Multiobjective Programming for Type-2 Hierarchical Fuzzy Inference Trees

This paper proposes a design of hierarchical fuzzy inference tree (HFIT). An HFIT produces an optimum tree-like structure, i.e., a natural hierarchical structure that accommodates simplicity by combining several low-dimensional fuzzy inference systems (FISs). Such a natural hierarchical structure pr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on fuzzy systems Vol. 26; no. 2; pp. 915 - 936
Main Authors: Ojha, Varun Kumar, Snasel, Vaclav, Abraham, Ajith
Format: Journal Article
Language:English
Published: IEEE 01.04.2018
Subjects:
ISSN:1063-6706, 1941-0034
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes a design of hierarchical fuzzy inference tree (HFIT). An HFIT produces an optimum tree-like structure, i.e., a natural hierarchical structure that accommodates simplicity by combining several low-dimensional fuzzy inference systems (FISs). Such a natural hierarchical structure provides a high degree of approximation accuracy. The construction of the HFIT takes place in two phases. First, a nondominated sorting-based multiobjective genetic programming (MOGP) is applied to obtain a simple tree structure (a low complexity model) with a high accuracy. Second, the differential evolution algorithm is applied to optimize the obtained tree's parameters. In the derived tree, each node acquires a different input's combination, where the evolutionary process governs the input's combination. Hence, HFIT nodes are heterogeneous in nature, which leads to a high diversity among the rules generated by the HFIT. Additionally, the HFIT provides an automatic feature selection because it uses MOGP for the tree's structural optimization that accepts inputs only relevant to the knowledge contained in data. The HFIT was studied in the context of both type-1 and type-2 FISs, and its performance was evaluated through six application problems. Moreover, the proposed multiobjective HFIT was compared both theoretically and empirically with recently proposed FISs methods from the literature, such as McIT2FIS, TSCIT2FNN, SIT2FNN, RIT2FNS-WB, eT2FIS, MRIT2NFS, IT2FNN-SVR, etc. From the obtained results, it was found that the HFIT provided less complex and highly accurate models compared to the models produced by the most of other methods. Hence, the proposed HFIT is an efficient and competitive alternative to the other FISs for function approximation and feature selection.
AbstractList This paper proposes a design of hierarchical fuzzy inference tree (HFIT). An HFIT produces an optimum tree-like structure, i.e., a natural hierarchical structure that accommodates simplicity by combining several low-dimensional fuzzy inference systems (FISs). Such a natural hierarchical structure provides a high degree of approximation accuracy. The construction of the HFIT takes place in two phases. First, a nondominated sorting-based multiobjective genetic programming (MOGP) is applied to obtain a simple tree structure (a low complexity model) with a high accuracy. Second, the differential evolution algorithm is applied to optimize the obtained tree's parameters. In the derived tree, each node acquires a different input's combination, where the evolutionary process governs the input's combination. Hence, HFIT nodes are heterogeneous in nature, which leads to a high diversity among the rules generated by the HFIT. Additionally, the HFIT provides an automatic feature selection because it uses MOGP for the tree's structural optimization that accepts inputs only relevant to the knowledge contained in data. The HFIT was studied in the context of both type-1 and type-2 FISs, and its performance was evaluated through six application problems. Moreover, the proposed multiobjective HFIT was compared both theoretically and empirically with recently proposed FISs methods from the literature, such as McIT2FIS, TSCIT2FNN, SIT2FNN, RIT2FNS-WB, eT2FIS, MRIT2NFS, IT2FNN-SVR, etc. From the obtained results, it was found that the HFIT provided less complex and highly accurate models compared to the models produced by the most of other methods. Hence, the proposed HFIT is an efficient and competitive alternative to the other FISs for function approximation and feature selection.
Author Snasel, Vaclav
Ojha, Varun Kumar
Abraham, Ajith
Author_xml – sequence: 1
  givenname: Varun Kumar
  orcidid: 0000-0002-9256-1192
  surname: Ojha
  fullname: Ojha, Varun Kumar
  email: ojha@arch.ethz.ch
  organization: Chair of Information Architecture, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
– sequence: 2
  givenname: Vaclav
  surname: Snasel
  fullname: Snasel, Vaclav
  email: vaclav.snasel@vsb.cz
  organization: Department of Computer Science, Technical University of Ostrava, Ostrava, Czech Republic
– sequence: 3
  givenname: Ajith
  surname: Abraham
  fullname: Abraham, Ajith
  email: ajith.abraham@ieee.org
  organization: Machine Intelligence Research Labs (MIR Labs), Auburn, WA, USA
BookMark eNp9kLFuwjAQhq2KSgXaF2gXv0Coz3aceKxQKUhU7RAWlsgxZ2oUEuSESvD0hII6dOh0J52-_9d9A9Kr6goJeQQ2AmD6OZsslssRZ5CMuNKp0PqG9EFLiBgTstftTIlIJUzdkUHTbBgDGUPaJ9P3fdn6utigbf030s9Qr4PZbn21pq4ONDvsMOJ06jGYYL-8NSWd7I_HA51VDgNWFmkWEJt7cutM2eDDdQ7JYvKajafR_ONtNn6ZR1YAtJFacRt33UKlhbZaOMGs4bEWEgvrVpw7LWVsjEMFMj2fE-WEiwslheGrWAwJv-TaUDdNQJfvgt-acMiB5WcX-Y-L_Owiv7rooPQPZH1rur-rNhhf_o8-XVCPiL9diQahAMQJvN9vgA
CODEN IEFSEV
CitedBy_id crossref_primary_10_1016_j_apenergy_2022_118534
crossref_primary_10_1016_j_engappai_2020_103596
crossref_primary_10_3390_app10238495
crossref_primary_10_1007_s40815_023_01623_w
crossref_primary_10_1016_j_engappai_2019_08_010
crossref_primary_10_1109_TFUZZ_2019_2930492
crossref_primary_10_1007_s00500_019_04129_6
crossref_primary_10_3390_electronics12081885
crossref_primary_10_1016_j_eswa_2023_121857
crossref_primary_10_1016_j_jclepro_2022_131799
crossref_primary_10_1109_TFUZZ_2019_2930488
crossref_primary_10_1109_ACCESS_2019_2909945
crossref_primary_10_1109_TFUZZ_2018_2871800
Cites_doi 10.1109/TNN.2002.1000126
10.1080/00207179108934205
10.1109/TFUZZ.2005.856559
10.1109/91.928739
10.1109/TFUZZ.2010.2046904
10.1007/978-1-4757-4032-5
10.1142/S0218488507004868
10.1016/j.ijar.2011.03.004
10.1016/S0165-0114(02)00517-1
10.1007/978-3-319-29504-6_16
10.1109/91.660805
10.1109/72.80202
10.1109/TFUZZ.2010.2060200
10.1016/S0019-9958(65)90241-X
10.1109/TFUZZ.2009.2023113
10.1038/nature02388
10.1109/91.797984
10.1109/TFUZZ.2003.817839
10.1016/j.ijar.2006.01.004
10.1016/j.ins.2004.10.005
10.1016/j.swevo.2016.01.004
10.1163/156856206775997322
10.1109/91.649900
10.1007/s00500-008-0359-z
10.1109/TFUZZ.2004.832538
10.1109/TFUZZ.2012.2236096
10.1109/5.58337
10.1109/ICSMC.1999.814106
10.1109/TSMCB.2003.817053
10.1109/TFUZZ.2007.895975
10.1109/TFUZZ.2013.2253106
10.1016/j.asoc.2016.09.035
10.1109/TFUZZ.2011.2142314
10.1016/S0893-6080(99)00067-2
10.1007/978-3-662-05094-1
10.1109/FUZZY.1995.409976
10.1109/3477.969494
10.1016/j.knosys.2015.01.013
10.1109/3477.836384
10.1109/TFUZZ.2014.2374194
10.1016/j.ins.2012.02.031
10.1109/TFUZZ.2008.925907
10.1109/91.995117
10.1109/TFUZZ.2006.889954
10.1109/TFUZZ.2008.924340
10.1109/CEC.2005.1554689
10.1023/A:1008202821328
10.3390/polym3031377
10.1109/TFUZZ.2006.882472
10.1007/s005000100144
10.1007/s11721-007-0002-0
10.1109/TFUZZ.2011.2173582
10.1016/j.ins.2012.04.003
10.1109/TEVC.2008.927706
10.1162/evco.1997.5.2.123
10.1016/S0165-0114(96)00098-X
10.1109/TFUZZ.2015.2403793
10.1109/TIE.2013.2248332
10.1007/978-3-642-01527-4_3
10.1002/0471221546
10.1016/S0020-0255(01)00140-2
10.1109/TNN.2011.2167720
10.1016/0165-0114(95)00322-3
10.4064/fm-3-1-133-181
10.1109/TFUZZ.2003.822681
10.1007/3-540-45356-3_83
10.1109/TFUZZ.2013.2255613
10.1007/978-3-540-31880-4_52
10.1007/s00500-010-0665-0
10.1007/s10898-007-9149-x
10.1109/TFUZZ.2013.2279554
10.1109/TNNLS.2013.2284603
10.1109/91.811231
10.1109/TFUZZ.2004.836085
10.1002/int.10036
10.1109/TFUZZ.2012.2201338
10.1109/21.256541
10.1155/2013/193196
10.1109/TFUZZ.2004.840096
10.1016/j.ijar.2008.11.004
10.1109/TFUZZ.2012.2230179
10.1109/TFUZZ.2008.2012033
10.1109/TFUZZ.2012.2227488
10.1109/TFUZZ.2013.2291568
10.1109/TSMC.1985.6313399
10.1109/TFUZZ.2007.902038
10.1016/j.fss.2004.07.013
10.1016/0020-0255(75)90036-5
10.2147/IJN.S71847
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TFUZZ.2017.2698399
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 936
ExternalDocumentID 10_1109_TFUZZ_2017_2698399
7913611
Genre orig-research
GrantInformation_xml – fundername: IPROCOM Marie Curie initial training network
– fundername: People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/
  grantid: 316555
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c311t-6d2c5145368b9c93f30ca25934ebcfd22f9445aafe61483f3076f3f5b643a2d53
IEDL.DBID RIE
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428613500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6706
IngestDate Tue Nov 18 21:00:57 EST 2025
Sat Nov 29 03:12:36 EST 2025
Wed Aug 27 02:51:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-6d2c5145368b9c93f30ca25934ebcfd22f9445aafe61483f3076f3f5b643a2d53
ORCID 0000-0002-9256-1192
OpenAccessLink http://hdl.handle.net/20.500.11850/220938
PageCount 22
ParticipantIDs crossref_citationtrail_10_1109_TFUZZ_2017_2698399
crossref_primary_10_1109_TFUZZ_2017_2698399
ieee_primary_7913611
PublicationCentury 2000
PublicationDate 2018-April
2018-4-00
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-April
PublicationDecade 2010
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref56
szalas (ref68) 1993
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
smith (ref8) 1980
goldberg (ref67) 1987
ref49
ref7
ref9
ref4
ref3
ref5
box (ref96) 1976
ref100
ref101
ref40
kolmogorov (ref72) 1963; 28
altenberg (ref71) 1994; 3
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
poli (ref53) 2008
mendel (ref88) 2001
eiben (ref59) 2003
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
deb (ref58) 2000; 1917
ref13
ref12
ref15
ref14
ref99
ref11
ref98
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref94
ref90
ref89
ref86
ref85
ref87
ref82
ref81
ref84
ref83
szlek (ref97) 2013; 8
ref80
ref79
ref78
ref75
ref74
ref77
ref102
ref76
ref2
ref1
booker (ref6) 1982
wu (ref10) 2000; 30
ishibuchi (ref38) 2007
ref70
ref73
snyman (ref64) 2005; 97
ref69
ref63
ref66
ref65
ref60
ref62
ref61
lichman (ref91) 2013
References_xml – ident: ref76
  doi: 10.1109/TNN.2002.1000126
– ident: ref25
  doi: 10.1080/00207179108934205
– ident: ref30
  doi: 10.1109/TFUZZ.2005.856559
– ident: ref42
  doi: 10.1109/91.928739
– ident: ref86
  doi: 10.1109/TFUZZ.2010.2046904
– ident: ref70
  doi: 10.1007/978-1-4757-4032-5
– year: 1993
  ident: ref68
  article-title: Contractive mapping genetic algorithms and their convergence
  publication-title: Tech Rep
– ident: ref40
  doi: 10.1142/S0218488507004868
– ident: ref41
  doi: 10.1016/j.ijar.2011.03.004
– year: 2013
  ident: ref91
  article-title: UCI machine learning repository
– ident: ref29
  doi: 10.1016/S0165-0114(02)00517-1
– ident: ref102
  doi: 10.1007/978-3-319-29504-6_16
– ident: ref15
  doi: 10.1109/91.660805
– ident: ref90
  doi: 10.1109/72.80202
– ident: ref45
  doi: 10.1109/TFUZZ.2010.2060200
– ident: ref2
  doi: 10.1016/S0019-9958(65)90241-X
– ident: ref49
  doi: 10.1109/TFUZZ.2009.2023113
– ident: ref100
  doi: 10.1038/nature02388
– year: 2001
  ident: ref88
  publication-title: Uncertain Rule-Based Fuzzy Logic Systems Introduction and New Directions
– ident: ref27
  doi: 10.1109/91.797984
– ident: ref84
  doi: 10.1109/TFUZZ.2003.817839
– ident: ref43
  doi: 10.1016/j.ijar.2006.01.004
– ident: ref56
  doi: 10.1016/j.ins.2004.10.005
– ident: ref63
  doi: 10.1016/j.swevo.2016.01.004
– ident: ref99
  doi: 10.1163/156856206775997322
– year: 1980
  ident: ref8
  article-title: A learning system based on genetic adaptive algorithms
– ident: ref79
  doi: 10.1109/91.649900
– ident: ref44
  doi: 10.1007/s00500-008-0359-z
– ident: ref5
  doi: 10.1109/TFUZZ.2004.832538
– ident: ref46
  doi: 10.1109/TFUZZ.2012.2236096
– ident: ref65
  doi: 10.1109/5.58337
– year: 2008
  ident: ref53
  publication-title: A Field Guide to Genetic Programming
– ident: ref7
  doi: 10.1109/ICSMC.1999.814106
– ident: ref87
  doi: 10.1109/TSMCB.2003.817053
– ident: ref80
  doi: 10.1109/TFUZZ.2007.895975
– start-page: 1
  year: 1987
  ident: ref67
  article-title: Finite Markov chain analysis of genetic algorithms
  publication-title: Proc 2nd Int Conf Genetic Algorithms Appl
– volume: 28
  start-page: 55
  year: 1963
  ident: ref72
  article-title: On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition
  publication-title: Transl Amer Math Soc
– ident: ref34
  doi: 10.1109/TFUZZ.2013.2253106
– ident: ref60
  doi: 10.1016/j.asoc.2016.09.035
– ident: ref95
  doi: 10.1109/TFUZZ.2011.2142314
– volume: 8
  start-page: 4601
  year: 2013
  ident: ref97
  article-title: Heuristic modeling of macromolecule release from PLGA microspheres
  publication-title: Int J Nanomed
– ident: ref81
  doi: 10.1016/S0893-6080(99)00067-2
– year: 2003
  ident: ref59
  publication-title: Introduction to Evolutionary Computing
  doi: 10.1007/978-3-662-05094-1
– ident: ref26
  doi: 10.1109/FUZZY.1995.409976
– ident: ref78
  doi: 10.1109/3477.969494
– ident: ref14
  doi: 10.1016/j.knosys.2015.01.013
– volume: 30
  start-page: 358
  year: 2000
  ident: ref10
  article-title: Dynamic fuzzy neural networks-A novel approach to function approximation
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/3477.836384
– ident: ref12
  doi: 10.1109/TFUZZ.2014.2374194
– ident: ref85
  doi: 10.1016/j.ins.2012.02.031
– ident: ref16
  doi: 10.1109/TFUZZ.2008.925907
– ident: ref18
  doi: 10.1109/91.995117
– ident: ref48
  doi: 10.1109/TFUZZ.2006.889954
– ident: ref93
  doi: 10.1109/TFUZZ.2008.924340
– ident: ref73
  doi: 10.1109/CEC.2005.1554689
– ident: ref77
  doi: 10.1023/A:1008202821328
– ident: ref101
  doi: 10.3390/polym3031377
– start-page: 1
  year: 2007
  ident: ref38
  article-title: Multiobjective genetic fuzzy systems: Review and future research directions
  publication-title: Proc IEEE Int Fuzzy Syst Conf
– ident: ref35
  doi: 10.1109/TFUZZ.2006.882472
– ident: ref82
  doi: 10.1007/s005000100144
– volume: 3
  start-page: 47
  year: 1994
  ident: ref71
  article-title: The evolution of evolvability in genetic programming
  publication-title: Advances in Genetic Programming
– ident: ref62
  doi: 10.1007/s11721-007-0002-0
– ident: ref51
  doi: 10.1109/TFUZZ.2011.2173582
– ident: ref13
  doi: 10.1016/j.ins.2012.04.003
– ident: ref54
  doi: 10.1109/TEVC.2008.927706
– ident: ref36
  doi: 10.1162/evco.1997.5.2.123
– ident: ref39
  doi: 10.1016/S0165-0114(96)00098-X
– ident: ref24
  doi: 10.1109/TFUZZ.2015.2403793
– ident: ref21
  doi: 10.1109/TIE.2013.2248332
– ident: ref74
  doi: 10.1007/978-3-642-01527-4_3
– ident: ref66
  doi: 10.1002/0471221546
– ident: ref28
  doi: 10.1016/S0020-0255(01)00140-2
– ident: ref19
  doi: 10.1109/TNN.2011.2167720
– ident: ref83
  doi: 10.1016/0165-0114(95)00322-3
– year: 1982
  ident: ref6
  article-title: Intelligent behavior as an adaptation to the task environment
– ident: ref69
  doi: 10.4064/fm-3-1-133-181
– ident: ref89
  doi: 10.1109/TFUZZ.2003.822681
– volume: 1917
  start-page: 849
  year: 2000
  ident: ref58
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
  publication-title: Parallel Problem Solving from Nature - PPSN V Lecture Notes in Computer Science
  doi: 10.1007/3-540-45356-3_83
– ident: ref20
  doi: 10.1109/TFUZZ.2013.2255613
– ident: ref57
  doi: 10.1007/978-3-540-31880-4_52
– ident: ref50
  doi: 10.1007/s00500-010-0665-0
– volume: 97
  year: 2005
  ident: ref64
  publication-title: Practical Mathematical Optimization An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms
– year: 1976
  ident: ref96
  publication-title: Time Series Analysis Forecasting and Control
– ident: ref61
  doi: 10.1007/s10898-007-9149-x
– ident: ref23
  doi: 10.1109/TFUZZ.2013.2279554
– ident: ref22
  doi: 10.1109/TNNLS.2013.2284603
– ident: ref4
  doi: 10.1109/91.811231
– ident: ref92
  doi: 10.1109/TFUZZ.2004.836085
– ident: ref31
  doi: 10.1002/int.10036
– ident: ref52
  doi: 10.1109/TFUZZ.2012.2201338
– ident: ref9
  doi: 10.1109/21.256541
– ident: ref75
  doi: 10.1155/2013/193196
– ident: ref32
  doi: 10.1109/TFUZZ.2004.840096
– ident: ref33
  doi: 10.1016/j.ijar.2008.11.004
– ident: ref17
  doi: 10.1109/TFUZZ.2012.2230179
– ident: ref11
  doi: 10.1109/TFUZZ.2008.2012033
– ident: ref55
  doi: 10.1109/TFUZZ.2012.2227488
– ident: ref37
  doi: 10.1109/TFUZZ.2013.2291568
– ident: ref1
  doi: 10.1109/TSMC.1985.6313399
– ident: ref94
  doi: 10.1109/TFUZZ.2007.902038
– ident: ref47
  doi: 10.1016/j.fss.2004.07.013
– ident: ref3
  doi: 10.1016/0020-0255(75)90036-5
– ident: ref98
  doi: 10.2147/IJN.S71847
SSID ssj0014518
Score 2.354491
Snippet This paper proposes a design of hierarchical fuzzy inference tree (HFIT). An HFIT produces an optimum tree-like structure, i.e., a natural hierarchical...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 915
SubjectTerms Approximation
Artificial neural networks
Clustering methods
Complexity theory
differential evolution (DE)
feature selection
Fuzzy logic
Heuristic algorithms
hierarchical fuzzy inference system (HFIS)
multiobjective genetic programming (MOGP)
Optimization
Tuning
Title Multiobjective Programming for Type-2 Hierarchical Fuzzy Inference Trees
URI https://ieeexplore.ieee.org/document/7913611
Volume 26
WOSCitedRecordID wos000428613500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8aAHq61ifZGDN912d7ObbI4ilgpSemih9LIk2QQq2kofgv31JtkHFUTwtmwysMwkmW82880A3CaZpDLEsWewKzUBivI9HkfYE1EijDemgeCuzuwLHQySyYQNa3BfcWGUUi75THXso7vLzxZyY3-VdSkLMLFE3j1KSc7Vqm4MojjIaW8Ee4T6pCTI-Kw76o2nU5vFRTshYQYRsB9OaKerinMqvcb_PucYjgrwiB5ya59ATc2b0CgbM6BinzbhcKfKYAv6jmS7EK_52YaGeUrWuxlEBrIiG4p6IerPLBfZtUZ5Q73NdvuFnks2IBotlVqdwrj3NHrse0UDBU_iIFh7JAulAUQxJkbxkmGNfclNvIMjJaTOwlCzKIo518qWA7XDlGisY2FgCg-zGJ9Bfb6Yq3NAWtvkmUxQYvCiCUMSHiiijBAX0ieCtyEoNZrKorq4bXLxlroow2eps0JqrZAWVmjDXSXzkdfW-HN2y5qgmllo_-L315dwYISTPMfmCurr5UZdw778XM9Wyxu3dL4BvQPAPQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH4MFdSD001x_szBm3ZrmzZpjyKODufYoYOxS0nSFCZzk_0Q3F9vkrZjggjeSpOU8l7b973mfe8DuAtSQYWLfUthV6oSFGlbzPewxb2Aq2hMHc5Mn9ku7fWC4TDsV-Bhw4WRUpriM9nUh2YvP52Jlf5V1qKhg4km8u5q5ayCrbXZM_B8Jye-EWwRapOSImOHrbg9GI10HRdtuiRUmCD8EYa2dFVMWGlX_3dDx3BUwEf0mPv7BCpyWoNqKc2Aije1BodbfQbrEBma7Yy_5V831M-Lst7VIFKgFelk1HJRNNZsZCOOMkHt1Xr9hTolHxDFcykXpzBoP8dPkVVIKFgCO87SIqkrFCTyMVGmFyHOsC2YyniwJ7nIUtfNQs_zGcukbgiqhynJcOZzBVSYm_r4DHams6k8B5Rlunwm5ZQoxKgSkYA5kki1iHFhE84a4JQWTUTRX1zLXEwSk2fYYWK8kGgvJIUXGnC_WfORd9f4c3Zdu2Azs7D-xe-nb2E_il-7SbfTe7mEA3WhIK-4uYKd5Xwlr2FPfC7Hi_mNeYy-Ae1zw4Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiobjective+Programming+for+Type-2+Hierarchical+Fuzzy+Inference+Trees&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Ojha%2C+Varun+Kumar&rft.au=Snasel%2C+Vaclav&rft.au=Abraham%2C+Ajith&rft.date=2018-04-01&rft.pub=IEEE&rft.issn=1063-6706&rft.volume=26&rft.issue=2&rft.spage=915&rft.epage=936&rft_id=info:doi/10.1109%2FTFUZZ.2017.2698399&rft.externalDocID=7913611
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon