Iontronic Neuromorphic Signaling with Conical Microfluidic Memristors
Experiments have shown that the conductance of conical channels, filled with an aqueous electrolyte, can strongly depend on the history of the applied voltage. These channels hence have a memory and are promising elements in brain-inspired (iontronic) circuits. We show here that the memory of such c...
Uloženo v:
| Vydáno v: | Physical review letters Ročník 130; číslo 26; s. 268401 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
30.06.2023
|
| Témata: | |
| ISSN: | 0031-9007, 1079-7114, 1079-7114 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Experiments have shown that the conductance of conical channels, filled with an aqueous electrolyte, can strongly depend on the history of the applied voltage. These channels hence have a memory and are promising elements in brain-inspired (iontronic) circuits. We show here that the memory of such channels stems from transient concentration polarization over the ionic diffusion time. We derive an analytic approximation for these dynamics which shows good agreement with full finite-element calculations. Using our analytic approximation, we propose an experimentally realizable Hodgkin-Huxley iontronic circuit where micrometer cones take on the role of sodium and potassium channels. Our proposed circuit exhibits key features of neuronal communication such as all-or-none action potentials upon a pulse stimulus and a spike train upon a sustained stimulus. |
|---|---|
| AbstractList | Experiments have shown that the conductance of conical channels, filled with an aqueous electrolyte, can strongly depend on the history of the applied voltage. These channels hence have a memory and are promising elements in brain-inspired (iontronic) circuits. We show here that the memory of such channels stems from transient concentration polarization over the ionic diffusion time. We derive an analytic approximation for these dynamics which shows good agreement with full finite-element calculations. Using our analytic approximation, we propose an experimentally realizable Hodgkin-Huxley iontronic circuit where micrometer cones take on the role of sodium and potassium channels. Our proposed circuit exhibits key features of neuronal communication such as all-or-none action potentials upon a pulse stimulus and a spike train upon a sustained stimulus.Experiments have shown that the conductance of conical channels, filled with an aqueous electrolyte, can strongly depend on the history of the applied voltage. These channels hence have a memory and are promising elements in brain-inspired (iontronic) circuits. We show here that the memory of such channels stems from transient concentration polarization over the ionic diffusion time. We derive an analytic approximation for these dynamics which shows good agreement with full finite-element calculations. Using our analytic approximation, we propose an experimentally realizable Hodgkin-Huxley iontronic circuit where micrometer cones take on the role of sodium and potassium channels. Our proposed circuit exhibits key features of neuronal communication such as all-or-none action potentials upon a pulse stimulus and a spike train upon a sustained stimulus. Experiments have shown that the conductance of conical channels, filled with an aqueous electrolyte, can strongly depend on the history of the applied voltage. These channels hence have a memory and are promising elements in brain-inspired (iontronic) circuits. We show here that the memory of such channels stems from transient concentration polarization over the ionic diffusion time. We derive an analytic approximation for these dynamics which shows good agreement with full finite-element calculations. Using our analytic approximation, we propose an experimentally realizable Hodgkin-Huxley iontronic circuit where micrometer cones take on the role of sodium and potassium channels. Our proposed circuit exhibits key features of neuronal communication such as all-or-none action potentials upon a pulse stimulus and a spike train upon a sustained stimulus. |
| ArticleNumber | 268401 |
| Author | ter Rele, T. van Roij, R. Kamsma, T. M. Spitoni, C. Boon, W. Q. |
| Author_xml | – sequence: 1 givenname: T. M. orcidid: 0000-0002-8898-8337 surname: Kamsma fullname: Kamsma, T. M. – sequence: 2 givenname: W. Q. orcidid: 0000-0003-3385-1904 surname: Boon fullname: Boon, W. Q. – sequence: 3 givenname: T. surname: ter Rele fullname: ter Rele, T. – sequence: 4 givenname: C. surname: Spitoni fullname: Spitoni, C. – sequence: 5 givenname: R. orcidid: 0000-0002-2221-294X surname: van Roij fullname: van Roij, R. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37450821$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkMtKAzEUhoNU7EVfoXTpZmpOMp1kwI0UL4VWxcs6pJmkjcxMapJR-vZOaQvixtXhwPefw__1Uad2tUZoCHgMgOnV83obXvTXXMc4BorHJOMphhPUA8zyhAGkHdTDmEKSY8y6qB_CB8YYWu4MdSlLJ5gT6KHbmaujd7VVo0fdeFc5v1m3y6td1bK09Wr0beN6NN0RshwtrPLOlI0tWmahK29DdD6co1Mjy6AvDnOA3u9u36YPyfzpfja9mSeKAsQkT_UECDMEDChTFESCzJcsVZwXlBnGJ0qxLDegpaGZBq3TjGPDVWqWkhSEDtDl_u7Gu89GhygqG5QuS1lr1wRBOOUkzRnZocMD2iwrXYiNt5X0W3Gs3gLXe6BtFILXRigbZbQ7H9KWArDYmRa_TIvWtNibbuPZn_jxwz_BHxlth3k |
| CitedBy_id | crossref_primary_10_1021_jacs_5c04903 crossref_primary_10_1002_anie_202420602 crossref_primary_10_1073_pnas_2413060122 crossref_primary_10_1016_j_ijmecsci_2025_109933 crossref_primary_10_1016_j_jcis_2025_138690 crossref_primary_10_1021_jacs_4c08833 crossref_primary_10_1021_acs_nanolett_4c02117 crossref_primary_10_1021_acssensors_5c01063 crossref_primary_10_1038_s41467_025_57043_x crossref_primary_10_1063_5_0281562 crossref_primary_10_1021_jacs_5c04186 crossref_primary_10_1038_s41378_025_00882_x crossref_primary_10_1002_apxr_202400029 crossref_primary_10_1039_D5SM00174A crossref_primary_10_1002_cphc_202400265 crossref_primary_10_1016_j_colsurfa_2024_134525 crossref_primary_10_1103_PhysRevResearch_7_013328 crossref_primary_10_1016_j_chaos_2025_116828 crossref_primary_10_1016_j_chaos_2024_114967 crossref_primary_10_1063_5_0273574 crossref_primary_10_1017_jfm_2025_288 crossref_primary_10_1021_acsami_5c01409 crossref_primary_10_1088_2634_4386_ad40ca crossref_primary_10_1016_j_jcis_2024_08_004 crossref_primary_10_1073_pnas_2320242121 crossref_primary_10_1103_PhysRevResearch_5_043174 crossref_primary_10_1021_acsnano_4c09154 crossref_primary_10_1039_D5SM00601E crossref_primary_10_1103_PhysRevResearch_7_013282 crossref_primary_10_1002_ange_202420602 crossref_primary_10_1088_1367_2630_ade61b crossref_primary_10_1103_PhysRevResearch_7_023223 crossref_primary_10_1002_smtd_202402218 crossref_primary_10_1021_acsami_5c13650 crossref_primary_10_1063_5_0283243 crossref_primary_10_1103_PhysRevApplied_22_054057 crossref_primary_10_1016_j_chaos_2024_115320 crossref_primary_10_1016_j_coelec_2025_101677 crossref_primary_10_1063_5_0235267 crossref_primary_10_1016_j_matcom_2025_01_022 crossref_primary_10_1016_j_nantod_2023_102043 crossref_primary_10_3390_mi15091176 |
| Cites_doi | 10.1021/acs.analchem.7b03477 10.1002/aelm.202100432 10.1038/s41563-020-0703-y 10.1039/c0cs00053a 10.1039/C4SC02195A 10.1002/adfm.200500471 10.1109/MCAS.2013.2296414 10.3390/technologies6040118 10.1063/1.5142089 10.1021/ac970551g 10.1016/j.nanoen.2014.10.039 10.1038/s41586-021-04362-w 10.1021/ja211142e 10.1021/jp9076189 10.1103/PhysRevLett.94.048102 10.1016/j.chaos.2020.110504 10.1088/0268-1242/29/10/104001 10.4161/15592316.2014.972887 10.1021/nn301368z 10.1088/1367-2630/7/1/132 10.1109/TCT.1971.1083337 10.1021/acs.accounts.6b00395 10.1088/0957-4484/24/38/383001 10.1126/science.abf7923 10.1038/s41928-018-0103-3 10.1126/science.adc9150 10.1021/acsabm.0c00806 10.1021/acs.jpcb.8b11202 10.1109/JRPROC.1962.288235 10.1063/5.0078798 10.1113/jphysiol.1909.sp001298 10.1126/sciadv.abh1542 10.1103/PhysRevLett.89.198103 10.1021/nn800306u 10.1039/C9SC06386B 10.1021/nl0255202 10.1016/S0006-3495(61)86902-6 10.1038/s41565-020-0647-z 10.1063/1.5108723 10.1002/asia.202200682 10.1016/S0166-2236(00)01714-8 10.1016/S0039-6028(03)00448-5 10.1021/ja901120f 10.1126/science.adf6400 10.1021/jp111377h 10.1063/5.0051422 10.1063/5.0089822 10.1038/nn2040 10.1021/acs.jpcc.0c08863 10.1126/sciadv.abl5068 10.1038/nnano.2015.37 10.1002/cphy.cp010103 10.1523/JNEUROSCI.22-24-10580.2002 10.1038/s41467-022-28483-6 10.1016/j.jelechem.2016.05.018 10.1002/elps.200305754 10.1021/acs.analchem.6b04260 10.1126/scirobotics.abf3368 10.1016/S0006-3495(00)76293-X 10.1021/nl070194h 10.1021/acsmeasuresciau.1c00062 10.1021/acsami.2c11467 10.1209/epl/i2002-00271-3 10.1063/5.0113035 10.1016/B978-0-12-818890-3.00018-7 10.1021/nl071770c 10.1021/acs.analchem.9b02994 10.1016/S0893-6080(02)00043-6 10.1039/c3sc52187g 10.1016/j.nantod.2015.11.001 10.1021/acs.jpcc.2c02051 10.1021/la203106w 10.1063/1.5083913 10.1038/nature11876 10.1016/0022-247X(76)90187-6 10.1039/D2CS00894G 10.1073/pnas.1721987115 10.1021/la702955k 10.1021/acs.jpclett.7b03099 10.1016/0022-5193(73)90008-8 10.1038/nrn2148 10.1088/2634-4386/ac4a83 10.1002/ange.201302577 10.1007/978-0-8176-8156-2 10.1113/jphysiol.1952.sp004764 10.1038/nature06932 10.1021/acs.analchem.8b05885 10.3390/nano10030571 10.1063/5.0131481 10.1063/1.166460 10.1039/C7CC01047H 10.1371/journal.pcbi.1002107 10.1016/S0022-5193(05)80242-5 10.1126/science.adc9931 10.1016/j.joule.2019.09.005 10.1063/1.5118217 10.1111/j.1749-6632.1962.tb54120.x 10.1162/neco.1997.9.6.1179 10.1021/acs.jpclett.1c03406 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1103/PhysRevLett.130.268401 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1079-7114 |
| ExternalDocumentID | 37450821 10_1103_PhysRevLett_130_268401 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -~X 123 186 2-P 29O 3MX 3O- 41~ 5VS 6TJ 85S 8NH 8WZ 9M8 A6W AAYJJ AAYXX ABSSX ABUFD ACBEA ACGFO ACKIV ACNCT ADXHL AECSF AENEX AEQTI AETEA AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CITATION CS3 D0L DU5 EBS EJD ER. F5P H~9 MVM N9A NEJ NHB NPBMV OHT OK1 P0- P2P RNS ROL S7W SJN T9H TN5 UBC UBE VOH WH7 XOL XSW YNT YYP ZCG ZPR ZY4 ~02 NPM UCJ VQA 7X8 |
| ID | FETCH-LOGICAL-c311t-94e5127f21f1cfdd2a1a9b74c88d37f785cc769f1eaf36e1ee4680f8c4fba2d23 |
| IEDL.DBID | 3MX |
| ISICitedReferencesCount | 69 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001053054000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-9007 1079-7114 |
| IngestDate | Sun Nov 09 12:42:58 EST 2025 Wed Feb 19 02:23:50 EST 2025 Sat Nov 29 04:39:49 EST 2025 Tue Nov 18 22:24:54 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 26 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c311t-94e5127f21f1cfdd2a1a9b74c88d37f785cc769f1eaf36e1ee4680f8c4fba2d23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-2221-294X 0000-0002-8898-8337 0000-0003-3385-1904 |
| PMID | 37450821 |
| PQID | 2838249722 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2838249722 pubmed_primary_37450821 crossref_citationtrail_10_1103_PhysRevLett_130_268401 crossref_primary_10_1103_PhysRevLett_130_268401 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-30 |
| PublicationDateYYYYMMDD | 2023-06-30 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Physical review letters |
| PublicationTitleAlternate | Phys Rev Lett |
| PublicationYear | 2023 |
| References | PhysRevLett.130.268401Cc29R1 PhysRevLett.130.268401Cc103R1 PhysRevLett.130.268401Cc4R1 PhysRevLett.130.268401Cc48R1 PhysRevLett.130.268401Cc21R1 PhysRevLett.130.268401Cc44R1 PhysRevLett.130.268401Cc67R1 PhysRevLett.130.268401Cc25R1 PhysRevLett.130.268401Cc40R1 PhysRevLett.130.268401Cc63R1 PhysRevLett.130.268401Cc86R1 PhysRevLett.130.268401Cc70R1 PhysRevLett.130.268401Cc93R1 PhysRevLett.130.268401Cc8R1 PhysRevLett.130.268401Cc107R1 PhysRevLett.130.268401Cc17R1 PhysRevLett.130.268401Cc59R1 PhysRevLett.130.268401Cc32R1 PhysRevLett.130.268401Cc55R1 PhysRevLett.130.268401Cc78R1 PhysRevLett.130.268401Cc13R1 PhysRevLett.130.268401Cc36R1 PhysRevLett.130.268401Cc51R1 PhysRevLett.130.268401Cc74R1 PhysRevLett.130.268401Cc97R1 PhysRevLett.130.268401Cc81R1 J. K. Hale (PhysRevLett.130.268401Cc95R1) 2012 R. W. Pryor (PhysRevLett.130.268401Cc99R1) 2009 PhysRevLett.130.268401Cc26R1 PhysRevLett.130.268401Cc102R1 PhysRevLett.130.268401Cc49R1 PhysRevLett.130.268401Cc3R1 PhysRevLett.130.268401Cc45R1 PhysRevLett.130.268401Cc68R1 PhysRevLett.130.268401Cc41R1 PhysRevLett.130.268401Cc87R1 PhysRevLett.130.268401Cc22R1 PhysRevLett.130.268401Cc94R1 PhysRevLett.130.268401Cc71R1 PhysRevLett.130.268401Cc90R1 PhysRevLett.130.268401Cc7R1 PhysRevLett.130.268401Cc106R1 PhysRevLett.130.268401Cc18R1 PhysRevLett.130.268401Cc37R1 PhysRevLett.130.268401Cc10R1 PhysRevLett.130.268401Cc56R1 PhysRevLett.130.268401Cc79R1 PhysRevLett.130.268401Cc14R1 PhysRevLett.130.268401Cc52R1 PhysRevLett.130.268401Cc33R1 PhysRevLett.130.268401Cc27R1 PhysRevLett.130.268401Cc2R1 PhysRevLett.130.268401Cc46R1 PhysRevLett.130.268401Cc69R1 PhysRevLett.130.268401Cc88R1 PhysRevLett.130.268401Cc23R1 PhysRevLett.130.268401Cc42R1 PhysRevLett.130.268401Cc65R1 PhysRevLett.130.268401Cc84R1 PhysRevLett.130.268401Cc72R1 PhysRevLett.130.268401Cc91R1 S. Lynch (PhysRevLett.130.268401Cc96R1) 2004 PhysRevLett.130.268401Cc6R1 PhysRevLett.130.268401Cc105R1 PhysRevLett.130.268401Cc15R1 PhysRevLett.130.268401Cc38R1 PhysRevLett.130.268401Cc19R1 PhysRevLett.130.268401Cc30R1 PhysRevLett.130.268401Cc57R1 PhysRevLett.130.268401Cc11R1 PhysRevLett.130.268401Cc34R1 PhysRevLett.130.268401Cc53R1 PhysRevLett.130.268401Cc76R1 PhysRevLett.130.268401Cc83R1 PhysRevLett.130.268401Cc1R1 PhysRevLett.130.268401Cc28R1 PhysRevLett.130.268401Cc104R1 PhysRevLett.130.268401Cc5R1 PhysRevLett.130.268401Cc100R1 PhysRevLett.130.268401Cc20R1 PhysRevLett.130.268401Cc66R1 PhysRevLett.130.268401Cc47R1 PhysRevLett.130.268401Cc24R1 PhysRevLett.130.268401Cc62R1 PhysRevLett.130.268401Cc43R1 PhysRevLett.130.268401Cc85R1 PhysRevLett.130.268401Cc50R1 PhysRevLett.130.268401Cc92R1 W. Rall (PhysRevLett.130.268401Cc101R1) 2011 PhysRevLett.130.268401Cc9R1 L. Squire (PhysRevLett.130.268401Cc75R1) 2008 PhysRevLett.130.268401Cc108R1 PhysRevLett.130.268401Cc39R1 PhysRevLett.130.268401Cc16R1 PhysRevLett.130.268401Cc31R1 PhysRevLett.130.268401Cc77R1 PhysRevLett.130.268401Cc58R1 PhysRevLett.130.268401Cc35R1 PhysRevLett.130.268401Cc73R1 PhysRevLett.130.268401Cc12R1 PhysRevLett.130.268401Cc54R1 PhysRevLett.130.268401Cc80R1 PhysRevLett.130.268401Cc61R1 S. T. Keene (PhysRevLett.130.268401Cc60R1) 2021 |
| References_xml | – ident: PhysRevLett.130.268401Cc47R1 doi: 10.1021/acs.analchem.7b03477 – ident: PhysRevLett.130.268401Cc74R1 doi: 10.1002/aelm.202100432 – ident: PhysRevLett.130.268401Cc70R1 doi: 10.1038/s41563-020-0703-y – ident: PhysRevLett.130.268401Cc20R1 doi: 10.1039/c0cs00053a – ident: PhysRevLett.130.268401Cc44R1 doi: 10.1039/C4SC02195A – ident: PhysRevLett.130.268401Cc28R1 doi: 10.1002/adfm.200500471 – ident: PhysRevLett.130.268401Cc63R1 doi: 10.1109/MCAS.2013.2296414 – ident: PhysRevLett.130.268401Cc57R1 doi: 10.3390/technologies6040118 – ident: PhysRevLett.130.268401Cc61R1 doi: 10.1063/1.5142089 – ident: PhysRevLett.130.268401Cc24R1 doi: 10.1021/ac970551g – ident: PhysRevLett.130.268401Cc3R1 doi: 10.1016/j.nanoen.2014.10.039 – ident: PhysRevLett.130.268401Cc67R1 doi: 10.1038/s41586-021-04362-w – ident: PhysRevLett.130.268401Cc43R1 doi: 10.1021/ja211142e – ident: PhysRevLett.130.268401Cc39R1 doi: 10.1021/jp9076189 – ident: PhysRevLett.130.268401Cc31R1 doi: 10.1103/PhysRevLett.94.048102 – ident: PhysRevLett.130.268401Cc16R1 doi: 10.1016/j.chaos.2020.110504 – ident: PhysRevLett.130.268401Cc56R1 doi: 10.1088/0268-1242/29/10/104001 – ident: PhysRevLett.130.268401Cc97R1 doi: 10.4161/15592316.2014.972887 – ident: PhysRevLett.130.268401Cc10R1 doi: 10.1021/nn301368z – ident: PhysRevLett.130.268401Cc30R1 doi: 10.1088/1367-2630/7/1/132 – ident: PhysRevLett.130.268401Cc54R1 doi: 10.1109/TCT.1971.1083337 – ident: PhysRevLett.130.268401Cc33R1 doi: 10.1021/acs.accounts.6b00395 – ident: PhysRevLett.130.268401Cc58R1 doi: 10.1088/0957-4484/24/38/383001 – ident: PhysRevLett.130.268401Cc86R1 doi: 10.1126/science.abf7923 – ident: PhysRevLett.130.268401Cc59R1 doi: 10.1038/s41928-018-0103-3 – ident: PhysRevLett.130.268401Cc77R1 doi: 10.1126/science.adc9150 – ident: PhysRevLett.130.268401Cc18R1 doi: 10.1021/acsabm.0c00806 – ident: PhysRevLett.130.268401Cc37R1 doi: 10.1021/acs.jpcb.8b11202 – ident: PhysRevLett.130.268401Cc91R1 doi: 10.1109/JRPROC.1962.288235 – ident: PhysRevLett.130.268401Cc65R1 doi: 10.1063/5.0078798 – ident: PhysRevLett.130.268401Cc81R1 doi: 10.1113/jphysiol.1909.sp001298 – ident: PhysRevLett.130.268401Cc69R1 doi: 10.1126/sciadv.abh1542 – ident: PhysRevLett.130.268401Cc42R1 doi: 10.1103/PhysRevLett.89.198103 – ident: PhysRevLett.130.268401Cc34R1 doi: 10.1021/nn800306u – ident: PhysRevLett.130.268401Cc49R1 doi: 10.1039/C9SC06386B – volume-title: Multiphysics Modeling using comsol®: A First Principles Approach year: 2009 ident: PhysRevLett.130.268401Cc99R1 – ident: PhysRevLett.130.268401Cc7R1 doi: 10.1021/nl0255202 – ident: PhysRevLett.130.268401Cc90R1 doi: 10.1016/S0006-3495(61)86902-6 – ident: PhysRevLett.130.268401Cc68R1 doi: 10.1038/s41565-020-0647-z – ident: PhysRevLett.130.268401Cc36R1 doi: 10.1063/1.5108723 – ident: PhysRevLett.130.268401Cc79R1 doi: 10.1002/asia.202200682 – ident: PhysRevLett.130.268401Cc85R1 doi: 10.1016/S0166-2236(00)01714-8 – ident: PhysRevLett.130.268401Cc41R1 doi: 10.1016/S0039-6028(03)00448-5 – ident: PhysRevLett.130.268401Cc9R1 doi: 10.1021/ja901120f – ident: PhysRevLett.130.268401Cc17R1 doi: 10.1126/science.adf6400 – ident: PhysRevLett.130.268401Cc35R1 doi: 10.1021/jp111377h – ident: PhysRevLett.130.268401Cc52R1 doi: 10.1021/ja211142e – ident: PhysRevLett.130.268401Cc53R1 doi: 10.1063/5.0051422 – volume-title: Fundamental Neuroscience year: 2008 ident: PhysRevLett.130.268401Cc75R1 – ident: PhysRevLett.130.268401Cc13R1 doi: 10.1063/5.0089822 – ident: PhysRevLett.130.268401Cc107R1 doi: 10.1038/nn2040 – ident: PhysRevLett.130.268401Cc51R1 doi: 10.1021/acs.jpcc.0c08863 – ident: PhysRevLett.130.268401Cc72R1 doi: 10.1126/sciadv.abl5068 – ident: PhysRevLett.130.268401Cc2R1 doi: 10.1038/nnano.2015.37 – ident: PhysRevLett.130.268401Cc80R1 doi: 10.1002/cphy.cp010103 – ident: PhysRevLett.130.268401Cc83R1 doi: 10.1523/JNEUROSCI.22-24-10580.2002 – ident: PhysRevLett.130.268401Cc71R1 doi: 10.1038/s41467-022-28483-6 – ident: PhysRevLett.130.268401Cc46R1 doi: 10.1016/j.jelechem.2016.05.018 – ident: PhysRevLett.130.268401Cc87R1 doi: 10.1002/elps.200305754 – ident: PhysRevLett.130.268401Cc8R1 doi: 10.1021/acs.analchem.6b04260 – ident: PhysRevLett.130.268401Cc73R1 doi: 10.1126/scirobotics.abf3368 – ident: PhysRevLett.130.268401Cc108R1 doi: 10.1016/S0006-3495(00)76293-X – ident: PhysRevLett.130.268401Cc4R1 doi: 10.1021/nl070194h – ident: PhysRevLett.130.268401Cc32R1 doi: 10.1021/acsmeasuresciau.1c00062 – ident: PhysRevLett.130.268401Cc88R1 doi: 10.1021/acsami.2c11467 – ident: PhysRevLett.130.268401Cc29R1 doi: 10.1209/epl/i2002-00271-3 – ident: PhysRevLett.130.268401Cc25R1 doi: 10.1063/5.0113035 – volume-title: Organic Flexible Electronics year: 2021 ident: PhysRevLett.130.268401Cc60R1 doi: 10.1016/B978-0-12-818890-3.00018-7 – ident: PhysRevLett.130.268401Cc27R1 doi: 10.1021/nl071770c – ident: PhysRevLett.130.268401Cc15R1 doi: 10.1021/acs.analchem.9b02994 – ident: PhysRevLett.130.268401Cc84R1 doi: 10.1016/S0893-6080(02)00043-6 – ident: PhysRevLett.130.268401Cc45R1 doi: 10.1039/c3sc52187g – ident: PhysRevLett.130.268401Cc11R1 doi: 10.1016/j.nantod.2015.11.001 – ident: PhysRevLett.130.268401Cc50R1 doi: 10.1021/acs.jpcc.2c02051 – ident: PhysRevLett.130.268401Cc23R1 doi: 10.1021/la203106w – ident: PhysRevLett.130.268401Cc21R1 doi: 10.1063/1.5083913 – ident: PhysRevLett.130.268401Cc5R1 doi: 10.1038/nature11876 – ident: PhysRevLett.130.268401Cc93R1 doi: 10.1016/0022-247X(76)90187-6 – start-page: 39 year: 2011 ident: PhysRevLett.130.268401Cc101R1 publication-title: Compr. Physiol. – ident: PhysRevLett.130.268401Cc12R1 doi: 10.1039/D2CS00894G – ident: PhysRevLett.130.268401Cc19R1 doi: 10.1073/pnas.1721987115 – ident: PhysRevLett.130.268401Cc26R1 doi: 10.1021/la702955k – ident: PhysRevLett.130.268401Cc40R1 doi: 10.1021/acs.jpclett.7b03099 – ident: PhysRevLett.130.268401Cc102R1 doi: 10.1016/0022-5193(73)90008-8 – ident: PhysRevLett.130.268401Cc76R1 doi: 10.1038/nrn2148 – volume-title: Dynamics and Bifurcations year: 2012 ident: PhysRevLett.130.268401Cc95R1 – ident: PhysRevLett.130.268401Cc62R1 doi: 10.1088/2634-4386/ac4a83 – ident: PhysRevLett.130.268401Cc1R1 doi: 10.1002/ange.201302577 – volume-title: Dynamical Systems with Applications using matlab year: 2004 ident: PhysRevLett.130.268401Cc96R1 doi: 10.1007/978-0-8176-8156-2 – ident: PhysRevLett.130.268401Cc100R1 doi: 10.1113/jphysiol.1952.sp004764 – ident: PhysRevLett.130.268401Cc55R1 doi: 10.1038/nature06932 – ident: PhysRevLett.130.268401Cc14R1 doi: 10.1021/acs.analchem.8b05885 – ident: PhysRevLett.130.268401Cc22R1 doi: 10.3390/nano10030571 – ident: PhysRevLett.130.268401Cc38R1 doi: 10.1063/5.0131481 – ident: PhysRevLett.130.268401Cc94R1 doi: 10.1063/1.166460 – ident: PhysRevLett.130.268401Cc48R1 doi: 10.1039/C7CC01047H – ident: PhysRevLett.130.268401Cc105R1 doi: 10.1371/journal.pcbi.1002107 – ident: PhysRevLett.130.268401Cc104R1 doi: 10.1016/S0022-5193(05)80242-5 – ident: PhysRevLett.130.268401Cc78R1 doi: 10.1126/science.adc9931 – ident: PhysRevLett.130.268401Cc6R1 doi: 10.1016/j.joule.2019.09.005 – ident: PhysRevLett.130.268401Cc66R1 doi: 10.1063/1.5118217 – ident: PhysRevLett.130.268401Cc103R1 doi: 10.1111/j.1749-6632.1962.tb54120.x – ident: PhysRevLett.130.268401Cc106R1 doi: 10.1162/neco.1997.9.6.1179 – ident: PhysRevLett.130.268401Cc92R1 doi: 10.1021/acs.jpclett.1c03406 |
| SSID | ssj0001268 |
| Score | 2.645423 |
| Snippet | Experiments have shown that the conductance of conical channels, filled with an aqueous electrolyte, can strongly depend on the history of the applied voltage.... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 268401 |
| SubjectTerms | Action Potentials - physiology Microfluidics Neurons Potassium Channels Signal Transduction |
| Title | Iontronic Neuromorphic Signaling with Conical Microfluidic Memristors |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37450821 https://www.proquest.com/docview/2838249722 |
| Volume | 130 |
| WOSCitedRecordID | wos001053054000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABR databaseName: American Physical Society (APS) customDbUrl: eissn: 1079-7114 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001268 issn: 0031-9007 databaseCode: 3MX dateStart: 20020101 isFulltext: true titleUrlDefault: https://journals.aps.org/ providerName: American Physical Society – providerCode: PRVIAO databaseName: SCOAP3 Journals customDbUrl: eissn: 1079-7114 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001268 issn: 0031-9007 databaseCode: ER. dateStart: 20180101 isFulltext: true titleUrlDefault: https://scoap3.org/ providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JasMwEB1CaKGX7ku64UKvbqzFlnwsIaE9JJQu4JuRtQRD4pRs319JTkILDaUXg8FaGMmaGc2beQD3yJCYF9pdgVETUilEmJJChVgrIaSWVKWFJ5tggwHPsvSlAdHvEXwUkbZDQr7qpctucdTFD748ifd3OHWUBaSfbY5ehJP66CUOdxCxVUrw9m5-aqMtJqZXNb2D_0_yEPZXZmXwWO-DI2jo6hh2PbxTzk6g--wR6VUpA1-NYzyx4rUvb-XQGeLVMHD3sUFn4rMkg75D6ZnRolT2m74e-_oD09kpfPS6752ncEWgEEqC0DxMqbb6nBmMDJJGKSyQSAtGJeeKMMN4LCVLUoO0MCTRSGua8MhwSU0hsMLkDJrVpNIXEGhuMFEppVJHlAjKVWyM1fWikEWciLgF8VqQuVxVF3ckF6PcexkRyb-JyMXQ8lpELWhv2n3W9TX-bHG3Xqfc_gouviEqPVnMcmspcetNMoxbcF4v4KZPwqg1RTG6_Pd4V7DnKOZrjOA1NOfThb6BHbmcl7Pprd9_9sky_gXiP9u2 |
| linkProvider | American Physical Society |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iontronic+Neuromorphic+Signaling+with+Conical+Microfluidic+Memristors&rft.jtitle=Physical+review+letters&rft.au=Kamsma%2C+T+M&rft.au=Boon%2C+W+Q&rft.au=Ter+Rele%2C+T&rft.au=Spitoni%2C+C&rft.date=2023-06-30&rft.issn=1079-7114&rft.eissn=1079-7114&rft.volume=130&rft.issue=26&rft.spage=268401&rft_id=info:doi/10.1103%2FPhysRevLett.130.268401&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon |