Solvability of Newton equations in smoothing-type algorithms for the SOCCP
In this paper, we first investigate the invertibility of a class of matrices. Based on the obtained results, we then discuss the solvability of Newton equations appearing in the smoothing-type algorithm for solving the second-order cone complementarity problem (SOCCP). A condition ensuring the solva...
Uloženo v:
| Vydáno v: | Journal of computational and applied mathematics Ročník 235; číslo 8; s. 2270 - 2276 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Kidlington
Elsevier B.V
15.02.2011
Elsevier |
| Témata: | |
| ISSN: | 0377-0427, 1879-1778 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we first investigate the invertibility of a class of matrices. Based on the obtained results, we then discuss the solvability of Newton equations appearing in the smoothing-type algorithm for solving the second-order cone complementarity problem (SOCCP). A condition ensuring the solvability of such a system of Newton equations is given. In addition, our results also show that the assumption that the Jacobian matrix of the function involved in the SOCCP is a
P
0
-matrix is not enough for ensuring the solvability of such a system of Newton equations, which is different from the one of smoothing-type algorithms for solving many traditional optimization problems in
ℜ
n
. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0377-0427 1879-1778 |
| DOI: | 10.1016/j.cam.2010.10.025 |