SAT-GATv2: A Dynamic Attention-Based Graph Neural Network for Solving Boolean Satisfiability Problem
We propose SAT-GATv2, a graph neural network (GNN)-based model designed to solve the Boolean satisfiability problem (SAT) through graph-based deep learning techniques. SAT-GATv2 transforms SAT formulas into graph structures, leveraging message-passing neural networks (MPNNs) to propagate local infor...
Gespeichert in:
| Veröffentlicht in: | Electronics (Basel) Jg. 14; H. 3; S. 423 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.02.2025
|
| Schlagworte: | |
| ISSN: | 2079-9292, 2079-9292 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!