Multiobjective Programming for Type-2 Hierarchical Fuzzy Inference Trees
This paper proposes a design of hierarchical fuzzy inference tree (HFIT). An HFIT produces an optimum tree-like structure, i.e., a natural hierarchical structure that accommodates simplicity by combining several low-dimensional fuzzy inference systems (FISs). Such a natural hierarchical structure pr...
Uloženo v:
| Vydáno v: | IEEE transactions on fuzzy systems Ročník 26; číslo 2; s. 915 - 936 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.04.2018
|
| Témata: | |
| ISSN: | 1063-6706, 1941-0034 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper proposes a design of hierarchical fuzzy inference tree (HFIT). An HFIT produces an optimum tree-like structure, i.e., a natural hierarchical structure that accommodates simplicity by combining several low-dimensional fuzzy inference systems (FISs). Such a natural hierarchical structure provides a high degree of approximation accuracy. The construction of the HFIT takes place in two phases. First, a nondominated sorting-based multiobjective genetic programming (MOGP) is applied to obtain a simple tree structure (a low complexity model) with a high accuracy. Second, the differential evolution algorithm is applied to optimize the obtained tree's parameters. In the derived tree, each node acquires a different input's combination, where the evolutionary process governs the input's combination. Hence, HFIT nodes are heterogeneous in nature, which leads to a high diversity among the rules generated by the HFIT. Additionally, the HFIT provides an automatic feature selection because it uses MOGP for the tree's structural optimization that accepts inputs only relevant to the knowledge contained in data. The HFIT was studied in the context of both type-1 and type-2 FISs, and its performance was evaluated through six application problems. Moreover, the proposed multiobjective HFIT was compared both theoretically and empirically with recently proposed FISs methods from the literature, such as McIT2FIS, TSCIT2FNN, SIT2FNN, RIT2FNS-WB, eT2FIS, MRIT2NFS, IT2FNN-SVR, etc. From the obtained results, it was found that the HFIT provided less complex and highly accurate models compared to the models produced by the most of other methods. Hence, the proposed HFIT is an efficient and competitive alternative to the other FISs for function approximation and feature selection. |
|---|---|
| AbstractList | This paper proposes a design of hierarchical fuzzy inference tree (HFIT). An HFIT produces an optimum tree-like structure, i.e., a natural hierarchical structure that accommodates simplicity by combining several low-dimensional fuzzy inference systems (FISs). Such a natural hierarchical structure provides a high degree of approximation accuracy. The construction of the HFIT takes place in two phases. First, a nondominated sorting-based multiobjective genetic programming (MOGP) is applied to obtain a simple tree structure (a low complexity model) with a high accuracy. Second, the differential evolution algorithm is applied to optimize the obtained tree's parameters. In the derived tree, each node acquires a different input's combination, where the evolutionary process governs the input's combination. Hence, HFIT nodes are heterogeneous in nature, which leads to a high diversity among the rules generated by the HFIT. Additionally, the HFIT provides an automatic feature selection because it uses MOGP for the tree's structural optimization that accepts inputs only relevant to the knowledge contained in data. The HFIT was studied in the context of both type-1 and type-2 FISs, and its performance was evaluated through six application problems. Moreover, the proposed multiobjective HFIT was compared both theoretically and empirically with recently proposed FISs methods from the literature, such as McIT2FIS, TSCIT2FNN, SIT2FNN, RIT2FNS-WB, eT2FIS, MRIT2NFS, IT2FNN-SVR, etc. From the obtained results, it was found that the HFIT provided less complex and highly accurate models compared to the models produced by the most of other methods. Hence, the proposed HFIT is an efficient and competitive alternative to the other FISs for function approximation and feature selection. |
| Author | Snasel, Vaclav Ojha, Varun Kumar Abraham, Ajith |
| Author_xml | – sequence: 1 givenname: Varun Kumar orcidid: 0000-0002-9256-1192 surname: Ojha fullname: Ojha, Varun Kumar email: ojha@arch.ethz.ch organization: Chair of Information Architecture, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland – sequence: 2 givenname: Vaclav surname: Snasel fullname: Snasel, Vaclav email: vaclav.snasel@vsb.cz organization: Department of Computer Science, Technical University of Ostrava, Ostrava, Czech Republic – sequence: 3 givenname: Ajith surname: Abraham fullname: Abraham, Ajith email: ajith.abraham@ieee.org organization: Machine Intelligence Research Labs (MIR Labs), Auburn, WA, USA |
| BookMark | eNp9kLFuwjAQhq2KSgXaF2gXv0Coz3aceKxQKUhU7RAWlsgxZ2oUEuSESvD0hII6dOh0J52-_9d9A9Kr6goJeQQ2AmD6OZsslssRZ5CMuNKp0PqG9EFLiBgTstftTIlIJUzdkUHTbBgDGUPaJ9P3fdn6utigbf030s9Qr4PZbn21pq4ONDvsMOJ06jGYYL-8NSWd7I_HA51VDgNWFmkWEJt7cutM2eDDdQ7JYvKajafR_ONtNn6ZR1YAtJFacRt33UKlhbZaOMGs4bEWEgvrVpw7LWVsjEMFMj2fE-WEiwslheGrWAwJv-TaUDdNQJfvgt-acMiB5WcX-Y-L_Owiv7rooPQPZH1rur-rNhhf_o8-XVCPiL9diQahAMQJvN9vgA |
| CODEN | IEFSEV |
| CitedBy_id | crossref_primary_10_1016_j_apenergy_2022_118534 crossref_primary_10_1016_j_engappai_2020_103596 crossref_primary_10_3390_app10238495 crossref_primary_10_1007_s40815_023_01623_w crossref_primary_10_1016_j_engappai_2019_08_010 crossref_primary_10_1109_TFUZZ_2019_2930492 crossref_primary_10_1007_s00500_019_04129_6 crossref_primary_10_3390_electronics12081885 crossref_primary_10_1016_j_eswa_2023_121857 crossref_primary_10_1016_j_jclepro_2022_131799 crossref_primary_10_1109_TFUZZ_2019_2930488 crossref_primary_10_1109_ACCESS_2019_2909945 crossref_primary_10_1109_TFUZZ_2018_2871800 |
| Cites_doi | 10.1109/TNN.2002.1000126 10.1080/00207179108934205 10.1109/TFUZZ.2005.856559 10.1109/91.928739 10.1109/TFUZZ.2010.2046904 10.1007/978-1-4757-4032-5 10.1142/S0218488507004868 10.1016/j.ijar.2011.03.004 10.1016/S0165-0114(02)00517-1 10.1007/978-3-319-29504-6_16 10.1109/91.660805 10.1109/72.80202 10.1109/TFUZZ.2010.2060200 10.1016/S0019-9958(65)90241-X 10.1109/TFUZZ.2009.2023113 10.1038/nature02388 10.1109/91.797984 10.1109/TFUZZ.2003.817839 10.1016/j.ijar.2006.01.004 10.1016/j.ins.2004.10.005 10.1016/j.swevo.2016.01.004 10.1163/156856206775997322 10.1109/91.649900 10.1007/s00500-008-0359-z 10.1109/TFUZZ.2004.832538 10.1109/TFUZZ.2012.2236096 10.1109/5.58337 10.1109/ICSMC.1999.814106 10.1109/TSMCB.2003.817053 10.1109/TFUZZ.2007.895975 10.1109/TFUZZ.2013.2253106 10.1016/j.asoc.2016.09.035 10.1109/TFUZZ.2011.2142314 10.1016/S0893-6080(99)00067-2 10.1007/978-3-662-05094-1 10.1109/FUZZY.1995.409976 10.1109/3477.969494 10.1016/j.knosys.2015.01.013 10.1109/3477.836384 10.1109/TFUZZ.2014.2374194 10.1016/j.ins.2012.02.031 10.1109/TFUZZ.2008.925907 10.1109/91.995117 10.1109/TFUZZ.2006.889954 10.1109/TFUZZ.2008.924340 10.1109/CEC.2005.1554689 10.1023/A:1008202821328 10.3390/polym3031377 10.1109/TFUZZ.2006.882472 10.1007/s005000100144 10.1007/s11721-007-0002-0 10.1109/TFUZZ.2011.2173582 10.1016/j.ins.2012.04.003 10.1109/TEVC.2008.927706 10.1162/evco.1997.5.2.123 10.1016/S0165-0114(96)00098-X 10.1109/TFUZZ.2015.2403793 10.1109/TIE.2013.2248332 10.1007/978-3-642-01527-4_3 10.1002/0471221546 10.1016/S0020-0255(01)00140-2 10.1109/TNN.2011.2167720 10.1016/0165-0114(95)00322-3 10.4064/fm-3-1-133-181 10.1109/TFUZZ.2003.822681 10.1007/3-540-45356-3_83 10.1109/TFUZZ.2013.2255613 10.1007/978-3-540-31880-4_52 10.1007/s00500-010-0665-0 10.1007/s10898-007-9149-x 10.1109/TFUZZ.2013.2279554 10.1109/TNNLS.2013.2284603 10.1109/91.811231 10.1109/TFUZZ.2004.836085 10.1002/int.10036 10.1109/TFUZZ.2012.2201338 10.1109/21.256541 10.1155/2013/193196 10.1109/TFUZZ.2004.840096 10.1016/j.ijar.2008.11.004 10.1109/TFUZZ.2012.2230179 10.1109/TFUZZ.2008.2012033 10.1109/TFUZZ.2012.2227488 10.1109/TFUZZ.2013.2291568 10.1109/TSMC.1985.6313399 10.1109/TFUZZ.2007.902038 10.1016/j.fss.2004.07.013 10.1016/0020-0255(75)90036-5 10.2147/IJN.S71847 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TFUZZ.2017.2698399 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0034 |
| EndPage | 936 |
| ExternalDocumentID | 10_1109_TFUZZ_2017_2698399 7913611 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: IPROCOM Marie Curie initial training network – fundername: People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ grantid: 316555 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYXX CITATION |
| ID | FETCH-LOGICAL-c311t-6d2c5145368b9c93f30ca25934ebcfd22f9445aafe61483f3076f3f5b643a2d53 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428613500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6706 |
| IngestDate | Tue Nov 18 21:00:57 EST 2025 Sat Nov 29 03:12:36 EST 2025 Wed Aug 27 02:51:16 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c311t-6d2c5145368b9c93f30ca25934ebcfd22f9445aafe61483f3076f3f5b643a2d53 |
| ORCID | 0000-0002-9256-1192 |
| OpenAccessLink | http://hdl.handle.net/20.500.11850/220938 |
| PageCount | 22 |
| ParticipantIDs | crossref_citationtrail_10_1109_TFUZZ_2017_2698399 crossref_primary_10_1109_TFUZZ_2017_2698399 ieee_primary_7913611 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-April 2018-4-00 |
| PublicationDateYYYYMMDD | 2018-04-01 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-April |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE transactions on fuzzy systems |
| PublicationTitleAbbrev | TFUZZ |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref57 ref56 szalas (ref68) 1993 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 smith (ref8) 1980 goldberg (ref67) 1987 ref49 ref7 ref9 ref4 ref3 ref5 box (ref96) 1976 ref100 ref101 ref40 kolmogorov (ref72) 1963; 28 altenberg (ref71) 1994; 3 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 poli (ref53) 2008 mendel (ref88) 2001 eiben (ref59) 2003 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 deb (ref58) 2000; 1917 ref13 ref12 ref15 ref14 ref99 ref11 ref98 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref90 ref89 ref86 ref85 ref87 ref82 ref81 ref84 ref83 szlek (ref97) 2013; 8 ref80 ref79 ref78 ref75 ref74 ref77 ref102 ref76 ref2 ref1 booker (ref6) 1982 wu (ref10) 2000; 30 ishibuchi (ref38) 2007 ref70 ref73 snyman (ref64) 2005; 97 ref69 ref63 ref66 ref65 ref60 ref62 ref61 lichman (ref91) 2013 |
| References_xml | – ident: ref76 doi: 10.1109/TNN.2002.1000126 – ident: ref25 doi: 10.1080/00207179108934205 – ident: ref30 doi: 10.1109/TFUZZ.2005.856559 – ident: ref42 doi: 10.1109/91.928739 – ident: ref86 doi: 10.1109/TFUZZ.2010.2046904 – ident: ref70 doi: 10.1007/978-1-4757-4032-5 – year: 1993 ident: ref68 article-title: Contractive mapping genetic algorithms and their convergence publication-title: Tech Rep – ident: ref40 doi: 10.1142/S0218488507004868 – ident: ref41 doi: 10.1016/j.ijar.2011.03.004 – year: 2013 ident: ref91 article-title: UCI machine learning repository – ident: ref29 doi: 10.1016/S0165-0114(02)00517-1 – ident: ref102 doi: 10.1007/978-3-319-29504-6_16 – ident: ref15 doi: 10.1109/91.660805 – ident: ref90 doi: 10.1109/72.80202 – ident: ref45 doi: 10.1109/TFUZZ.2010.2060200 – ident: ref2 doi: 10.1016/S0019-9958(65)90241-X – ident: ref49 doi: 10.1109/TFUZZ.2009.2023113 – ident: ref100 doi: 10.1038/nature02388 – year: 2001 ident: ref88 publication-title: Uncertain Rule-Based Fuzzy Logic Systems Introduction and New Directions – ident: ref27 doi: 10.1109/91.797984 – ident: ref84 doi: 10.1109/TFUZZ.2003.817839 – ident: ref43 doi: 10.1016/j.ijar.2006.01.004 – ident: ref56 doi: 10.1016/j.ins.2004.10.005 – ident: ref63 doi: 10.1016/j.swevo.2016.01.004 – ident: ref99 doi: 10.1163/156856206775997322 – year: 1980 ident: ref8 article-title: A learning system based on genetic adaptive algorithms – ident: ref79 doi: 10.1109/91.649900 – ident: ref44 doi: 10.1007/s00500-008-0359-z – ident: ref5 doi: 10.1109/TFUZZ.2004.832538 – ident: ref46 doi: 10.1109/TFUZZ.2012.2236096 – ident: ref65 doi: 10.1109/5.58337 – year: 2008 ident: ref53 publication-title: A Field Guide to Genetic Programming – ident: ref7 doi: 10.1109/ICSMC.1999.814106 – ident: ref87 doi: 10.1109/TSMCB.2003.817053 – ident: ref80 doi: 10.1109/TFUZZ.2007.895975 – start-page: 1 year: 1987 ident: ref67 article-title: Finite Markov chain analysis of genetic algorithms publication-title: Proc 2nd Int Conf Genetic Algorithms Appl – volume: 28 start-page: 55 year: 1963 ident: ref72 article-title: On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition publication-title: Transl Amer Math Soc – ident: ref34 doi: 10.1109/TFUZZ.2013.2253106 – ident: ref60 doi: 10.1016/j.asoc.2016.09.035 – ident: ref95 doi: 10.1109/TFUZZ.2011.2142314 – volume: 8 start-page: 4601 year: 2013 ident: ref97 article-title: Heuristic modeling of macromolecule release from PLGA microspheres publication-title: Int J Nanomed – ident: ref81 doi: 10.1016/S0893-6080(99)00067-2 – year: 2003 ident: ref59 publication-title: Introduction to Evolutionary Computing doi: 10.1007/978-3-662-05094-1 – ident: ref26 doi: 10.1109/FUZZY.1995.409976 – ident: ref78 doi: 10.1109/3477.969494 – ident: ref14 doi: 10.1016/j.knosys.2015.01.013 – volume: 30 start-page: 358 year: 2000 ident: ref10 article-title: Dynamic fuzzy neural networks-A novel approach to function approximation publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/3477.836384 – ident: ref12 doi: 10.1109/TFUZZ.2014.2374194 – ident: ref85 doi: 10.1016/j.ins.2012.02.031 – ident: ref16 doi: 10.1109/TFUZZ.2008.925907 – ident: ref18 doi: 10.1109/91.995117 – ident: ref48 doi: 10.1109/TFUZZ.2006.889954 – ident: ref93 doi: 10.1109/TFUZZ.2008.924340 – ident: ref73 doi: 10.1109/CEC.2005.1554689 – ident: ref77 doi: 10.1023/A:1008202821328 – ident: ref101 doi: 10.3390/polym3031377 – start-page: 1 year: 2007 ident: ref38 article-title: Multiobjective genetic fuzzy systems: Review and future research directions publication-title: Proc IEEE Int Fuzzy Syst Conf – ident: ref35 doi: 10.1109/TFUZZ.2006.882472 – ident: ref82 doi: 10.1007/s005000100144 – volume: 3 start-page: 47 year: 1994 ident: ref71 article-title: The evolution of evolvability in genetic programming publication-title: Advances in Genetic Programming – ident: ref62 doi: 10.1007/s11721-007-0002-0 – ident: ref51 doi: 10.1109/TFUZZ.2011.2173582 – ident: ref13 doi: 10.1016/j.ins.2012.04.003 – ident: ref54 doi: 10.1109/TEVC.2008.927706 – ident: ref36 doi: 10.1162/evco.1997.5.2.123 – ident: ref39 doi: 10.1016/S0165-0114(96)00098-X – ident: ref24 doi: 10.1109/TFUZZ.2015.2403793 – ident: ref21 doi: 10.1109/TIE.2013.2248332 – ident: ref74 doi: 10.1007/978-3-642-01527-4_3 – ident: ref66 doi: 10.1002/0471221546 – ident: ref28 doi: 10.1016/S0020-0255(01)00140-2 – ident: ref19 doi: 10.1109/TNN.2011.2167720 – ident: ref83 doi: 10.1016/0165-0114(95)00322-3 – year: 1982 ident: ref6 article-title: Intelligent behavior as an adaptation to the task environment – ident: ref69 doi: 10.4064/fm-3-1-133-181 – ident: ref89 doi: 10.1109/TFUZZ.2003.822681 – volume: 1917 start-page: 849 year: 2000 ident: ref58 article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II publication-title: Parallel Problem Solving from Nature - PPSN V Lecture Notes in Computer Science doi: 10.1007/3-540-45356-3_83 – ident: ref20 doi: 10.1109/TFUZZ.2013.2255613 – ident: ref57 doi: 10.1007/978-3-540-31880-4_52 – ident: ref50 doi: 10.1007/s00500-010-0665-0 – volume: 97 year: 2005 ident: ref64 publication-title: Practical Mathematical Optimization An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms – year: 1976 ident: ref96 publication-title: Time Series Analysis Forecasting and Control – ident: ref61 doi: 10.1007/s10898-007-9149-x – ident: ref23 doi: 10.1109/TFUZZ.2013.2279554 – ident: ref22 doi: 10.1109/TNNLS.2013.2284603 – ident: ref4 doi: 10.1109/91.811231 – ident: ref92 doi: 10.1109/TFUZZ.2004.836085 – ident: ref31 doi: 10.1002/int.10036 – ident: ref52 doi: 10.1109/TFUZZ.2012.2201338 – ident: ref9 doi: 10.1109/21.256541 – ident: ref75 doi: 10.1155/2013/193196 – ident: ref32 doi: 10.1109/TFUZZ.2004.840096 – ident: ref33 doi: 10.1016/j.ijar.2008.11.004 – ident: ref17 doi: 10.1109/TFUZZ.2012.2230179 – ident: ref11 doi: 10.1109/TFUZZ.2008.2012033 – ident: ref55 doi: 10.1109/TFUZZ.2012.2227488 – ident: ref37 doi: 10.1109/TFUZZ.2013.2291568 – ident: ref1 doi: 10.1109/TSMC.1985.6313399 – ident: ref94 doi: 10.1109/TFUZZ.2007.902038 – ident: ref47 doi: 10.1016/j.fss.2004.07.013 – ident: ref3 doi: 10.1016/0020-0255(75)90036-5 – ident: ref98 doi: 10.2147/IJN.S71847 |
| SSID | ssj0014518 |
| Score | 2.3544006 |
| Snippet | This paper proposes a design of hierarchical fuzzy inference tree (HFIT). An HFIT produces an optimum tree-like structure, i.e., a natural hierarchical... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 915 |
| SubjectTerms | Approximation Artificial neural networks Clustering methods Complexity theory differential evolution (DE) feature selection Fuzzy logic Heuristic algorithms hierarchical fuzzy inference system (HFIS) multiobjective genetic programming (MOGP) Optimization Tuning |
| Title | Multiobjective Programming for Type-2 Hierarchical Fuzzy Inference Trees |
| URI | https://ieeexplore.ieee.org/document/7913611 |
| Volume | 26 |
| WOSCitedRecordID | wos000428613500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1941-0034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014518 issn: 1063-6706 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGA1zeNCD001x_iIHb5otbdqkOYpY5mXssMHYpbTJV5jMTfZDcH-9SdqOCSJ4K00CJS9t3td873sI3StNeRaCRzKVMxJkEJBIS0pA0JT6OY0kaGc2Ifr9aDyWgxp63GlhAMAln0HHXrqzfL1QG_urrCukx7gV8h4IwQut1u7EIAi9QvbGGeGC8kogQ2V3GI8mE5vFJTo-l4YRyB-b0J6rittU4sb_HucUnZTkET8VaJ-hGsybqFEZM-DyPW2i470qgy3UcyLbRfZWfNvwoEjJejeN2FBWbENR4uPe1GqRnTXKDMeb7fYLv1ZqQDxcAqzO0Sh-GT73SGmgQBTzvDXh2leGEIWMR5lUkuWMqtTEOywAA432_VwGQZimOdhyoLZZ8JzlYWZoSurrkF2g-nwxh0uEMxCZTHmktVBBqFgKhlcFPLfFPQ3j1G3kVTOaqLK6uDW5mCUuyqAycSgkFoWkRKGNHnZjPoraGn_2blkIdj3L2b_6_fY1OjKDoyLH5gbV18sN3KJD9bmerpZ3bul8A680wWI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB1EBfXg1yp-m4M3jaZNmjZHEZeKunioIHspbTIFRXdl3RX015uk7aIggrfSpKXktc2bZN48gCNtmCwjDGipK05FiYImRjGKMStYWLFEofFmE3Gvlzw8qLsZOJlqYRDRJ5_hqTv0e_lmqCduqewsVgGXTsg7Fwkb99RqremegYiCWvgmOZUxk61EhqmzrHvf77s8rvg0lMpyAvVjGvrmq-Knle7K_x5oFZYb-kjOa7zXYAYH67DSWjOQ5ktdh6VvdQY7kHqZ7bB8qv9u5K5OynqxjcSSVuKCURqS9NGpkb05yjPpTj4_P8hVqwck2QjxbQPuu5fZRUobCwWqeRCMqTShtpQo4jIplVa84kwXNuLhAi04JgwrJURUFBW6gqCuOZYVr6LSEpUiNBHfhNnBcIBbQEqMS1XIxJhYi0jzAi2zErJy5T0t5zTbELQjmuumvrizuXjOfZzBVO5RyB0KeYPCNhxPr3mtq2v82bvjIJj2bEZ_5_fTh7CQZrc3-c1V73oXFu2NkjrjZg9mx6MJ7sO8fh8_vo0O_Gv0Ber3xKk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiobjective+Programming+for+Type-2+Hierarchical+Fuzzy+Inference+Trees&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Ojha%2C+Varun+Kumar&rft.au=Snasel%2C+Vaclav&rft.au=Abraham%2C+Ajith&rft.date=2018-04-01&rft.pub=IEEE&rft.issn=1063-6706&rft.volume=26&rft.issue=2&rft.spage=915&rft.epage=936&rft_id=info:doi/10.1109%2FTFUZZ.2017.2698399&rft.externalDocID=7913611 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |