SAT-GATv2: A Dynamic Attention-Based Graph Neural Network for Solving Boolean Satisfiability Problem

We propose SAT-GATv2, a graph neural network (GNN)-based model designed to solve the Boolean satisfiability problem (SAT) through graph-based deep learning techniques. SAT-GATv2 transforms SAT formulas into graph structures, leveraging message-passing neural networks (MPNNs) to propagate local infor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) Jg. 14; H. 3; S. 423
Hauptverfasser: Chang, Wenjing, Liu, Wenlong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.02.2025
Schlagworte:
ISSN:2079-9292, 2079-9292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We propose SAT-GATv2, a graph neural network (GNN)-based model designed to solve the Boolean satisfiability problem (SAT) through graph-based deep learning techniques. SAT-GATv2 transforms SAT formulas into graph structures, leveraging message-passing neural networks (MPNNs) to propagate local information and dynamic attention mechanisms (GATv2) to accurately capture inter-node dependencies and enhance node feature representations. Unlike traditional heuristic-driven SAT solvers, SAT-GATv2 adopts a data-driven approach, learning structural patterns directly from graph representations and providing a complementary framework to existing methods. Experimental results demonstrate that SAT-GATv2 achieves an accuracy improvement of 1.75–5.51% over NeuroSAT on challenging random 3-SAT(n) instances, highlighting its effectiveness in handling difficult problem distributions, and outperforms other GNN-based models on SR(n) datasets, showcasing its scalability and adaptability. Ablation studies validate the critical roles of MPNNs and GATv2 in improving prediction accuracy and scalability. While SAT-GATv2 does not yet surpass CDCL-based solvers in overall performance, it addresses their limitations in scalability and adaptability to complex instances, offering an efficient graph-based alternative for tackling larger and more complex SAT problems. This study establishes a foundation for integrating deep learning with combinatorial optimization, emphasizing its potential for applications in artificial intelligence and operations research.
AbstractList We propose SAT-GATv2, a graph neural network (GNN)-based model designed to solve the Boolean satisfiability problem (SAT) through graph-based deep learning techniques. SAT-GATv2 transforms SAT formulas into graph structures, leveraging message-passing neural networks (MPNNs) to propagate local information and dynamic attention mechanisms (GATv2) to accurately capture inter-node dependencies and enhance node feature representations. Unlike traditional heuristic-driven SAT solvers, SAT-GATv2 adopts a data-driven approach, learning structural patterns directly from graph representations and providing a complementary framework to existing methods. Experimental results demonstrate that SAT-GATv2 achieves an accuracy improvement of 1.75–5.51% over NeuroSAT on challenging random 3-SAT(n) instances, highlighting its effectiveness in handling difficult problem distributions, and outperforms other GNN-based models on SR(n) datasets, showcasing its scalability and adaptability. Ablation studies validate the critical roles of MPNNs and GATv2 in improving prediction accuracy and scalability. While SAT-GATv2 does not yet surpass CDCL-based solvers in overall performance, it addresses their limitations in scalability and adaptability to complex instances, offering an efficient graph-based alternative for tackling larger and more complex SAT problems. This study establishes a foundation for integrating deep learning with combinatorial optimization, emphasizing its potential for applications in artificial intelligence and operations research.
Audience Academic
Author Chang, Wenjing
Liu, Wenlong
Author_xml – sequence: 1
  givenname: Wenjing
  surname: Chang
  fullname: Chang, Wenjing
– sequence: 2
  givenname: Wenlong
  surname: Liu
  fullname: Liu, Wenlong
BookMark eNptUU1LAzEQDaKgVn-Bl4Dn1SST7Sbe1q8qiAqt5yWbzdbUbVKTVOm_N1oPHpyBecMwH8x7h2jXeWcQOqHkDECSczMYnYJ3VkfKCRDOYAcdMFLJQjLJdv_k--g4xgXJJikIIAeom9azYlLPPtgFrvH1xqml1bhOybhkvSsuVTQdngS1esWPZh3UkCF9-vCGex_w1A8f1s3xpfeDUQ5PVbKxt6q1g00b_Bx8O5jlEdrr1RDN8S-O0Mvtzezqrnh4mtxf1Q-FBkpTocYApRRCy7HpW9aqtpNCCioMr8qO9rxlIEsAQrVRglQd52NBWlA6R95qGKHT7d5V8O9rE1Oz8Ovg8skG6LisKsYpz11n2665GkxjXe9TUDp7Z_Lvmdve5notgFXlD1EjBNsBHXyMwfTNKtilCpuGkuZbguYfCeAL7DF9IQ
Cites_doi 10.1145/368273.368557
10.24963/ijcai.2020/164
10.1007/s11633-022-1396-2
10.1145/3534678.3542609
10.1007/978-3-319-24318-4_29
10.1613/jair.1.15956
10.3233/FAIA336
10.1613/jair.2490
10.1109/TNN.2008.2005605
10.1145/3308558.3313562
10.1109/IJCNN55064.2022.9892733
10.1007/s44196-022-00139-9
10.1016/j.aiopen.2021.01.001
10.1007/978-3-030-24258-9_24
10.1145/3491210
10.1007/s10479-010-0693-2
10.22492/issn.2435-7030.2021.11
10.1007/978-3-030-58475-7_51
10.1109/JPROC.2015.2455034
10.1109/ICCAD57390.2023.10323731
10.20944/preprints202409.0452.v1
10.1007/978-3-540-68279-0
10.1109/TNNLS.2020.2978386
10.3233/FAIA200987
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics14030423
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
Computer Science
EISSN 2079-9292
ExternalDocumentID A832750091
10_3390_electronics14030423
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c311t-a6335988c96efb2babd989818e475d1f4b23953301cea807d44680b3ac80b4bc3
IEDL.DBID BENPR
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001418526800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Fri Jul 25 22:09:10 EDT 2025
Tue Nov 04 18:13:40 EST 2025
Sat Nov 29 07:17:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-a6335988c96efb2babd989818e475d1f4b23953301cea807d44680b3ac80b4bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3165772414?pq-origsite=%requestingapplication%
PQID 3165772414
PQPubID 2032404
ParticipantIDs proquest_journals_3165772414
gale_infotracacademiconefile_A832750091
crossref_primary_10_3390_electronics14030423
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Cameron (ref_21) 2020; 34
ref_50
ref_11
Vizel (ref_7) 2015; 103
Zhou (ref_38) 2020; 1
Wu (ref_39) 2020; 32
ref_51
ref_19
ref_18
ref_17
ref_16
ref_15
Guo (ref_12) 2023; 20
Scarselli (ref_41) 2008; 20
ref_25
ref_24
Liu (ref_33) 2024; 37
ref_29
ref_28
ref_27
ref_26
Alyahya (ref_34) 2023; 55
Hoos (ref_48) 2000; 2000
ref_36
ref_32
ref_31
ref_30
Kurin (ref_23) 2020; 33
Davis (ref_10) 1962; 5
ref_37
Paterson (ref_9) 1990; Volume 443
ref_47
ref_46
ref_45
ref_44
ref_43
ref_42
Schidler (ref_2) 2024; 80
Simonis (ref_49) 2020; Volume 12333
ref_40
ref_1
ref_3
Wu (ref_35) 2021; 34
Heule (ref_13) 2015; Volume 9340
Janota (ref_22) 2019; Volume 11628
Xu (ref_14) 2008; 32
Chang (ref_20) 2022; 15
ref_5
ref_4
Horbach (ref_8) 2010; 181
ref_6
References_xml – ident: ref_5
– volume: 5
  start-page: 394
  year: 1962
  ident: ref_10
  article-title: A machine program for theorem-proving
  publication-title: Commun. ACM
  doi: 10.1145/368273.368557
– ident: ref_32
– ident: ref_26
– ident: ref_51
– volume: 34
  start-page: 13266
  year: 2021
  ident: ref_35
  article-title: Representing long-range context for graph neural networks with global attention
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_42
– ident: ref_1
– ident: ref_30
  doi: 10.24963/ijcai.2020/164
– volume: 20
  start-page: 640
  year: 2023
  ident: ref_12
  article-title: Machine learning methods in solving the boolean satisfiability problem
  publication-title: Mach. Intell. Res.
  doi: 10.1007/s11633-022-1396-2
– ident: ref_37
  doi: 10.1145/3534678.3542609
– volume: 37
  start-page: 16264
  year: 2024
  ident: ref_33
  article-title: Can graph neural networks learn to solve the MaxSAT problem?(student abstract)
  publication-title: Proc. AAAI Conf. Artif. Intell.
– ident: ref_31
– ident: ref_27
– volume: Volume 9340
  start-page: 405
  year: 2015
  ident: ref_13
  article-title: Evaluating CDCL Variable Scoring Schemes
  publication-title: Theory and Applications of Satisfiability Testing—SAT 2015
  doi: 10.1007/978-3-319-24318-4_29
– ident: ref_45
– volume: 80
  start-page: 875
  year: 2024
  ident: ref_2
  article-title: SAT-based decision tree learning for large data sets
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.1.15956
– ident: ref_4
  doi: 10.3233/FAIA336
– volume: 32
  start-page: 565
  year: 2008
  ident: ref_14
  article-title: SATzilla: Portfolio-based algorithm selection for SAT
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.2490
– volume: 20
  start-page: 61
  year: 2008
  ident: ref_41
  article-title: The graph neural network model
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2008.2005605
– ident: ref_46
  doi: 10.1145/3308558.3313562
– ident: ref_24
– ident: ref_17
  doi: 10.1109/IJCNN55064.2022.9892733
– ident: ref_40
– volume: 15
  start-page: 84
  year: 2022
  ident: ref_20
  article-title: Predicting Propositional Satisfiability Based on Graph Attention Networks
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.1007/s44196-022-00139-9
– volume: 1
  start-page: 57
  year: 2020
  ident: ref_38
  article-title: Graph neural networks: A review of methods and applications
  publication-title: AI Open
  doi: 10.1016/j.aiopen.2021.01.001
– volume: Volume 11628
  start-page: 336
  year: 2019
  ident: ref_22
  article-title: Guiding High-Performance SAT Solvers with Unsat-Core Predictions
  publication-title: Theory and Applications of Satisfiability Testing—SAT 2019
  doi: 10.1007/978-3-030-24258-9_24
– volume: 55
  start-page: 1
  year: 2023
  ident: ref_34
  article-title: On the Structure of the Boolean Satisfiability Problem: A Survey
  publication-title: ACM Comput. Surv., Mar.
  doi: 10.1145/3491210
– ident: ref_18
– volume: 34
  start-page: 3324
  year: 2020
  ident: ref_21
  article-title: Predicting propositional satisfiability via end-to-end learning
  publication-title: Proc. AAAI Conf. Artif. Intell.
– ident: ref_44
– volume: 2000
  start-page: 283
  year: 2000
  ident: ref_48
  article-title: SATLIB: An online resource for research on SAT
  publication-title: Sat
– volume: 181
  start-page: 89
  year: 2010
  ident: ref_8
  article-title: A Boolean satisfiability approach to the resource-constrained project scheduling problem
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-010-0693-2
– ident: ref_6
– ident: ref_25
– ident: ref_50
– ident: ref_29
– ident: ref_28
  doi: 10.22492/issn.2435-7030.2021.11
– volume: Volume 12333
  start-page: 885
  year: 2020
  ident: ref_49
  article-title: Learning the Satisfiability of Pseudo-Boolean Problem with Graph Neural Networks
  publication-title: Principles and Practice of Constraint Programming
  doi: 10.1007/978-3-030-58475-7_51
– volume: 103
  start-page: 2021
  year: 2015
  ident: ref_7
  article-title: Boolean satisfiability solvers and their applications in model checking
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2455034
– ident: ref_16
  doi: 10.1109/ICCAD57390.2023.10323731
– volume: 33
  start-page: 9608
  year: 2020
  ident: ref_23
  article-title: Can q-learning with graph networks learn a generalizable branching heuristic for a sat solver?
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_15
– ident: ref_36
– ident: ref_19
– ident: ref_43
– ident: ref_47
  doi: 10.20944/preprints202409.0452.v1
– ident: ref_3
  doi: 10.1007/978-3-540-68279-0
– volume: Volume 443
  start-page: 446
  year: 1990
  ident: ref_9
  article-title: Local optimization and the Traveling Salesman Problem
  publication-title: Automata, Languages and Programming
– volume: 32
  start-page: 4
  year: 2020
  ident: ref_39
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2978386
– ident: ref_11
  doi: 10.3233/FAIA200987
SSID ssj0000913830
Score 2.3095322
Snippet We propose SAT-GATv2, a graph neural network (GNN)-based model designed to solve the Boolean satisfiability problem (SAT) through graph-based deep learning...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Index Database
StartPage 423
SubjectTerms Ablation
Accuracy
Adaptability
Algorithms
Architecture
Artificial intelligence
Boolean
Combinatorial analysis
Computer science
Deep learning
Design
Efficiency
Graph neural networks
Graphical representations
Heuristic
Innovations
Machine learning
Management science
Message passing
Neural networks
Solvers
Traveling salesman problem
Variables
Title SAT-GATv2: A Dynamic Attention-Based Graph Neural Network for Solving Boolean Satisfiability Problem
URI https://www.proquest.com/docview/3165772414
Volume 14
WOSCitedRecordID wos001418526800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxEB2V0ENBgjYtIoUiH5C4YJG1nf3oBW3aQCuVaEXSivayWn-sVAllIVmQuPDbmdl1CpVQL7344D3Y2rHHM-Pn9wD2nSgxk1YRx2DVcjUQJU9KzFpFGWqrRejiBu3-41s0HscXF0nmC24LD6tc-sTGUdvKUI38SAbhACNBFajjq2tOqlF0u-olNFZglZjKVAdWh6Nxdv6nykKsl7Hst3RDEmd19KgusyCqOoKF_HUkPe-Ym9PmZPN_5_kaNnycydJ2YbyBF27WhfX0ybVBFzaXkg7M7_AurD3hJ3wLdpJO-Wk6vRUfWco-t-L1LK3rFiPJh3gEWnZKnNeMWD5wwHELK2cYC7NJdUnlCjasqktXzNikeUnxu2UGv2NZq2XzDr6fjKafvnAvy8CNDIKaF6Ek2r_YJKErtdCFtiRCGcRORQMblEoL2YBWA-OKuB9ZzDjjvpaFwVZpI7egM6tmbhtYP7RJYE0kwiRRhY7QG2B6I5USutQujHpwuLRMftWyb-SYtZAh82cM2YMDsl5Oe7OeF6bwTwxwMGK5ylN0Xxgh4aLowe7SernftIv80XTv__15B14JkgFuwNu70KnnN-4DvDS3-Bfne34N7sHK2f0I22zwC_uyr2fZzwcn2Op7
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LaxRBEC7iRlADRjeKG5PYB8VLmux0984jIDJ5L9ksC7sJyWns10AgzsTdMbJ_Kr_R6nmYCMFbDl7mMjANNR9fVXVXfx_AR8tS7KRFQLFYNVT0WEqjFLtWlvrKKObbsJx2PxsEw2F4fh6NFuC2uQvjxiobTiyJ2uTa7ZFvcc_vYSUoPPH1-gd1rlHudLWx0KhgcWznv7Blm33p7-H__cTYwf5k94jWrgJUc88rqPS5U60LdeTbVDEllXEeil5oRdAzXioU4-XMpaetDLuBwYYp7CouNT6F0hy_-wQWBYI9bMHiqH8yuvizq-NUNkPereSNOEZh687NZuak8dwYyl8p8OFEUGa3g-X_LS6v4GVdR5O4Av5rWLBZG5bie8cibVhuLCtIzWBteHFPf3EFzDie0MN4csO2SUz25pn8fqlJXBTVDCjdwRRvyKHT9CZOxQQXHFZj8wRrfTLOr9x2DNnJ8ysrMzIub4pcVsrnczKqvHrewOmjBOIttLI8s--AdH0TeUYHzI8iIVWAbIftG0fsqFRZP-jAZoOE5LpSF0mwK3PASR4ATgc-O7QkjnuKqdSyvkKBizkVryRGesYKEEHYgbUGLUlNSrPkDiqr_379AZ4dTU4GyaA_PH4Pz5mzPC4H1degVUx_2nV4qm8wotONGv8Evj02tH4DeUJC7A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1baxNBGP2oVUQFq1ExWnUeFF8ckp2Z7EUQ2RpTS0sIJErpyzq3hULdrclayV_z1_l9e7EVim998GVfFnZg9sx3mTlzDsBLL3LspFXEsVh1XI1EzpMcu1aRh8YZEfq4Zrt_OYim0_jwMJltwK_uLgzRKruYWAdqV1raIx_IIBxhJagCNchbWsRsPHl_-p2TgxSdtHZ2Gg1E9v36J7Zvq3d7Y_zXr4SYfFx8-MRbhwFuZRBUXIeSFOxim4Q-N8Jo48hPMYi9ikYuyJURsuZfBtbreBg5bJ7ioZHa4lMZK_G71-B6hD0mra7Z6OjP_g7pbcZy2AgdSZyPwbmvzYpE8oiQ8lcyvDwl1HlusvU_z9A9uNtW1yxtlsN92PBFD-6kFw5LerDVGVmwNq714PYFVcYH4Obpgu-mizPxlqVsvC70t2PL0qpqmKF8BxO_Y7uk9M1I2wQHnDZkeoYdAJuXJ7RJw3bK8sTrgs3r-yPHjR76ms0aB5-H8PlKJuIRbBZl4R8DG4YuCZyNRJgkSpsIYyA2dVIpYXLjw6gPbzpUZKeN5kiGvRqBKLsERH14TcjJKCJVS211e7ECByNtryzFoI11IQKyD9sdcrI2VK2yc9g8-ffrF3AT8ZQd7E33n8ItQT7INXt9Gzar5Q__DG7YM5zQ5fN6ITD4etW4-g1mb0pP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAT-GATv2%3A+A+Dynamic+Attention-Based+Graph+Neural+Network+for+Solving+Boolean+Satisfiability+Problem&rft.jtitle=Electronics+%28Basel%29&rft.au=Chang%2C+Wenjing&rft.au=Liu%2C+Wenlong&rft.date=2025-02-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=14&rft.issue=3&rft.spage=423&rft_id=info:doi/10.3390%2Felectronics14030423&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics14030423
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon