Scalable Neural Decoder for Topological Surface Codes

With the advent of noisy intermediate-scale quantum (NISQ) devices, practical quantum computing has seemingly come into reach. However, to go beyond proof-of-principle calculations, the current processing architectures will need to scale up to larger quantum circuits which will require fast and scal...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters Vol. 128; no. 8; p. 080505
Main Authors: Meinerz, Kai, Park, Chae-Yeun, Trebst, Simon
Format: Journal Article
Language:English
Published: United States 25.02.2022
Subjects:
ISSN:0031-9007, 1079-7114, 1079-7114
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the advent of noisy intermediate-scale quantum (NISQ) devices, practical quantum computing has seemingly come into reach. However, to go beyond proof-of-principle calculations, the current processing architectures will need to scale up to larger quantum circuits which will require fast and scalable algorithms for quantum error correction. Here, we present a neural network based decoder that, for a family of stabilizer codes subject to depolarizing noise and syndrome measurement errors, is scalable to tens of thousands of qubits (in contrast to other recent machine learning inspired decoders) and exhibits faster decoding times than the state-of-the-art union find decoder for a wide range of error rates (down to 1%). The key innovation is to autodecode error syndromes on small scales by shifting a preprocessing window over the underlying code, akin to a convolutional neural network in pattern recognition approaches. We show that such a preprocessing step allows to effectively reduce the error rate by up to 2 orders of magnitude in practical applications and, by detecting correlation effects, shifts the actual error threshold up to fifteen percent higher than the threshold of conventional error correction algorithms such as union find or minimum weight perfect matching, even in the presence of measurement errors. An in situ implementation of such a machine learning-assisted quantum error correction will be a decisive step to push the entanglement frontier beyond the NISQ horizon.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0031-9007
1079-7114
1079-7114
DOI:10.1103/PhysRevLett.128.080505