Wind Turbine Fault Detection Using a Denoising Autoencoder With Temporal Information

Data-driven approaches have gained increasing interests in the fault detection of wind turbines (WTs) due to the difficulty in system modeling and the availability of sensor data. However, the nonlinearity of WTs, uncertainty of disturbances and measurement noise, and temporal dependence in time-ser...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE/ASME transactions on mechatronics Ročník 23; číslo 1; s. 89 - 100
Hlavní autoři: Jiang, Guoqian, Xie, Ping, He, Haibo, Yan, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.02.2018
Témata:
ISSN:1083-4435, 1941-014X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Data-driven approaches have gained increasing interests in the fault detection of wind turbines (WTs) due to the difficulty in system modeling and the availability of sensor data. However, the nonlinearity of WTs, uncertainty of disturbances and measurement noise, and temporal dependence in time-series data still pose grand challenges to effective fault detection. To this end, this paper proposes a new fault detector based on a recently developed unsupervised learning method, denoising autoencoder (DAE), which offers the learning of robust nonlinear representations from data against noise and input fluctuation. A DAE is used to build a robust multivariate reconstruction model on raw time-series data from multiple sensors, and then, the reconstruction error of the DAE trained with normal data is analyzed for fault detection. In addition, we apply the sliding-window technique to consider temporal information inherent in time-series data by including the current and past information within a small time window. A key advantage of the proposed approach is the ability to capture the nonlinear correlations among multiple sensor variables and the temporal dependence of each sensor variable simultaneously, which significantly enhanced the fault detection performance. Simulated data from a generic WT benchmark and field supervisory control and data acquisition data from a real wind farm are used to evaluate the proposed approach. The results of two case studies demonstrate the effectiveness and advantages of our proposed approach.
AbstractList Data-driven approaches have gained increasing interests in the fault detection of wind turbines (WTs) due to the difficulty in system modeling and the availability of sensor data. However, the nonlinearity of WTs, uncertainty of disturbances and measurement noise, and temporal dependence in time-series data still pose grand challenges to effective fault detection. To this end, this paper proposes a new fault detector based on a recently developed unsupervised learning method, denoising autoencoder (DAE), which offers the learning of robust nonlinear representations from data against noise and input fluctuation. A DAE is used to build a robust multivariate reconstruction model on raw time-series data from multiple sensors, and then, the reconstruction error of the DAE trained with normal data is analyzed for fault detection. In addition, we apply the sliding-window technique to consider temporal information inherent in time-series data by including the current and past information within a small time window. A key advantage of the proposed approach is the ability to capture the nonlinear correlations among multiple sensor variables and the temporal dependence of each sensor variable simultaneously, which significantly enhanced the fault detection performance. Simulated data from a generic WT benchmark and field supervisory control and data acquisition data from a real wind farm are used to evaluate the proposed approach. The results of two case studies demonstrate the effectiveness and advantages of our proposed approach.
Author Jiang, Guoqian
He, Haibo
Yan, Jun
Xie, Ping
Author_xml – sequence: 1
  givenname: Guoqian
  orcidid: 0000-0002-1813-8249
  surname: Jiang
  fullname: Jiang, Guoqian
  email: jgqysu@gmail.com
  organization: Qinhuangdao, China
– sequence: 2
  givenname: Ping
  surname: Xie
  fullname: Xie, Ping
  email: pingx@ysu.edu.cn
  organization: Kingston, RI, USA
– sequence: 3
  givenname: Haibo
  orcidid: 0000-0002-5247-9370
  surname: He
  fullname: He, Haibo
  email: he@ele.uri.edu
  organization: Montréal, QC, Canada
– sequence: 4
  givenname: Jun
  orcidid: 0000-0002-5148-1399
  surname: Yan
  fullname: Yan, Jun
  email: jun.yan@concordia.ca
  organization: Montréal, QC, Canada
BookMark eNp9kE1PAjEQhhuDiYD-Ab30DyzObLtfR4IgJBovS_C2abut1kBLuuXgv3f5iAcPnubNJM-bmWdEBs47Tcg9wgQRqsf6dT5bTlLAYpIWWcUAr8gQK44JIH8f9BlKlnDOshsy6rovAOAIOCT1xrqW1ocgrdN0IQ7bSJ901Cpa7-i6s-6Din7jvD3l6SF67ZRvdaAbGz9prXd7H8SWrpzxYSeO3C25NmLb6bvLHJP1Yl7PlsnL2_NqNn1JFEOMicw0Ay6VUJXJCiGA8SyXoDLGc5lKLI1WhhktW-h_rIpCSTQFciZybLlibEzKc68KvuuCNo2y8XRBDMJuG4TmaKc52WmOdpqLnR5N_6D7YHcifP8PPZwhq7X-BUrIqjJH9gP8PnPC
CODEN IATEFW
CitedBy_id crossref_primary_10_1109_TASE_2022_3141186
crossref_primary_10_1109_TMECH_2019_2908233
crossref_primary_10_3390_en18051158
crossref_primary_10_1016_j_rser_2021_111051
crossref_primary_10_1109_JSEN_2022_3149721
crossref_primary_10_1109_TIM_2022_3227606
crossref_primary_10_1109_JSEN_2025_3545415
crossref_primary_10_1088_1361_6501_ac919b
crossref_primary_10_3390_en15082864
crossref_primary_10_1016_j_cie_2023_109605
crossref_primary_10_1007_s11831_021_09671_x
crossref_primary_10_1002_acs_3643
crossref_primary_10_1016_j_eswa_2022_117297
crossref_primary_10_1109_JSEN_2022_3173156
crossref_primary_10_1109_TII_2022_3177662
crossref_primary_10_1109_TII_2024_3359409
crossref_primary_10_1016_j_eswa_2022_119479
crossref_primary_10_1007_s10462_023_10410_w
crossref_primary_10_1016_j_neucom_2024_127574
crossref_primary_10_1109_ACCESS_2020_3000152
crossref_primary_10_1088_1361_6501_adf244
crossref_primary_10_1016_j_measurement_2020_107929
crossref_primary_10_1109_TII_2023_3268685
crossref_primary_10_1088_1361_6501_ad4dd4
crossref_primary_10_1109_ACCESS_2018_2872796
crossref_primary_10_1016_j_aei_2025_103620
crossref_primary_10_1109_ACCESS_2022_3192134
crossref_primary_10_1016_j_anucene_2021_108621
crossref_primary_10_1109_TII_2024_3409443
crossref_primary_10_1109_TMECH_2021_3059801
crossref_primary_10_1155_2024_7733730
crossref_primary_10_1109_TIE_2022_3189085
crossref_primary_10_1109_ACCESS_2018_2824352
crossref_primary_10_1109_ACCESS_2020_2994077
crossref_primary_10_3390_s25154862
crossref_primary_10_1109_TASE_2019_2956087
crossref_primary_10_3390_app10196789
crossref_primary_10_1016_j_ifacol_2023_10_1456
crossref_primary_10_3390_en15197186
crossref_primary_10_1016_j_measurement_2019_02_080
crossref_primary_10_1109_TMECH_2022_3199985
crossref_primary_10_1109_TMECH_2021_3065522
crossref_primary_10_1088_1361_6501_adfcfd
crossref_primary_10_1177_14759217221139642
crossref_primary_10_3390_app12031270
crossref_primary_10_1002_cpe_7886
crossref_primary_10_1016_j_isatra_2022_10_031
crossref_primary_10_1109_ACCESS_2022_3164897
crossref_primary_10_1109_TMECH_2020_2992331
crossref_primary_10_1109_ACCESS_2023_3321320
crossref_primary_10_1016_j_conbuildmat_2023_131643
crossref_primary_10_1109_TIM_2025_3533631
crossref_primary_10_1109_TII_2022_3176821
crossref_primary_10_1109_TPAMI_2024_3387317
crossref_primary_10_1016_j_eswa_2023_119738
crossref_primary_10_1016_j_ress_2023_109108
crossref_primary_10_1109_TII_2024_3381790
crossref_primary_10_1016_j_isatra_2023_03_045
crossref_primary_10_1016_j_renene_2020_12_116
crossref_primary_10_1177_1475921719893594
crossref_primary_10_1002_cjce_23753
crossref_primary_10_1088_1361_6501_aca3c3
crossref_primary_10_1109_TII_2021_3078414
crossref_primary_10_1109_TIM_2020_3048799
crossref_primary_10_1002_ese3_1706
crossref_primary_10_1109_TIA_2025_3544169
crossref_primary_10_2478_amns_2024_2723
crossref_primary_10_3390_machines13060457
crossref_primary_10_1109_TII_2018_2885365
crossref_primary_10_1016_j_heliyon_2024_e38470
crossref_primary_10_3390_en15155638
crossref_primary_10_1109_TII_2018_2875956
crossref_primary_10_1049_rpg2_12319
crossref_primary_10_1007_s10489_024_05530_x
crossref_primary_10_1016_j_rser_2023_114039
crossref_primary_10_1109_TIM_2023_3323967
crossref_primary_10_1080_14786451_2024_2326296
crossref_primary_10_3390_act10050086
crossref_primary_10_3390_app15147698
crossref_primary_10_1016_j_measurement_2022_111529
crossref_primary_10_1587_transinf_2020EDL8127
crossref_primary_10_1016_j_energy_2022_124996
crossref_primary_10_1109_TII_2024_3465597
crossref_primary_10_1109_ACCESS_2023_3240306
crossref_primary_10_1007_s12559_019_09710_7
crossref_primary_10_1088_1361_6501_ad6f33
crossref_primary_10_3390_s21165654
crossref_primary_10_1109_JIOT_2024_3387417
crossref_primary_10_1016_j_ymssp_2024_111420
crossref_primary_10_1016_j_neucom_2024_128211
crossref_primary_10_1109_TII_2024_3413952
crossref_primary_10_1016_j_ins_2024_120635
crossref_primary_10_1109_TII_2018_2886048
crossref_primary_10_1109_TMECH_2020_3004589
crossref_primary_10_1177_0959651820954577
crossref_primary_10_1080_15435075_2024_2315445
crossref_primary_10_1016_j_engappai_2021_104300
crossref_primary_10_1109_ACCESS_2021_3062865
crossref_primary_10_1190_geo2024_0451_1
crossref_primary_10_1177_1748006X20976817
crossref_primary_10_1016_j_measurement_2024_116202
crossref_primary_10_1080_15435075_2023_2253896
crossref_primary_10_1109_ACCESS_2020_2972935
crossref_primary_10_1016_j_measurement_2020_108782
crossref_primary_10_1016_j_rineng_2025_104844
crossref_primary_10_1109_JSEN_2021_3061109
crossref_primary_10_1007_s10462_020_09934_2
crossref_primary_10_1016_j_renene_2018_10_062
crossref_primary_10_1109_TII_2019_2952931
crossref_primary_10_3390_en13051063
crossref_primary_10_1016_j_eswa_2023_120428
crossref_primary_10_1016_j_jsv_2020_115879
crossref_primary_10_3390_jmse13091638
crossref_primary_10_3390_s21165488
crossref_primary_10_1142_S0218126625503785
crossref_primary_10_3390_w14162492
crossref_primary_10_1109_TEC_2021_3075897
crossref_primary_10_1109_TNNLS_2020_2985223
crossref_primary_10_3390_en17225538
crossref_primary_10_3390_s20216265
crossref_primary_10_1109_ACCESS_2022_3219480
crossref_primary_10_1088_1361_6501_ad4ab4
crossref_primary_10_1016_j_isatra_2023_12_031
crossref_primary_10_1109_TII_2021_3076077
crossref_primary_10_3390_en17051010
crossref_primary_10_1016_j_rser_2018_09_012
crossref_primary_10_1109_TII_2022_3149935
crossref_primary_10_1016_j_measurement_2024_114658
crossref_primary_10_1109_TMECH_2020_3011005
crossref_primary_10_1109_TMECH_2019_2928967
crossref_primary_10_1016_j_renene_2020_04_148
crossref_primary_10_3390_en12060984
crossref_primary_10_1016_j_energy_2023_126894
crossref_primary_10_1016_j_jmsy_2024_08_013
crossref_primary_10_3390_en12060982
crossref_primary_10_1177_09596518211056165
crossref_primary_10_3390_s21175830
crossref_primary_10_1109_TNNLS_2022_3230458
crossref_primary_10_1109_TAI_2022_3143079
crossref_primary_10_3390_en14217129
crossref_primary_10_1016_j_compchemeng_2022_107857
crossref_primary_10_3390_en14010028
crossref_primary_10_1002_cjce_25445
crossref_primary_10_3390_app10238649
crossref_primary_10_1109_ACCESS_2024_3379529
crossref_primary_10_1016_j_engappai_2023_106028
crossref_primary_10_1177_01423312211057994
crossref_primary_10_26748_KSOE_2021_018
crossref_primary_10_3390_s23063260
crossref_primary_10_1016_j_psep_2024_11_086
crossref_primary_10_1109_ACCESS_2020_2964294
crossref_primary_10_1109_TMECH_2022_3185675
crossref_primary_10_3390_s20123580
crossref_primary_10_1109_TIM_2023_3324347
crossref_primary_10_1109_TMECH_2021_3127213
crossref_primary_10_1016_j_engappai_2023_105859
crossref_primary_10_1016_j_engstruct_2024_118208
crossref_primary_10_1109_ACCESS_2019_2914731
crossref_primary_10_1109_TII_2024_3353921
crossref_primary_10_3390_en13123132
crossref_primary_10_1109_ACCESS_2019_2950985
crossref_primary_10_1109_JSEN_2024_3455328
crossref_primary_10_1016_j_conengprac_2021_104843
crossref_primary_10_1109_TMECH_2020_3012179
crossref_primary_10_1016_j_measurement_2020_108234
crossref_primary_10_1016_j_ymssp_2023_110109
crossref_primary_10_1109_JSEN_2023_3282230
crossref_primary_10_3390_en12203920
crossref_primary_10_1109_TMECH_2022_3166839
crossref_primary_10_3390_app9152990
crossref_primary_10_1016_j_engfailanal_2023_107056
crossref_primary_10_1088_1742_6596_2303_1_012013
crossref_primary_10_1016_j_conengprac_2019_104235
crossref_primary_10_1016_j_eswa_2024_124511
crossref_primary_10_1109_TIM_2024_3463007
crossref_primary_10_3390_machines12120894
crossref_primary_10_3390_jmse13071337
crossref_primary_10_1007_s12555_021_0323_6
crossref_primary_10_1109_TMECH_2020_3030001
crossref_primary_10_1088_1361_6501_aca496
crossref_primary_10_3390_en16124544
crossref_primary_10_1016_j_renene_2019_07_033
crossref_primary_10_1109_TIA_2019_2901732
crossref_primary_10_1016_j_compind_2021_103528
crossref_primary_10_3390_pr10112408
crossref_primary_10_1109_TIM_2025_3544383
crossref_primary_10_3390_en14092509
crossref_primary_10_1016_j_knosys_2024_112114
crossref_primary_10_1109_TMECH_2021_3058061
crossref_primary_10_1016_j_renene_2020_06_154
crossref_primary_10_3390_en12163091
crossref_primary_10_1016_j_epsr_2022_108642
Cites_doi 10.1109/TSTE.2011.2163430
10.1145/1390156.1390294
10.1109/TSTE.2011.2167164
10.1109/TII.2009.2032654
10.1109/TCST.2013.2259235
10.1109/TMECH.2014.2358674
10.1016/j.compchemeng.2004.07.014
10.1109/TIE.2015.2399401
10.1016/0169-7439(95)00076-3
10.1016/j.asoc.2012.08.033
10.1016/j.renene.2012.11.030
10.3182/20120829-3-MX-2028.00010
10.1109/TEC.2013.2294893
10.1016/j.renene.2012.02.018
10.1109/ACC.2013.6580525
10.1109/TCYB.2015.2404432
10.1016/j.mechatronics.2013.11.009
10.1109/TR.2013.2241204
10.1109/TSTE.2015.2405971
10.1002/we.319
10.1198/106186005X77685
10.1109/TMECH.2016.2547905
10.1109/TSTE.2011.2163177
10.1109/TIM.2017.2698738
10.1109/SysTol.2013.6693951
10.1109/TSG.2016.2621135
10.1109/SMC.2014.6974327
10.1016/j.automatica.2009.02.027
10.1049/PBRN013E
10.1109/TMECH.2015.2507186
10.1002/aic.10978
10.1162/089976600300015691
10.1109/TIE.2014.2301773
10.1016/j.rser.2007.05.008
10.1109/TSG.2014.2386305
10.1109/TCST.2014.2361291
10.1175/1520-0477(1993)074<0615:WMAAUT>2.0.CO;2
10.1109/TIE.2015.2422112
10.1109/SysTol.2013.6693901
10.1109/TIE.2014.2364548
10.1002/acs.1162
10.1049/iet-rpg.2016.0248
10.3390/en81012100
10.1016/S0967-0661(99)00191-4
10.1109/TCST.2014.2364956
10.1109/TKDE.2008.239
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TMECH.2017.2759301
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-014X
EndPage 100
ExternalDocumentID 10_1109_TMECH_2017_2759301
8059861
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Hebei Province
  grantid: F2016203421
  funderid: 10.13039/501100003787
– fundername: National Natural Science Foundation of China
  grantid: 61673336; 51529701
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACKIV
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
OCL
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c311t-b5e304bcac9f57aa03456b0c5346b2b18fecf3febd0109977cb1f7143a61d4c33
IEDL.DBID RIE
ISICitedReferencesCount 229
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000425673100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1083-4435
IngestDate Sat Nov 29 06:33:05 EST 2025
Tue Nov 18 22:24:34 EST 2025
Wed Aug 27 08:34:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-b5e304bcac9f57aa03456b0c5346b2b18fecf3febd0109977cb1f7143a61d4c33
ORCID 0000-0002-5148-1399
0000-0002-5247-9370
0000-0002-1813-8249
OpenAccessLink https://digitalcommons.uri.edu/ele_facpubs/401
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TMECH_2017_2759301
crossref_primary_10_1109_TMECH_2017_2759301
ieee_primary_8059861
PublicationCentury 2000
PublicationDate 2018-Feb.
2018-2-00
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-Feb.
PublicationDecade 2010
PublicationTitle IEEE/ASME transactions on mechatronics
PublicationTitleAbbrev TMECH
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref42
ref41
ref44
ref43
ref49
fawcett (ref47) 2004; 31
ref8
ref7
ref4
ref3
ref6
ref5
ref40
ref34
ref37
ref31
ref30
ref33
wang (ref36) 0
ngiam (ref39) 0
ref32
ref2
ref1
wei (ref9) 2010; 24
ref38
ref24
ref23
ref25
ref20
ref22
ref21
ref28
ref27
ref29
vanini (ref26) 2014; 136
vincent (ref35) 2010; 11
References_xml – ident: ref20
  doi: 10.1109/TSTE.2011.2163430
– ident: ref34
  doi: 10.1145/1390156.1390294
– ident: ref13
  doi: 10.1109/TSTE.2011.2167164
– ident: ref42
  doi: 10.1109/TII.2009.2032654
– ident: ref5
  doi: 10.1109/TCST.2013.2259235
– ident: ref27
  doi: 10.1109/TMECH.2014.2358674
– ident: ref33
  doi: 10.1016/j.compchemeng.2004.07.014
– ident: ref8
  doi: 10.1109/TIE.2015.2399401
– ident: ref32
  doi: 10.1016/0169-7439(95)00076-3
– ident: ref22
  doi: 10.1016/j.asoc.2012.08.033
– ident: ref24
  doi: 10.1016/j.renene.2012.11.030
– volume: 136
  start-page: 91603-1
  year: 2014
  ident: ref26
  article-title: Multiple-model sensor and components fault diagnosis in gas turbine engines using autoassociative neural networks
  publication-title: J Eng Gas Turbines Power
– ident: ref4
  doi: 10.3182/20120829-3-MX-2028.00010
– start-page: 265
  year: 0
  ident: ref39
  article-title: On optimization methods for deep learning
  publication-title: Proc 28th Int Conf Mach Learn
– ident: ref15
  doi: 10.1109/TEC.2013.2294893
– ident: ref16
  doi: 10.1016/j.renene.2012.02.018
– ident: ref49
  doi: 10.1109/ACC.2013.6580525
– ident: ref37
  doi: 10.1109/TCYB.2015.2404432
– ident: ref11
  doi: 10.1016/j.mechatronics.2013.11.009
– ident: ref40
  doi: 10.1109/TR.2013.2241204
– ident: ref17
  doi: 10.1109/TSTE.2015.2405971
– ident: ref18
  doi: 10.1002/we.319
– ident: ref41
  doi: 10.1198/106186005X77685
– ident: ref10
  doi: 10.1109/TMECH.2016.2547905
– ident: ref21
  doi: 10.1109/TSTE.2011.2163177
– ident: ref7
  doi: 10.1109/TIM.2017.2698738
– ident: ref14
  doi: 10.1109/SysTol.2013.6693951
– ident: ref30
  doi: 10.1109/TSG.2016.2621135
– ident: ref31
  doi: 10.1109/SMC.2014.6974327
– ident: ref45
  doi: 10.1016/j.automatica.2009.02.027
– start-page: 809
  year: 0
  ident: ref36
  article-title: Learning a deep compact image representation for visual tracking
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref2
  doi: 10.1049/PBRN013E
– ident: ref25
  doi: 10.1109/TMECH.2015.2507186
– ident: ref44
  doi: 10.1002/aic.10978
– ident: ref38
  doi: 10.1162/089976600300015691
– ident: ref50
  doi: 10.1109/TIE.2014.2301773
– ident: ref3
  doi: 10.1016/j.rser.2007.05.008
– ident: ref19
  doi: 10.1109/TSG.2014.2386305
– ident: ref6
  doi: 10.1109/TCST.2014.2361291
– ident: ref51
  doi: 10.1175/1520-0477(1993)074<0615:WMAAUT>2.0.CO;2
– ident: ref1
  doi: 10.1109/TIE.2015.2422112
– ident: ref28
  doi: 10.1109/SysTol.2013.6693901
– ident: ref23
  doi: 10.1109/TIE.2014.2364548
– volume: 24
  start-page: 687
  year: 2010
  ident: ref9
  article-title: Sensor fault detection and isolation for wind turbines based on subspace identification and Kalman filter techniques
  publication-title: Int J Adaptive Control Signal Process
  doi: 10.1002/acs.1162
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref35
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: ref12
  doi: 10.1049/iet-rpg.2016.0248
– ident: ref29
  doi: 10.3390/en81012100
– ident: ref43
  doi: 10.1016/S0967-0661(99)00191-4
– ident: ref46
  doi: 10.1109/TCST.2014.2364956
– ident: ref48
  doi: 10.1109/TKDE.2008.239
– volume: 31
  start-page: 1
  year: 2004
  ident: ref47
  article-title: Roc graphs: Notes and practical considerations for researchers
  publication-title: Mach Learn
SSID ssj0004101
Score 2.6276827
Snippet Data-driven approaches have gained increasing interests in the fault detection of wind turbines (WTs) due to the difficulty in system modeling and the...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 89
SubjectTerms Complex mechatronics
Correlation
denoising autoencoder (DAE)
Fault detection
Mechatronics
Monitoring
multivariate data driven
Noise reduction
Robustness
Temperature measurement
temporal information
wind turbines (WTs)
Title Wind Turbine Fault Detection Using a Denoising Autoencoder With Temporal Information
URI https://ieeexplore.ieee.org/document/8059861
Volume 23
WOSCitedRecordID wos000425673100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-014X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004101
  issn: 1083-4435
  databaseCode: RIE
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zeNCDv6Y4f5GDN-3WNGnTHsfc2EGHh8p2K036goPRSm39-03Sbu4ggrcQ8kr5Usj7mve-D6F7plQIIQQOgch1WCC5I4RSDuGaM4dUBZ6wriXPfD4Pl8votYMet70wAGCLz2BghvYuPytkbX6VDUPXqIlrrrPHOW96tX56IIm1OiY6pXCYzgE2DTJuNIxfJuOZqeLiA4_7EW0NYDaH0I6rij1Upsf_e50TdNQmj3jU7PYp6kB-hg53JAV7KF5oko3jutSMF_A0rdcVfoLKFlzl2BYI4FTP5MXKjkd1VRgtywxKvFhV7zhutKrWuG1UMnHn6G06icczp3VOcCQlpHKED9RlQqYyUj5PU5fqPEm40qcsEJ4goQKpqAKR2ZsxzqUgyjihpwHJmKT0AnXzIodLhDV_EjQKJMuEYEzvt8f0E4JQKUi9QKR9RDZQJrKVFTfuFuvE0gs3Siz8iYE_aeHvo4dtzEcjqvHn6p7Bfruyhf3q9-lrdKCDw6aw-gZ1q7KGW7Qvv6rVZ3lnv5lvsGS_iQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1jCuqDX1Ocn3nwTbs1Tfr1OObGxG34UNneSpPe4GC0Mlt_v0nazT2I4FsISSgngdzT3HsOQvdMygAC8CwCoW0xT_gW51JaxFecOaDSc7hxLRn702kwn4evDfS4qYUBAJN8Bh3dNG_5aS5K_ausG9haTVxxnR2XMYdU1Vo_VZDEmB0TFVRYTEUB6xIZO-xGk0F_pPO4_I7juyGtLWDW19CWr4q5VoZH__ugY3RYh4-4V-33CWpAdooOtkQFWyiaKZqNo3KlOC_gYVIuC_wEhUm5yrBJEcCJ6snyhWn3yiLXapYprPBsUbzjqFKrWuK6VEnPO0Nvw0HUH1m1d4IlKCGFxV2gNuMiEaF0_SSxqYqUuC1cyjzucBJIEJJK4Kl5G_N9wYnUXuiJR1ImKD1HzSzP4AJhxaA4DT3BUs4ZUzvuMLWCF0gJiePxpI3IGspY1MLi2t9iGRuCYYexgT_W8Mc1_G30sJnzUclq_Dm6pbHfjKxhv_y9-w7tjaLJOB4_T1-u0L5aKKjSrK9Rs1iVcIN2xVex-FzdmvPzDdK4wtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+Turbine+Fault+Detection+Using+a+Denoising+Autoencoder+With+Temporal+Information&rft.jtitle=IEEE%2FASME+transactions+on+mechatronics&rft.au=Jiang%2C+Guoqian&rft.au=Xie%2C+Ping&rft.au=He%2C+Haibo&rft.au=Yan%2C+Jun&rft.date=2018-02-01&rft.issn=1083-4435&rft.eissn=1941-014X&rft.volume=23&rft.issue=1&rft.spage=89&rft.epage=100&rft_id=info:doi/10.1109%2FTMECH.2017.2759301&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMECH_2017_2759301
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4435&client=summon