Exploiting layerwise convexity of rectifier networks with sign constrained weights
By introducing sign constraints on the weights, this paper proposes sign constrained rectifier networks (SCRNs), whose training can be solved efficiently by the well known majorization–minimization (MM) algorithms. We prove that the proposed two-hidden-layer SCRNs, which exhibit negative weights in...
Gespeichert in:
| Veröffentlicht in: | Neural networks Jg. 105; S. 419 - 430 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Ltd
01.09.2018
|
| Schlagworte: | |
| ISSN: | 0893-6080, 1879-2782, 1879-2782 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!