Mon Jul 21 05:58:05 EDT 2025 Sat Nov 29 07:11:22 EST 2025 Tue Nov 18 22:33:32 EST 2025 Fri Feb 23 02:41:27 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Aromatic amines SPAARC WEKA Carcinogenic activity DFT QSAR Nitroaromatics Machine learning RandomTree Solvent Effects JCHAIDStar Activated Metabolites Carcinogenic potency J48Consolidated |
| Language | English |
| License | Copyright © 2022 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c311t-c253f613d2ce04dcccc6d1d1f621f53b7bc861d783df4b7f9631de4fb2046b7f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 35318113 |
| PQID | 2667853676 |
| PQPubID | 2047453 |
| ParticipantIDs | proquest_miscellaneous_2642323592 proquest_journals_2667853676 pubmed_primary_35318113 crossref_citationtrail_10_1016_j_tiv_2022_105347 crossref_primary_10_1016_j_tiv_2022_105347 elsevier_sciencedirect_doi_10_1016_j_tiv_2022_105347 |
| PublicationCentury | 2000 |
| PublicationDate | June 2022 2022-06-00 2022-Jun 20220601 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Toxicology in vitro |
| PublicationTitleAlternate | Toxicol In Vitro |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Kovacic, Somanathan (bb0100) 2014; 34 Huang, Sun, Zhao, Zhang, Zhong, Peng (bb0080) 2021; 22 Nelson (bb0135) 1982; 25 Chattaraj, Giri, Duley (bb0040) 2011; 111 Gazquez, Cedillo, Vela (bb0065) 2007; 111 Parr, Weitao (bb0145) 1989 Chattaraj, Roy (bb0030) 2007; 107 Leave-One-Out Cross-Validation (bb0110) 2010 Domingo, Chamorro, Perez (bb0050) 2008; 73 Ju, Parales (bb0090) 2010; 74 Marwood, Meyer, Josephy (bb0120) 1995; 16 Racz, Bajusz, Heberger (bb0165) 2018; 29 Stavros, Hawkins, Rizzo, Stone (bb0185) 2014; 42 Kadlubar (bb0095) 1983; 48 Benigni, Giuliani, Franke, Gruska (bb0020) 2000; 100 Putz, Ionascu, Putz, Ostafe (bb0160) 2011; 12 Geerlings, Chamorro, Chattaraj, De Proft, Gazquez, Liu, Morell, Toro-Labbe, Vela, Ayers (bb0075) 2020; 139 IARC (bb0085) 2021; vol. 127 Wysocka, Olszyna, Komorowska, Popowska (bb0200) 2017; 56 Frank, Hall, Witten (bb0055) 2016 Limited (bb0115) 2021; 1 Shimada, Hayes, Yamazaki, Amin, Hecht, Guengerich, Sutter (bb0170) 1996; 56 Benigni, Bossa (bb0015) 2011; 111 Tomasi, Mennucci, Cammi (bb0190) 2005; 105 Some Nitrobenzenes and Other Industrial Chemicals (bb0175) 2020; vol. 123 Chattaraj, Sarkar, Roy (bb0035) 2006; 106 Song, Zhang, Liang, Cui, Li, Si, Duan, Zhai (bb0180) 2016; 13 OECD (bb0140) 2014 Geerlings, De Proft, Langenaeker (bb0070) 2003; 103 McKee, Traul, Przygoda (bb0125) 1995; 15 Pedretti, Villa, Vistoli (bb0155) 2004; 18 Claxton, Matthews, Warren (bb0045) 2004; 567 Wan, Chen, Zhang, Shen, Luo, Deng, Xiao, Zhou, Deng, Yang, Xiao, Huang, Tian, He, Wang (bb0195) 2019; 58 Ayers, Anderson, Bartolotti (bb0010) 2005; 101 Krstajic, Buturovic, Leahy, Thomas (bb0105) 2014; 6 Parr, Von Szentpaly, Liu (bb0150) 1999; 121 Frisch, Trucks, Schlegel, Scuseria, Robb, Cheeseman, Scalmani, Barone, Mennucci, Petersson, Nakatsuji, Li, Caricato, Marenich, Bloino, Janesko, Gomperts, Mennucci, Hratchian, Ortiz, Izmaylov, Sonnenberg, Williams-Young, Ding, Lipparini, Egidi, Goings, Peng, Petrone, Henderson, Ranasinhe, Zakrzewski, Gao, Rega, Zheng, Liang, Hada, Ehara, Toyota, Fukuda, Hasegawa, Ishida, Nakajima, Honda, Kitao, Nakai, Vreven, Throssell, Montgomery, Peralta, Ogliaro, Bearpark, Heyd, Brothers, Kudin, Staroverov, Keith, Kobayashi, Normand, Raghavachari, Rendell, Burant, Iyengar, Tomasi, Cossi, Millam, Klene, Adamo, Cammi, Ochterski, Martin, Morokuma, Farkas, Foresman, Fox (bb0060) 2022 Chakraborty, Pan, Chattaraj (bb0025) 2013 Miller, Miller (bb0130) 1981; 47 Anderson, Hammons, Kadlubar, Potter, Kaderlik, Ilett, Minchin, Teitel, Chou, Martin, Guengerich, Barone, Lang, Peterson (bb0005) 1997; 18 Domingo (10.1016/j.tiv.2022.105347_bb0050) 2008; 73 Leave-One-Out Cross-Validation (10.1016/j.tiv.2022.105347_bb0110) 2010 Wysocka (10.1016/j.tiv.2022.105347_bb0200) 2017; 56 Frisch (10.1016/j.tiv.2022.105347_bb0060) 2022 Ju (10.1016/j.tiv.2022.105347_bb0090) 2010; 74 Putz (10.1016/j.tiv.2022.105347_bb0160) 2011; 12 Chattaraj (10.1016/j.tiv.2022.105347_bb0030) 2007; 107 Nelson (10.1016/j.tiv.2022.105347_bb0135) 1982; 25 Tomasi (10.1016/j.tiv.2022.105347_bb0190) 2005; 105 Shimada (10.1016/j.tiv.2022.105347_bb0170) 1996; 56 Ayers (10.1016/j.tiv.2022.105347_bb0010) 2005; 101 IARC (10.1016/j.tiv.2022.105347_bb0085) 2021; vol. 127 Parr (10.1016/j.tiv.2022.105347_bb0145) 1989 Stavros (10.1016/j.tiv.2022.105347_bb0185) 2014; 42 Gazquez (10.1016/j.tiv.2022.105347_bb0065) 2007; 111 Parr (10.1016/j.tiv.2022.105347_bb0150) 1999; 121 Chattaraj (10.1016/j.tiv.2022.105347_bb0040) 2011; 111 Frank (10.1016/j.tiv.2022.105347_bb0055) 2016 Geerlings (10.1016/j.tiv.2022.105347_bb0070) 2003; 103 Kovacic (10.1016/j.tiv.2022.105347_bb0100) 2014; 34 Benigni (10.1016/j.tiv.2022.105347_bb0015) 2011; 111 Geerlings (10.1016/j.tiv.2022.105347_bb0075) 2020; 139 Limited (10.1016/j.tiv.2022.105347_bb0115) 2021; 1 Marwood (10.1016/j.tiv.2022.105347_bb0120) 1995; 16 Some Nitrobenzenes and Other Industrial Chemicals (10.1016/j.tiv.2022.105347_bb0175) 2020; vol. 123 Song (10.1016/j.tiv.2022.105347_bb0180) 2016; 13 Pedretti (10.1016/j.tiv.2022.105347_bb0155) 2004; 18 Chakraborty (10.1016/j.tiv.2022.105347_bb0025) 2013 Claxton (10.1016/j.tiv.2022.105347_bb0045) 2004; 567 OECD (10.1016/j.tiv.2022.105347_bb0140) 2014 Racz (10.1016/j.tiv.2022.105347_bb0165) 2018; 29 Miller (10.1016/j.tiv.2022.105347_bb0130) 1981; 47 Anderson (10.1016/j.tiv.2022.105347_bb0005) 1997; 18 Krstajic (10.1016/j.tiv.2022.105347_bb0105) 2014; 6 Huang (10.1016/j.tiv.2022.105347_bb0080) 2021; 22 Benigni (10.1016/j.tiv.2022.105347_bb0020) 2000; 100 Chattaraj (10.1016/j.tiv.2022.105347_bb0035) 2006; 106 Wan (10.1016/j.tiv.2022.105347_bb0195) 2019; 58 McKee (10.1016/j.tiv.2022.105347_bb0125) 1995; 15 Kadlubar (10.1016/j.tiv.2022.105347_bb0095) 1983; 48 |
| References_xml | – volume: 101 start-page: 520 year: 2005 end-page: 534 ident: bb0010 article-title: Perturbative perspectives on the chemical reaction prediction problem publication-title: Int. J. Quantum Chem. – volume: 58 start-page: 13 year: 2019 end-page: 25 ident: bb0195 article-title: Mechanism-based structure-activity relationship (SAR) analysis of aromatic amines and nitroaromatics carcinogenicity via statistical analyses based on CPDB publication-title: Toxicol. in Vitro – volume: 567 start-page: 347 year: 2004 end-page: 399 ident: bb0045 article-title: The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicity publication-title: Mutation Res. Rev. Mutation Res. – volume: 121 start-page: 1922 year: 1999 end-page: 1924 ident: bb0150 article-title: Electrophilicity index publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 159 year: 1995 end-page: 165 ident: bb0125 article-title: Evaluation of coal liquids derived from the EDS process in carcinogenesis screening-tests publication-title: J. Appl. Toxicol. – volume: 42 start-page: 3450 year: 2014 end-page: 3463 ident: bb0185 article-title: Base-displaced intercalation of the 2-amino-3-methylimidazo 4,5-f quinolone N-2-dG adduct in the NarI DNA recognition sequence publication-title: Nucleic Acids Res. – start-page: 143 year: 2013 end-page: 179 ident: bb0025 article-title: Biological activity and toxicity: a conceptual DFT approach publication-title: Applications of Density Functional Theory to Biological and Bioinorganic Chemistry – volume: 18 start-page: 167 year: 2004 end-page: 173 ident: bb0155 article-title: VEGA - an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming publication-title: J. Comput. Aided Mol. Des. – volume: 56 start-page: 289 year: 2017 end-page: 305 ident: bb0200 article-title: Nitroaromatic compounds - characteristics and methods of biodegradation publication-title: Postepy Mikrobiologii – year: 2022 ident: bb0060 article-title: Gaussian 16 – volume: 47 start-page: 2327 year: 1981 end-page: 2345 ident: bb0130 article-title: Searches for ultimate chemical carcinogens and their reactions with cellular macromolecules publication-title: Cancer – volume: 139 start-page: 18 year: 2020 ident: bb0075 article-title: Conceptual density functional theory: status, prospects, issues publication-title: Theor. Chem. Accounts – year: 2016 ident: bb0055 article-title: The WEKA Workbench. Online Appendix for "Data Mining: Practical Machine Learning Tools and Techniques" – volume: vol. 127 year: 2021 ident: bb0085 article-title: Some Aromatic Amines and Related Compounds. IARC Monographs on the Identification of Carcinogenic Hazards to Humans – year: 2014 ident: bb0140 article-title: Structure-Activity Relationship [(Q)SAR] Models – volume: 107 start-page: PR46 year: 2007 end-page: PR74 ident: bb0030 article-title: Update 1 of: Electrophilicity index publication-title: Chem. Rev. – volume: 105 start-page: 2999 year: 2005 end-page: 3093 ident: bb0190 article-title: Quantum mechanical continuum solvation models publication-title: Chem. Rev. – volume: 100 start-page: 3697 year: 2000 end-page: 3714 ident: bb0020 article-title: Quantitative structure-activity relationships of mutagenic and carcinogenic aromatic amines publication-title: Chem. Rev. – volume: 12 start-page: 5098 year: 2011 end-page: 5134 ident: bb0160 article-title: Alert-QSAR. Implications for electrophilic theory of chemical carcinogenesis publication-title: Int. J. Mol. Sci. – volume: vol. 123 year: 2020 ident: bb0175 article-title: IARC Monographs on the Identification of Carcinogenic Hazards to Humans – volume: 111 start-page: PR43 year: 2011 end-page: PR75 ident: bb0040 article-title: Update 2 of: Electrophilicity index publication-title: Chem. Rev. – volume: 25 start-page: 753 year: 1982 end-page: 765 ident: bb0135 article-title: Metabolic-activation and drug toxicity publication-title: J. Med. Chem. – volume: 34 start-page: 810 year: 2014 end-page: 824 ident: bb0100 article-title: Nitroaromatic compounds: Environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism publication-title: J. Appl. Toxicol. – volume: 13 start-page: 14 year: 2016 ident: bb0180 article-title: QSAR study for carcinogenic potency of aromatic amines based on GEP and MLPs publication-title: Int. J. Environ. Res. Public Health – volume: 22 start-page: 14 year: 2021 ident: bb0080 article-title: Quantitative structure-activity relationship (QSAR) studies on the toxic effects of nitroaromatic compounds (NACs): a systematic review publication-title: Int. J. Mol. Sci. – year: 1989 ident: bb0145 article-title: Density-Functional Theory of Atoms and Molecules – volume: 111 start-page: 2507 year: 2011 end-page: 2536 ident: bb0015 article-title: Mechanisms of chemical carcinogenicity and mutagenicity: a review with implications for predictive toxicology publication-title: Chem. Rev. – volume: 111 start-page: 1966 year: 2007 end-page: 1970 ident: bb0065 article-title: Electrodonating and electroaccepting powers publication-title: J. Phys. Chem. A – start-page: 600 year: 2010 end-page: 601 ident: bb0110 publication-title: Encyclopedia of Machine Learning – volume: 106 start-page: 2065 year: 2006 end-page: 2091 ident: bb0035 article-title: Electrophilicity index publication-title: Chem. Rev. – volume: 103 start-page: 1793 year: 2003 end-page: 1873 ident: bb0070 article-title: Conceptual density functional theory publication-title: Chem. Rev. – volume: 29 start-page: 661 year: 2018 end-page: 674 ident: bb0165 article-title: Modelling methods and cross-validation variants in QSAR: a multi-level analysis publication-title: SAR QSAR Environ. Res. – volume: 74 year: 2010 ident: bb0090 article-title: Nitroaromatic compounds, from synthesis to biodegradation publication-title: Microbiol. Mol. Biol. Rev. – volume: 56 start-page: 2979 year: 1996 end-page: 2984 ident: bb0170 article-title: Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1 publication-title: Cancer Res. – volume: 18 start-page: 1085 year: 1997 end-page: 1092 ident: bb0005 article-title: Metabolic activation of aromatic amines by human pancreas publication-title: Carcinogenesis – volume: 1 year: 2021 ident: bb0115 article-title: in – volume: 73 start-page: 4615 year: 2008 end-page: 4624 ident: bb0050 article-title: Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions publication-title: J. Org. Chem. – volume: 16 start-page: 2037 year: 1995 end-page: 2043 ident: bb0120 article-title: Escherichia-coli lacz strains engineered for detection of frameshift mutations induced by aromatic-amines and nitroaromatic compounds publication-title: Carcinogenesis – volume: 48 year: 1983 ident: bb0095 article-title: Aromatic-amines and nitroaromatic hydrocarbons as environmental carcinogens - metabolic-activation, carcinogen-DNA adduct formation, and methods for adduct detection publication-title: Br. J. Cancer – volume: 6 start-page: 15 year: 2014 ident: bb0105 article-title: Cross-validation pitfalls when selecting and assessing regression and classification models publication-title: J. Cheminformatics – start-page: 600 year: 2010 ident: 10.1016/j.tiv.2022.105347_bb0110 – volume: 22 start-page: 14 year: 2021 ident: 10.1016/j.tiv.2022.105347_bb0080 article-title: Quantitative structure-activity relationship (QSAR) studies on the toxic effects of nitroaromatic compounds (NACs): a systematic review publication-title: Int. J. Mol. Sci. – volume: 47 start-page: 2327 year: 1981 ident: 10.1016/j.tiv.2022.105347_bb0130 article-title: Searches for ultimate chemical carcinogens and their reactions with cellular macromolecules publication-title: Cancer doi: 10.1002/1097-0142(19810515)47:10<2327::AID-CNCR2820471003>3.0.CO;2-Z – volume: 106 start-page: 2065 year: 2006 ident: 10.1016/j.tiv.2022.105347_bb0035 article-title: Electrophilicity index publication-title: Chem. Rev. doi: 10.1021/cr040109f – volume: 48 year: 1983 ident: 10.1016/j.tiv.2022.105347_bb0095 article-title: Aromatic-amines and nitroaromatic hydrocarbons as environmental carcinogens - metabolic-activation, carcinogen-DNA adduct formation, and methods for adduct detection publication-title: Br. J. Cancer – volume: 100 start-page: 3697 year: 2000 ident: 10.1016/j.tiv.2022.105347_bb0020 article-title: Quantitative structure-activity relationships of mutagenic and carcinogenic aromatic amines publication-title: Chem. Rev. doi: 10.1021/cr9901079 – volume: 111 start-page: 1966 year: 2007 ident: 10.1016/j.tiv.2022.105347_bb0065 article-title: Electrodonating and electroaccepting powers publication-title: J. Phys. Chem. A doi: 10.1021/jp065459f – volume: 15 start-page: 159 year: 1995 ident: 10.1016/j.tiv.2022.105347_bb0125 article-title: Evaluation of coal liquids derived from the EDS process in carcinogenesis screening-tests publication-title: J. Appl. Toxicol. doi: 10.1002/jat.2550150305 – volume: vol. 127 year: 2021 ident: 10.1016/j.tiv.2022.105347_bb0085 – volume: 12 start-page: 5098 year: 2011 ident: 10.1016/j.tiv.2022.105347_bb0160 article-title: Alert-QSAR. Implications for electrophilic theory of chemical carcinogenesis publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms12085098 – volume: 107 start-page: PR46 year: 2007 ident: 10.1016/j.tiv.2022.105347_bb0030 article-title: Update 1 of: Electrophilicity index publication-title: Chem. Rev. doi: 10.1021/cr078014b – volume: 29 start-page: 661 year: 2018 ident: 10.1016/j.tiv.2022.105347_bb0165 article-title: Modelling methods and cross-validation variants in QSAR: a multi-level analysis publication-title: SAR QSAR Environ. Res. doi: 10.1080/1062936X.2018.1505778 – volume: 58 start-page: 13 year: 2019 ident: 10.1016/j.tiv.2022.105347_bb0195 article-title: Mechanism-based structure-activity relationship (SAR) analysis of aromatic amines and nitroaromatics carcinogenicity via statistical analyses based on CPDB publication-title: Toxicol. in Vitro doi: 10.1016/j.tiv.2019.03.017 – volume: 6 start-page: 15 year: 2014 ident: 10.1016/j.tiv.2022.105347_bb0105 article-title: Cross-validation pitfalls when selecting and assessing regression and classification models publication-title: J. Cheminformatics doi: 10.1186/1758-2946-6-10 – volume: 1 year: 2021 ident: 10.1016/j.tiv.2022.105347_bb0115 – year: 1989 ident: 10.1016/j.tiv.2022.105347_bb0145 – volume: 56 start-page: 2979 year: 1996 ident: 10.1016/j.tiv.2022.105347_bb0170 article-title: Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1 publication-title: Cancer Res. – volume: 103 start-page: 1793 year: 2003 ident: 10.1016/j.tiv.2022.105347_bb0070 article-title: Conceptual density functional theory publication-title: Chem. Rev. doi: 10.1021/cr990029p – year: 2016 ident: 10.1016/j.tiv.2022.105347_bb0055 – volume: 73 start-page: 4615 year: 2008 ident: 10.1016/j.tiv.2022.105347_bb0050 article-title: Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study publication-title: J. Org. Chem. doi: 10.1021/jo800572a – year: 2014 ident: 10.1016/j.tiv.2022.105347_bb0140 – volume: 111 start-page: PR43 year: 2011 ident: 10.1016/j.tiv.2022.105347_bb0040 article-title: Update 2 of: Electrophilicity index publication-title: Chem. Rev. doi: 10.1021/cr100149p – volume: 34 start-page: 810 year: 2014 ident: 10.1016/j.tiv.2022.105347_bb0100 article-title: Nitroaromatic compounds: Environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism publication-title: J. Appl. Toxicol. doi: 10.1002/jat.2980 – volume: 13 start-page: 14 year: 2016 ident: 10.1016/j.tiv.2022.105347_bb0180 article-title: QSAR study for carcinogenic potency of aromatic amines based on GEP and MLPs publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph13111141 – volume: 121 start-page: 1922 year: 1999 ident: 10.1016/j.tiv.2022.105347_bb0150 article-title: Electrophilicity index publication-title: J. Am. Chem. Soc. doi: 10.1021/ja983494x – volume: 18 start-page: 1085 year: 1997 ident: 10.1016/j.tiv.2022.105347_bb0005 article-title: Metabolic activation of aromatic amines by human pancreas publication-title: Carcinogenesis doi: 10.1093/carcin/18.5.1085 – volume: 74 year: 2010 ident: 10.1016/j.tiv.2022.105347_bb0090 article-title: Nitroaromatic compounds, from synthesis to biodegradation publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00006-10 – volume: 42 start-page: 3450 year: 2014 ident: 10.1016/j.tiv.2022.105347_bb0185 article-title: Base-displaced intercalation of the 2-amino-3-methylimidazo 4,5-f quinolone N-2-dG adduct in the NarI DNA recognition sequence publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1109 – start-page: 143 year: 2013 ident: 10.1016/j.tiv.2022.105347_bb0025 article-title: Biological activity and toxicity: a conceptual DFT approach – year: 2022 ident: 10.1016/j.tiv.2022.105347_bb0060 – volume: 105 start-page: 2999 year: 2005 ident: 10.1016/j.tiv.2022.105347_bb0190 article-title: Quantum mechanical continuum solvation models publication-title: Chem. Rev. doi: 10.1021/cr9904009 – volume: 139 start-page: 18 year: 2020 ident: 10.1016/j.tiv.2022.105347_bb0075 article-title: Conceptual density functional theory: status, prospects, issues publication-title: Theor. Chem. Accounts doi: 10.1007/s00214-020-2546-7 – volume: vol. 123 year: 2020 ident: 10.1016/j.tiv.2022.105347_bb0175 – volume: 111 start-page: 2507 year: 2011 ident: 10.1016/j.tiv.2022.105347_bb0015 article-title: Mechanisms of chemical carcinogenicity and mutagenicity: a review with implications for predictive toxicology publication-title: Chem. Rev. doi: 10.1021/cr100222q – volume: 101 start-page: 520 year: 2005 ident: 10.1016/j.tiv.2022.105347_bb0010 article-title: Perturbative perspectives on the chemical reaction prediction problem publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.20307 – volume: 16 start-page: 2037 year: 1995 ident: 10.1016/j.tiv.2022.105347_bb0120 article-title: Escherichia-coli lacz strains engineered for detection of frameshift mutations induced by aromatic-amines and nitroaromatic compounds publication-title: Carcinogenesis doi: 10.1093/carcin/16.9.2037 – volume: 18 start-page: 167 year: 2004 ident: 10.1016/j.tiv.2022.105347_bb0155 article-title: VEGA - an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming publication-title: J. Comput. Aided Mol. Des. doi: 10.1023/B:JCAM.0000035186.90683.f2 – volume: 567 start-page: 347 year: 2004 ident: 10.1016/j.tiv.2022.105347_bb0045 article-title: The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicity publication-title: Mutation Res. Rev. Mutation Res. doi: 10.1016/j.mrrev.2004.08.002 – volume: 25 start-page: 753 year: 1982 ident: 10.1016/j.tiv.2022.105347_bb0135 article-title: Metabolic-activation and drug toxicity publication-title: J. Med. Chem. doi: 10.1021/jm00349a001 – volume: 56 start-page: 289 year: 2017 ident: 10.1016/j.tiv.2022.105347_bb0200 article-title: Nitroaromatic compounds - characteristics and methods of biodegradation publication-title: Postepy Mikrobiologii |
| SSID | ssj0005820 |
| Score | 2.383121 |
| Snippet | A 3D-QSAR study based on DFT descriptors and machine learning calculations is presented in this work. Our goal has been to build predictive models for... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 105347 |
| SubjectTerms | Activated Metabolites Amines Aromatic amines Carcinogenic activity Carcinogenic potency Carcinogens Chemical potential Classification Decision trees DFT J48Consolidated JCHAIDStar Learning algorithms Machine learning Metabolites Nitroaromatics Prediction models QSAR RandomTree Solvent Effects Solvents SPAARC Structure-activity relationships WEKA |
| Title | Machine learning predictive classification models for the carcinogenic activity of activated metabolites derived from aromatic amines and nitroaromatics |
| URI | https://dx.doi.org/10.1016/j.tiv.2022.105347 https://www.ncbi.nlm.nih.gov/pubmed/35318113 https://www.proquest.com/docview/2667853676 https://www.proquest.com/docview/2642323592 |
| Volume | 81 |
| WOSCitedRecordID | wos000795483700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3177 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005820 issn: 0887-2333 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6DsEkhGAMKIzpkNAe2FI1H02cxzEVAYKpD0XqW5T4Q-q0JlXTVd1_sjf-Vc6xnXSdOsEDfbBa23Gb3s_nc_y7O0I-pjRlqUx7TiAlFkymDo1T3xE4yXse4yJglaR_RBcXdDyOh63Wb-sLs7yK8pyuVvHsv4oa61DYynX2H8RdD4oV-B6FjiWKHcu_EvzPih4pbD4I5WuuDmMqihBTtrIiB2mxV2lwypppyFReobzAkVUQV2bySiiiAKuSoKFtOhULRI3yWy5PON7NEusqD5UUCx38daqI9NWZBGqLeWEbynUzeFSsJkxHf5rkJ0vVr1GFiMuJ5Vrqc_yGjz_BPxqrPvv5JifNkhSmxVy77gy4Qn-x_lgDd8Q1_aortCqmUYwrhEnyYnS1Tu9ilC2ahr4O13lvHdCPJC5x2V921ejd-31RarNphQEf9RB1tUvsRvBt27RDdr2oH9M22T37Nhh_b1hEaEHZw_KKNrjxjXvksR1jm-WzbWdTWTij5-SZ2ZrAmYbUC9IS-T55cm4zAu6T46GOc35zCqPGba88hWMYNhHQseNT_TAYtI_bS3JrMAkWk9BgEu5iEjQmATEJiElYxyRYTEIhocYkrGESDCZBYRIs9EBjEhCTcBeTB-TXl8Ho_KtjUoI4zHfdhcO8vi_RAuUeE72AM3yF3OWuDD1X9v0syhgNXR5Rn8sgiyQuLy7qG5l5vSDEz_4r0s6LXLwhkKEtG8sqHh1XYScp5SJTwZRiV1Ca-R3Ss-JKmImXr9K2XCWWGHmZ4I0mStiJFnaHfKovmelgMQ91DiwGEmPtais2QRA_dNmhxUtitE6ZoJUdod0dRmGHfKibER3q9C_NRXGt-ihOht-PvQ55rXFW_0gL0bdbW96RvWaWHpL2Yn4t3pNHbLmYlPMjshON6ZGZG38A6GXsAQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+predictive+classification+models+for+the+carcinogenic+activity+of+activated+metabolites+derived+from+aromatic+amines+and+nitroaromatics&rft.jtitle=Toxicology+in+vitro&rft.au=Halabi%2C+Andr%C3%A9s&rft.au=Rinc%C3%B3n%2C+Elizabeth&rft.au=Chamorro%2C+Eduardo&rft.date=2022-06-01&rft.eissn=1879-3177&rft.volume=81&rft.spage=105347&rft_id=info:doi/10.1016%2Fj.tiv.2022.105347&rft_id=info%3Apmid%2F35318113&rft.externalDocID=35318113 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-2333&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-2333&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-2333&client=summon |