Iontronic Neuromorphic Signaling with Conical Microfluidic Memristors

Experiments have shown that the conductance of conical channels, filled with an aqueous electrolyte, can strongly depend on the history of the applied voltage. These channels hence have a memory and are promising elements in brain-inspired (iontronic) circuits. We show here that the memory of such c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physical review letters Ročník 130; číslo 26; s. 268401
Hlavní autoři: Kamsma, T. M., Boon, W. Q., ter Rele, T., Spitoni, C., van Roij, R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 30.06.2023
Témata:
ISSN:0031-9007, 1079-7114, 1079-7114
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Experiments have shown that the conductance of conical channels, filled with an aqueous electrolyte, can strongly depend on the history of the applied voltage. These channels hence have a memory and are promising elements in brain-inspired (iontronic) circuits. We show here that the memory of such channels stems from transient concentration polarization over the ionic diffusion time. We derive an analytic approximation for these dynamics which shows good agreement with full finite-element calculations. Using our analytic approximation, we propose an experimentally realizable Hodgkin-Huxley iontronic circuit where micrometer cones take on the role of sodium and potassium channels. Our proposed circuit exhibits key features of neuronal communication such as all-or-none action potentials upon a pulse stimulus and a spike train upon a sustained stimulus.
AbstractList Experiments have shown that the conductance of conical channels, filled with an aqueous electrolyte, can strongly depend on the history of the applied voltage. These channels hence have a memory and are promising elements in brain-inspired (iontronic) circuits. We show here that the memory of such channels stems from transient concentration polarization over the ionic diffusion time. We derive an analytic approximation for these dynamics which shows good agreement with full finite-element calculations. Using our analytic approximation, we propose an experimentally realizable Hodgkin-Huxley iontronic circuit where micrometer cones take on the role of sodium and potassium channels. Our proposed circuit exhibits key features of neuronal communication such as all-or-none action potentials upon a pulse stimulus and a spike train upon a sustained stimulus.Experiments have shown that the conductance of conical channels, filled with an aqueous electrolyte, can strongly depend on the history of the applied voltage. These channels hence have a memory and are promising elements in brain-inspired (iontronic) circuits. We show here that the memory of such channels stems from transient concentration polarization over the ionic diffusion time. We derive an analytic approximation for these dynamics which shows good agreement with full finite-element calculations. Using our analytic approximation, we propose an experimentally realizable Hodgkin-Huxley iontronic circuit where micrometer cones take on the role of sodium and potassium channels. Our proposed circuit exhibits key features of neuronal communication such as all-or-none action potentials upon a pulse stimulus and a spike train upon a sustained stimulus.
Experiments have shown that the conductance of conical channels, filled with an aqueous electrolyte, can strongly depend on the history of the applied voltage. These channels hence have a memory and are promising elements in brain-inspired (iontronic) circuits. We show here that the memory of such channels stems from transient concentration polarization over the ionic diffusion time. We derive an analytic approximation for these dynamics which shows good agreement with full finite-element calculations. Using our analytic approximation, we propose an experimentally realizable Hodgkin-Huxley iontronic circuit where micrometer cones take on the role of sodium and potassium channels. Our proposed circuit exhibits key features of neuronal communication such as all-or-none action potentials upon a pulse stimulus and a spike train upon a sustained stimulus.
ArticleNumber 268401
Author ter Rele, T.
van Roij, R.
Kamsma, T. M.
Spitoni, C.
Boon, W. Q.
Author_xml – sequence: 1
  givenname: T. M.
  orcidid: 0000-0002-8898-8337
  surname: Kamsma
  fullname: Kamsma, T. M.
– sequence: 2
  givenname: W. Q.
  orcidid: 0000-0003-3385-1904
  surname: Boon
  fullname: Boon, W. Q.
– sequence: 3
  givenname: T.
  surname: ter Rele
  fullname: ter Rele, T.
– sequence: 4
  givenname: C.
  surname: Spitoni
  fullname: Spitoni, C.
– sequence: 5
  givenname: R.
  orcidid: 0000-0002-2221-294X
  surname: van Roij
  fullname: van Roij, R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37450821$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtKAzEUhoNU7EVfoXTpZmpOMp1kwI0UL4VWxcs6pJmkjcxMapJR-vZOaQvixtXhwPefw__1Uad2tUZoCHgMgOnV83obXvTXXMc4BorHJOMphhPUA8zyhAGkHdTDmEKSY8y6qB_CB8YYWu4MdSlLJ5gT6KHbmaujd7VVo0fdeFc5v1m3y6td1bK09Wr0beN6NN0RshwtrPLOlI0tWmahK29DdD6co1Mjy6AvDnOA3u9u36YPyfzpfja9mSeKAsQkT_UECDMEDChTFESCzJcsVZwXlBnGJ0qxLDegpaGZBq3TjGPDVWqWkhSEDtDl_u7Gu89GhygqG5QuS1lr1wRBOOUkzRnZocMD2iwrXYiNt5X0W3Gs3gLXe6BtFILXRigbZbQ7H9KWArDYmRa_TIvWtNibbuPZn_jxwz_BHxlth3k
CitedBy_id crossref_primary_10_1021_jacs_5c04903
crossref_primary_10_1002_anie_202420602
crossref_primary_10_1073_pnas_2413060122
crossref_primary_10_1016_j_ijmecsci_2025_109933
crossref_primary_10_1016_j_jcis_2025_138690
crossref_primary_10_1021_jacs_4c08833
crossref_primary_10_1021_acs_nanolett_4c02117
crossref_primary_10_1021_acssensors_5c01063
crossref_primary_10_1038_s41467_025_57043_x
crossref_primary_10_1063_5_0281562
crossref_primary_10_1021_jacs_5c04186
crossref_primary_10_1038_s41378_025_00882_x
crossref_primary_10_1002_apxr_202400029
crossref_primary_10_1039_D5SM00174A
crossref_primary_10_1002_cphc_202400265
crossref_primary_10_1016_j_colsurfa_2024_134525
crossref_primary_10_1103_PhysRevResearch_7_013328
crossref_primary_10_1016_j_chaos_2025_116828
crossref_primary_10_1016_j_chaos_2024_114967
crossref_primary_10_1063_5_0273574
crossref_primary_10_1017_jfm_2025_288
crossref_primary_10_1021_acsami_5c01409
crossref_primary_10_1088_2634_4386_ad40ca
crossref_primary_10_1016_j_jcis_2024_08_004
crossref_primary_10_1073_pnas_2320242121
crossref_primary_10_1103_PhysRevResearch_5_043174
crossref_primary_10_1021_acsnano_4c09154
crossref_primary_10_1039_D5SM00601E
crossref_primary_10_1103_PhysRevResearch_7_013282
crossref_primary_10_1002_ange_202420602
crossref_primary_10_1088_1367_2630_ade61b
crossref_primary_10_1103_PhysRevResearch_7_023223
crossref_primary_10_1002_smtd_202402218
crossref_primary_10_1021_acsami_5c13650
crossref_primary_10_1063_5_0283243
crossref_primary_10_1103_PhysRevApplied_22_054057
crossref_primary_10_1016_j_chaos_2024_115320
crossref_primary_10_1016_j_coelec_2025_101677
crossref_primary_10_1063_5_0235267
crossref_primary_10_1016_j_matcom_2025_01_022
crossref_primary_10_1016_j_nantod_2023_102043
crossref_primary_10_3390_mi15091176
Cites_doi 10.1021/acs.analchem.7b03477
10.1002/aelm.202100432
10.1038/s41563-020-0703-y
10.1039/c0cs00053a
10.1039/C4SC02195A
10.1002/adfm.200500471
10.1109/MCAS.2013.2296414
10.3390/technologies6040118
10.1063/1.5142089
10.1021/ac970551g
10.1016/j.nanoen.2014.10.039
10.1038/s41586-021-04362-w
10.1021/ja211142e
10.1021/jp9076189
10.1103/PhysRevLett.94.048102
10.1016/j.chaos.2020.110504
10.1088/0268-1242/29/10/104001
10.4161/15592316.2014.972887
10.1021/nn301368z
10.1088/1367-2630/7/1/132
10.1109/TCT.1971.1083337
10.1021/acs.accounts.6b00395
10.1088/0957-4484/24/38/383001
10.1126/science.abf7923
10.1038/s41928-018-0103-3
10.1126/science.adc9150
10.1021/acsabm.0c00806
10.1021/acs.jpcb.8b11202
10.1109/JRPROC.1962.288235
10.1063/5.0078798
10.1113/jphysiol.1909.sp001298
10.1126/sciadv.abh1542
10.1103/PhysRevLett.89.198103
10.1021/nn800306u
10.1039/C9SC06386B
10.1021/nl0255202
10.1016/S0006-3495(61)86902-6
10.1038/s41565-020-0647-z
10.1063/1.5108723
10.1002/asia.202200682
10.1016/S0166-2236(00)01714-8
10.1016/S0039-6028(03)00448-5
10.1021/ja901120f
10.1126/science.adf6400
10.1021/jp111377h
10.1063/5.0051422
10.1063/5.0089822
10.1038/nn2040
10.1021/acs.jpcc.0c08863
10.1126/sciadv.abl5068
10.1038/nnano.2015.37
10.1002/cphy.cp010103
10.1523/JNEUROSCI.22-24-10580.2002
10.1038/s41467-022-28483-6
10.1016/j.jelechem.2016.05.018
10.1002/elps.200305754
10.1021/acs.analchem.6b04260
10.1126/scirobotics.abf3368
10.1016/S0006-3495(00)76293-X
10.1021/nl070194h
10.1021/acsmeasuresciau.1c00062
10.1021/acsami.2c11467
10.1209/epl/i2002-00271-3
10.1063/5.0113035
10.1016/B978-0-12-818890-3.00018-7
10.1021/nl071770c
10.1021/acs.analchem.9b02994
10.1016/S0893-6080(02)00043-6
10.1039/c3sc52187g
10.1016/j.nantod.2015.11.001
10.1021/acs.jpcc.2c02051
10.1021/la203106w
10.1063/1.5083913
10.1038/nature11876
10.1016/0022-247X(76)90187-6
10.1039/D2CS00894G
10.1073/pnas.1721987115
10.1021/la702955k
10.1021/acs.jpclett.7b03099
10.1016/0022-5193(73)90008-8
10.1038/nrn2148
10.1088/2634-4386/ac4a83
10.1002/ange.201302577
10.1007/978-0-8176-8156-2
10.1113/jphysiol.1952.sp004764
10.1038/nature06932
10.1021/acs.analchem.8b05885
10.3390/nano10030571
10.1063/5.0131481
10.1063/1.166460
10.1039/C7CC01047H
10.1371/journal.pcbi.1002107
10.1016/S0022-5193(05)80242-5
10.1126/science.adc9931
10.1016/j.joule.2019.09.005
10.1063/1.5118217
10.1111/j.1749-6632.1962.tb54120.x
10.1162/neco.1997.9.6.1179
10.1021/acs.jpclett.1c03406
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1103/PhysRevLett.130.268401
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 37450821
10_1103_PhysRevLett_130_268401
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
186
2-P
29O
3MX
3O-
41~
5VS
6TJ
85S
8NH
8WZ
9M8
A6W
AAYJJ
AAYXX
ABSSX
ABUFD
ACBEA
ACGFO
ACKIV
ACNCT
ADXHL
AECSF
AENEX
AEQTI
AETEA
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CITATION
CS3
D0L
DU5
EBS
EJD
ER.
F5P
H~9
MVM
N9A
NEJ
NHB
NPBMV
OHT
OK1
P0-
P2P
RNS
ROL
S7W
SJN
T9H
TN5
UBC
UBE
VOH
WH7
XOL
XSW
YNT
YYP
ZCG
ZPR
ZY4
~02
NPM
UCJ
VQA
7X8
ID FETCH-LOGICAL-c311t-94e5127f21f1cfdd2a1a9b74c88d37f785cc769f1eaf36e1ee4680f8c4fba2d23
IEDL.DBID 3MX
ISICitedReferencesCount 69
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001053054000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-9007
1079-7114
IngestDate Sun Nov 09 12:42:58 EST 2025
Wed Feb 19 02:23:50 EST 2025
Sat Nov 29 04:39:49 EST 2025
Tue Nov 18 22:24:54 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-94e5127f21f1cfdd2a1a9b74c88d37f785cc769f1eaf36e1ee4680f8c4fba2d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2221-294X
0000-0002-8898-8337
0000-0003-3385-1904
PMID 37450821
PQID 2838249722
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2838249722
pubmed_primary_37450821
crossref_citationtrail_10_1103_PhysRevLett_130_268401
crossref_primary_10_1103_PhysRevLett_130_268401
PublicationCentury 2000
PublicationDate 2023-06-30
PublicationDateYYYYMMDD 2023-06-30
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-30
  day: 30
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2023
References PhysRevLett.130.268401Cc29R1
PhysRevLett.130.268401Cc103R1
PhysRevLett.130.268401Cc4R1
PhysRevLett.130.268401Cc48R1
PhysRevLett.130.268401Cc21R1
PhysRevLett.130.268401Cc44R1
PhysRevLett.130.268401Cc67R1
PhysRevLett.130.268401Cc25R1
PhysRevLett.130.268401Cc40R1
PhysRevLett.130.268401Cc63R1
PhysRevLett.130.268401Cc86R1
PhysRevLett.130.268401Cc70R1
PhysRevLett.130.268401Cc93R1
PhysRevLett.130.268401Cc8R1
PhysRevLett.130.268401Cc107R1
PhysRevLett.130.268401Cc17R1
PhysRevLett.130.268401Cc59R1
PhysRevLett.130.268401Cc32R1
PhysRevLett.130.268401Cc55R1
PhysRevLett.130.268401Cc78R1
PhysRevLett.130.268401Cc13R1
PhysRevLett.130.268401Cc36R1
PhysRevLett.130.268401Cc51R1
PhysRevLett.130.268401Cc74R1
PhysRevLett.130.268401Cc97R1
PhysRevLett.130.268401Cc81R1
J. K. Hale (PhysRevLett.130.268401Cc95R1) 2012
R. W. Pryor (PhysRevLett.130.268401Cc99R1) 2009
PhysRevLett.130.268401Cc26R1
PhysRevLett.130.268401Cc102R1
PhysRevLett.130.268401Cc49R1
PhysRevLett.130.268401Cc3R1
PhysRevLett.130.268401Cc45R1
PhysRevLett.130.268401Cc68R1
PhysRevLett.130.268401Cc41R1
PhysRevLett.130.268401Cc87R1
PhysRevLett.130.268401Cc22R1
PhysRevLett.130.268401Cc94R1
PhysRevLett.130.268401Cc71R1
PhysRevLett.130.268401Cc90R1
PhysRevLett.130.268401Cc7R1
PhysRevLett.130.268401Cc106R1
PhysRevLett.130.268401Cc18R1
PhysRevLett.130.268401Cc37R1
PhysRevLett.130.268401Cc10R1
PhysRevLett.130.268401Cc56R1
PhysRevLett.130.268401Cc79R1
PhysRevLett.130.268401Cc14R1
PhysRevLett.130.268401Cc52R1
PhysRevLett.130.268401Cc33R1
PhysRevLett.130.268401Cc27R1
PhysRevLett.130.268401Cc2R1
PhysRevLett.130.268401Cc46R1
PhysRevLett.130.268401Cc69R1
PhysRevLett.130.268401Cc88R1
PhysRevLett.130.268401Cc23R1
PhysRevLett.130.268401Cc42R1
PhysRevLett.130.268401Cc65R1
PhysRevLett.130.268401Cc84R1
PhysRevLett.130.268401Cc72R1
PhysRevLett.130.268401Cc91R1
S. Lynch (PhysRevLett.130.268401Cc96R1) 2004
PhysRevLett.130.268401Cc6R1
PhysRevLett.130.268401Cc105R1
PhysRevLett.130.268401Cc15R1
PhysRevLett.130.268401Cc38R1
PhysRevLett.130.268401Cc19R1
PhysRevLett.130.268401Cc30R1
PhysRevLett.130.268401Cc57R1
PhysRevLett.130.268401Cc11R1
PhysRevLett.130.268401Cc34R1
PhysRevLett.130.268401Cc53R1
PhysRevLett.130.268401Cc76R1
PhysRevLett.130.268401Cc83R1
PhysRevLett.130.268401Cc1R1
PhysRevLett.130.268401Cc28R1
PhysRevLett.130.268401Cc104R1
PhysRevLett.130.268401Cc5R1
PhysRevLett.130.268401Cc100R1
PhysRevLett.130.268401Cc20R1
PhysRevLett.130.268401Cc66R1
PhysRevLett.130.268401Cc47R1
PhysRevLett.130.268401Cc24R1
PhysRevLett.130.268401Cc62R1
PhysRevLett.130.268401Cc43R1
PhysRevLett.130.268401Cc85R1
PhysRevLett.130.268401Cc50R1
PhysRevLett.130.268401Cc92R1
W. Rall (PhysRevLett.130.268401Cc101R1) 2011
PhysRevLett.130.268401Cc9R1
L. Squire (PhysRevLett.130.268401Cc75R1) 2008
PhysRevLett.130.268401Cc108R1
PhysRevLett.130.268401Cc39R1
PhysRevLett.130.268401Cc16R1
PhysRevLett.130.268401Cc31R1
PhysRevLett.130.268401Cc77R1
PhysRevLett.130.268401Cc58R1
PhysRevLett.130.268401Cc35R1
PhysRevLett.130.268401Cc73R1
PhysRevLett.130.268401Cc12R1
PhysRevLett.130.268401Cc54R1
PhysRevLett.130.268401Cc80R1
PhysRevLett.130.268401Cc61R1
S. T. Keene (PhysRevLett.130.268401Cc60R1) 2021
References_xml – ident: PhysRevLett.130.268401Cc47R1
  doi: 10.1021/acs.analchem.7b03477
– ident: PhysRevLett.130.268401Cc74R1
  doi: 10.1002/aelm.202100432
– ident: PhysRevLett.130.268401Cc70R1
  doi: 10.1038/s41563-020-0703-y
– ident: PhysRevLett.130.268401Cc20R1
  doi: 10.1039/c0cs00053a
– ident: PhysRevLett.130.268401Cc44R1
  doi: 10.1039/C4SC02195A
– ident: PhysRevLett.130.268401Cc28R1
  doi: 10.1002/adfm.200500471
– ident: PhysRevLett.130.268401Cc63R1
  doi: 10.1109/MCAS.2013.2296414
– ident: PhysRevLett.130.268401Cc57R1
  doi: 10.3390/technologies6040118
– ident: PhysRevLett.130.268401Cc61R1
  doi: 10.1063/1.5142089
– ident: PhysRevLett.130.268401Cc24R1
  doi: 10.1021/ac970551g
– ident: PhysRevLett.130.268401Cc3R1
  doi: 10.1016/j.nanoen.2014.10.039
– ident: PhysRevLett.130.268401Cc67R1
  doi: 10.1038/s41586-021-04362-w
– ident: PhysRevLett.130.268401Cc43R1
  doi: 10.1021/ja211142e
– ident: PhysRevLett.130.268401Cc39R1
  doi: 10.1021/jp9076189
– ident: PhysRevLett.130.268401Cc31R1
  doi: 10.1103/PhysRevLett.94.048102
– ident: PhysRevLett.130.268401Cc16R1
  doi: 10.1016/j.chaos.2020.110504
– ident: PhysRevLett.130.268401Cc56R1
  doi: 10.1088/0268-1242/29/10/104001
– ident: PhysRevLett.130.268401Cc97R1
  doi: 10.4161/15592316.2014.972887
– ident: PhysRevLett.130.268401Cc10R1
  doi: 10.1021/nn301368z
– ident: PhysRevLett.130.268401Cc30R1
  doi: 10.1088/1367-2630/7/1/132
– ident: PhysRevLett.130.268401Cc54R1
  doi: 10.1109/TCT.1971.1083337
– ident: PhysRevLett.130.268401Cc33R1
  doi: 10.1021/acs.accounts.6b00395
– ident: PhysRevLett.130.268401Cc58R1
  doi: 10.1088/0957-4484/24/38/383001
– ident: PhysRevLett.130.268401Cc86R1
  doi: 10.1126/science.abf7923
– ident: PhysRevLett.130.268401Cc59R1
  doi: 10.1038/s41928-018-0103-3
– ident: PhysRevLett.130.268401Cc77R1
  doi: 10.1126/science.adc9150
– ident: PhysRevLett.130.268401Cc18R1
  doi: 10.1021/acsabm.0c00806
– ident: PhysRevLett.130.268401Cc37R1
  doi: 10.1021/acs.jpcb.8b11202
– ident: PhysRevLett.130.268401Cc91R1
  doi: 10.1109/JRPROC.1962.288235
– ident: PhysRevLett.130.268401Cc65R1
  doi: 10.1063/5.0078798
– ident: PhysRevLett.130.268401Cc81R1
  doi: 10.1113/jphysiol.1909.sp001298
– ident: PhysRevLett.130.268401Cc69R1
  doi: 10.1126/sciadv.abh1542
– ident: PhysRevLett.130.268401Cc42R1
  doi: 10.1103/PhysRevLett.89.198103
– ident: PhysRevLett.130.268401Cc34R1
  doi: 10.1021/nn800306u
– ident: PhysRevLett.130.268401Cc49R1
  doi: 10.1039/C9SC06386B
– volume-title: Multiphysics Modeling using comsol®: A First Principles Approach
  year: 2009
  ident: PhysRevLett.130.268401Cc99R1
– ident: PhysRevLett.130.268401Cc7R1
  doi: 10.1021/nl0255202
– ident: PhysRevLett.130.268401Cc90R1
  doi: 10.1016/S0006-3495(61)86902-6
– ident: PhysRevLett.130.268401Cc68R1
  doi: 10.1038/s41565-020-0647-z
– ident: PhysRevLett.130.268401Cc36R1
  doi: 10.1063/1.5108723
– ident: PhysRevLett.130.268401Cc79R1
  doi: 10.1002/asia.202200682
– ident: PhysRevLett.130.268401Cc85R1
  doi: 10.1016/S0166-2236(00)01714-8
– ident: PhysRevLett.130.268401Cc41R1
  doi: 10.1016/S0039-6028(03)00448-5
– ident: PhysRevLett.130.268401Cc9R1
  doi: 10.1021/ja901120f
– ident: PhysRevLett.130.268401Cc17R1
  doi: 10.1126/science.adf6400
– ident: PhysRevLett.130.268401Cc35R1
  doi: 10.1021/jp111377h
– ident: PhysRevLett.130.268401Cc52R1
  doi: 10.1021/ja211142e
– ident: PhysRevLett.130.268401Cc53R1
  doi: 10.1063/5.0051422
– volume-title: Fundamental Neuroscience
  year: 2008
  ident: PhysRevLett.130.268401Cc75R1
– ident: PhysRevLett.130.268401Cc13R1
  doi: 10.1063/5.0089822
– ident: PhysRevLett.130.268401Cc107R1
  doi: 10.1038/nn2040
– ident: PhysRevLett.130.268401Cc51R1
  doi: 10.1021/acs.jpcc.0c08863
– ident: PhysRevLett.130.268401Cc72R1
  doi: 10.1126/sciadv.abl5068
– ident: PhysRevLett.130.268401Cc2R1
  doi: 10.1038/nnano.2015.37
– ident: PhysRevLett.130.268401Cc80R1
  doi: 10.1002/cphy.cp010103
– ident: PhysRevLett.130.268401Cc83R1
  doi: 10.1523/JNEUROSCI.22-24-10580.2002
– ident: PhysRevLett.130.268401Cc71R1
  doi: 10.1038/s41467-022-28483-6
– ident: PhysRevLett.130.268401Cc46R1
  doi: 10.1016/j.jelechem.2016.05.018
– ident: PhysRevLett.130.268401Cc87R1
  doi: 10.1002/elps.200305754
– ident: PhysRevLett.130.268401Cc8R1
  doi: 10.1021/acs.analchem.6b04260
– ident: PhysRevLett.130.268401Cc73R1
  doi: 10.1126/scirobotics.abf3368
– ident: PhysRevLett.130.268401Cc108R1
  doi: 10.1016/S0006-3495(00)76293-X
– ident: PhysRevLett.130.268401Cc4R1
  doi: 10.1021/nl070194h
– ident: PhysRevLett.130.268401Cc32R1
  doi: 10.1021/acsmeasuresciau.1c00062
– ident: PhysRevLett.130.268401Cc88R1
  doi: 10.1021/acsami.2c11467
– ident: PhysRevLett.130.268401Cc29R1
  doi: 10.1209/epl/i2002-00271-3
– ident: PhysRevLett.130.268401Cc25R1
  doi: 10.1063/5.0113035
– volume-title: Organic Flexible Electronics
  year: 2021
  ident: PhysRevLett.130.268401Cc60R1
  doi: 10.1016/B978-0-12-818890-3.00018-7
– ident: PhysRevLett.130.268401Cc27R1
  doi: 10.1021/nl071770c
– ident: PhysRevLett.130.268401Cc15R1
  doi: 10.1021/acs.analchem.9b02994
– ident: PhysRevLett.130.268401Cc84R1
  doi: 10.1016/S0893-6080(02)00043-6
– ident: PhysRevLett.130.268401Cc45R1
  doi: 10.1039/c3sc52187g
– ident: PhysRevLett.130.268401Cc11R1
  doi: 10.1016/j.nantod.2015.11.001
– ident: PhysRevLett.130.268401Cc50R1
  doi: 10.1021/acs.jpcc.2c02051
– ident: PhysRevLett.130.268401Cc23R1
  doi: 10.1021/la203106w
– ident: PhysRevLett.130.268401Cc21R1
  doi: 10.1063/1.5083913
– ident: PhysRevLett.130.268401Cc5R1
  doi: 10.1038/nature11876
– ident: PhysRevLett.130.268401Cc93R1
  doi: 10.1016/0022-247X(76)90187-6
– start-page: 39
  year: 2011
  ident: PhysRevLett.130.268401Cc101R1
  publication-title: Compr. Physiol.
– ident: PhysRevLett.130.268401Cc12R1
  doi: 10.1039/D2CS00894G
– ident: PhysRevLett.130.268401Cc19R1
  doi: 10.1073/pnas.1721987115
– ident: PhysRevLett.130.268401Cc26R1
  doi: 10.1021/la702955k
– ident: PhysRevLett.130.268401Cc40R1
  doi: 10.1021/acs.jpclett.7b03099
– ident: PhysRevLett.130.268401Cc102R1
  doi: 10.1016/0022-5193(73)90008-8
– ident: PhysRevLett.130.268401Cc76R1
  doi: 10.1038/nrn2148
– volume-title: Dynamics and Bifurcations
  year: 2012
  ident: PhysRevLett.130.268401Cc95R1
– ident: PhysRevLett.130.268401Cc62R1
  doi: 10.1088/2634-4386/ac4a83
– ident: PhysRevLett.130.268401Cc1R1
  doi: 10.1002/ange.201302577
– volume-title: Dynamical Systems with Applications using matlab
  year: 2004
  ident: PhysRevLett.130.268401Cc96R1
  doi: 10.1007/978-0-8176-8156-2
– ident: PhysRevLett.130.268401Cc100R1
  doi: 10.1113/jphysiol.1952.sp004764
– ident: PhysRevLett.130.268401Cc55R1
  doi: 10.1038/nature06932
– ident: PhysRevLett.130.268401Cc14R1
  doi: 10.1021/acs.analchem.8b05885
– ident: PhysRevLett.130.268401Cc22R1
  doi: 10.3390/nano10030571
– ident: PhysRevLett.130.268401Cc38R1
  doi: 10.1063/5.0131481
– ident: PhysRevLett.130.268401Cc94R1
  doi: 10.1063/1.166460
– ident: PhysRevLett.130.268401Cc48R1
  doi: 10.1039/C7CC01047H
– ident: PhysRevLett.130.268401Cc105R1
  doi: 10.1371/journal.pcbi.1002107
– ident: PhysRevLett.130.268401Cc104R1
  doi: 10.1016/S0022-5193(05)80242-5
– ident: PhysRevLett.130.268401Cc78R1
  doi: 10.1126/science.adc9931
– ident: PhysRevLett.130.268401Cc6R1
  doi: 10.1016/j.joule.2019.09.005
– ident: PhysRevLett.130.268401Cc66R1
  doi: 10.1063/1.5118217
– ident: PhysRevLett.130.268401Cc103R1
  doi: 10.1111/j.1749-6632.1962.tb54120.x
– ident: PhysRevLett.130.268401Cc106R1
  doi: 10.1162/neco.1997.9.6.1179
– ident: PhysRevLett.130.268401Cc92R1
  doi: 10.1021/acs.jpclett.1c03406
SSID ssj0001268
Score 2.645423
Snippet Experiments have shown that the conductance of conical channels, filled with an aqueous electrolyte, can strongly depend on the history of the applied voltage....
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 268401
SubjectTerms Action Potentials - physiology
Microfluidics
Neurons
Potassium Channels
Signal Transduction
Title Iontronic Neuromorphic Signaling with Conical Microfluidic Memristors
URI https://www.ncbi.nlm.nih.gov/pubmed/37450821
https://www.proquest.com/docview/2838249722
Volume 130
WOSCitedRecordID wos001053054000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABR
  databaseName: American Physical Society (APS)
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: 3MX
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://journals.aps.org/
  providerName: American Physical Society
– providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: ER.
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JasMwEB1CaKGX7ku64UKvbqzFlnwsIaE9JJQu4JuRtQRD4pRs319JTkILDaUXg8FaGMmaGc2beQD3yJCYF9pdgVETUilEmJJChVgrIaSWVKWFJ5tggwHPsvSlAdHvEXwUkbZDQr7qpctucdTFD748ifd3OHWUBaSfbY5ehJP66CUOdxCxVUrw9m5-aqMtJqZXNb2D_0_yEPZXZmXwWO-DI2jo6hh2PbxTzk6g--wR6VUpA1-NYzyx4rUvb-XQGeLVMHD3sUFn4rMkg75D6ZnRolT2m74e-_oD09kpfPS6752ncEWgEEqC0DxMqbb6nBmMDJJGKSyQSAtGJeeKMMN4LCVLUoO0MCTRSGua8MhwSU0hsMLkDJrVpNIXEGhuMFEppVJHlAjKVWyM1fWikEWciLgF8VqQuVxVF3ckF6PcexkRyb-JyMXQ8lpELWhv2n3W9TX-bHG3Xqfc_gouviEqPVnMcmspcetNMoxbcF4v4KZPwqg1RTG6_Pd4V7DnKOZrjOA1NOfThb6BHbmcl7Pprd9_9sky_gXiP9u2
linkProvider American Physical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iontronic+Neuromorphic+Signaling+with+Conical+Microfluidic+Memristors&rft.jtitle=Physical+review+letters&rft.au=Kamsma%2C+T+M&rft.au=Boon%2C+W+Q&rft.au=Ter+Rele%2C+T&rft.au=Spitoni%2C+C&rft.date=2023-06-30&rft.issn=1079-7114&rft.eissn=1079-7114&rft.volume=130&rft.issue=26&rft.spage=268401&rft_id=info:doi/10.1103%2FPhysRevLett.130.268401&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon