A hybrid machine learning algorithm for studying magnetized nanofluid flow containing gyrotactic microorganisms via a vertically inclined stretching surface
The novelty of the present work is to acquire continuous functions as solutions rather than the discrete ones that traditional numerical methods generally produce and to minimize simulation times and higher computation costs that are the fundamental barriers to employing any numerical method. In thi...
Uloženo v:
| Vydáno v: | International journal for numerical methods in biomedical engineering Ročník 40; číslo 1; s. e3780 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Wiley Subscription Services, Inc
01.01.2024
|
| Témata: | |
| ISSN: | 2040-7939, 2040-7947, 2040-7947 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The novelty of the present work is to acquire continuous functions as solutions rather than the discrete ones that traditional numerical methods generally produce and to minimize simulation times and higher computation costs that are the fundamental barriers to employing any numerical method. In this study, a novel hybrid finite element‐based machine learning algorithm utilizing the Levenberg–Marquardt scheme with backpropagation in a neural network (LMBNN) is presented to analyze the nanofluid flow in the presence of magnetohydrodynamics and gyrotactic microorganisms through a vertically inclined stretching surface in a porous medium. Finite Element Method is used to generate the minimum reference dataset for LMBNN by varying six flow parameters in the form of six scenarios. Surface plots are utilized to understand how these scenarios affect velocity, temperature, concentration of nanoparticles, and density of motile microorganisms. Regression analysis, error histogram analysis, and fitness curves based on mean square error all support the LMBNN's effectiveness and dependability. Results reveal that temperature increases with the rise in Brownian motion and thermophoresis parameter, whereas the reverse trend has been noticed for Prandtl number. The motile microorganism density number decreases with the rise in Prandtl numbers but improves with the porosity parameter. |
|---|---|
| AbstractList | The novelty of the present work is to acquire continuous functions as solutions rather than the discrete ones that traditional numerical methods generally produce and to minimize simulation times and higher computation costs that are the fundamental barriers to employing any numerical method. In this study, a novel hybrid finite element-based machine learning algorithm utilizing the Levenberg-Marquardt scheme with backpropagation in a neural network (LMBNN) is presented to analyze the nanofluid flow in the presence of magnetohydrodynamics and gyrotactic microorganisms through a vertically inclined stretching surface in a porous medium. Finite Element Method is used to generate the minimum reference dataset for LMBNN by varying six flow parameters in the form of six scenarios. Surface plots are utilized to understand how these scenarios affect velocity, temperature, concentration of nanoparticles, and density of motile microorganisms. Regression analysis, error histogram analysis, and fitness curves based on mean square error all support the LMBNN's effectiveness and dependability. Results reveal that temperature increases with the rise in Brownian motion and thermophoresis parameter, whereas the reverse trend has been noticed for Prandtl number. The motile microorganism density number decreases with the rise in Prandtl numbers but improves with the porosity parameter. The novelty of the present work is to acquire continuous functions as solutions rather than the discrete ones that traditional numerical methods generally produce and to minimize simulation times and higher computation costs that are the fundamental barriers to employing any numerical method. In this study, a novel hybrid finite element-based machine learning algorithm utilizing the Levenberg-Marquardt scheme with backpropagation in a neural network (LMBNN) is presented to analyze the nanofluid flow in the presence of magnetohydrodynamics and gyrotactic microorganisms through a vertically inclined stretching surface in a porous medium. Finite Element Method is used to generate the minimum reference dataset for LMBNN by varying six flow parameters in the form of six scenarios. Surface plots are utilized to understand how these scenarios affect velocity, temperature, concentration of nanoparticles, and density of motile microorganisms. Regression analysis, error histogram analysis, and fitness curves based on mean square error all support the LMBNN's effectiveness and dependability. Results reveal that temperature increases with the rise in Brownian motion and thermophoresis parameter, whereas the reverse trend has been noticed for Prandtl number. The motile microorganism density number decreases with the rise in Prandtl numbers but improves with the porosity parameter.The novelty of the present work is to acquire continuous functions as solutions rather than the discrete ones that traditional numerical methods generally produce and to minimize simulation times and higher computation costs that are the fundamental barriers to employing any numerical method. In this study, a novel hybrid finite element-based machine learning algorithm utilizing the Levenberg-Marquardt scheme with backpropagation in a neural network (LMBNN) is presented to analyze the nanofluid flow in the presence of magnetohydrodynamics and gyrotactic microorganisms through a vertically inclined stretching surface in a porous medium. Finite Element Method is used to generate the minimum reference dataset for LMBNN by varying six flow parameters in the form of six scenarios. Surface plots are utilized to understand how these scenarios affect velocity, temperature, concentration of nanoparticles, and density of motile microorganisms. Regression analysis, error histogram analysis, and fitness curves based on mean square error all support the LMBNN's effectiveness and dependability. Results reveal that temperature increases with the rise in Brownian motion and thermophoresis parameter, whereas the reverse trend has been noticed for Prandtl number. The motile microorganism density number decreases with the rise in Prandtl numbers but improves with the porosity parameter. |
| Author | Chandra, Priyanka Das, Raja |
| Author_xml | – sequence: 1 givenname: Priyanka orcidid: 0009-0005-1706-5841 surname: Chandra fullname: Chandra, Priyanka organization: Department of Mathematics, School of Advanced Sciences Vellore Institute of Technology Vellore Tamil Nadu India – sequence: 2 givenname: Raja orcidid: 0000-0001-9945-5969 surname: Das fullname: Das, Raja organization: Department of Mathematics, School of Advanced Sciences Vellore Institute of Technology Vellore Tamil Nadu India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37803873$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkc1u1DAUhS1URMtQiSdAltiwmcGOncReVhUUpEpsYB3dOHbGlX-K7RSFZ-Fh8XTaWYA3tq6_c-7Vua_RWYhBI_SWkh0lpPmogt-xXpAX6KIhnGx7yfuz05vJc3SZ8x2pp5FS9uwVOj_gTPTsAv25wvt1THbCHtTeBo2dhhRsmDG4OSZb9h6bmHAuy7Qeyh7moIv9rSccIETjlio2Lv7CKoYC9lE7rykWUMUq7K1KMaYZgs0-4wcLGPCDTvUPnFuxDcrVvlPtkHQ5zDDjvCQDSr9BLw24rC-f7g368fnT9-sv29tvN1-vr263ilFath1IPRExQmt6zXnbik4CSDERI6imEjjvKBctbbhpmeGTNKPWYqRklLQljG3Qh6PvfYo_F53L4G1W2jkIOi55aETPm47JTlT0_T_oXVxSqNMNjaQ9pV1bHTfo3RO1jF5Pw32yHtI6POdegd0RqNnknLQZlC1QbE0wgXUDJcNht0Pd7VF0GvEkePb8D_0LRKunAQ |
| CitedBy_id | crossref_primary_10_1615_JPorMedia_2025057165 crossref_primary_10_1016_j_cmpb_2025_108776 crossref_primary_10_1016_j_rechem_2025_102551 crossref_primary_10_1007_s12530_024_09623_3 crossref_primary_10_1088_1361_6528_add304 crossref_primary_10_1515_htmp_2025_0080 crossref_primary_10_1108_MMMS_07_2024_0209 crossref_primary_10_1142_S0219519425300029 crossref_primary_10_1080_10447318_2025_2462753 crossref_primary_10_1007_s44379_025_00023_1 |
| Cites_doi | 10.24200/SCI.2021.56459.4734 10.3390/tropicalmed7120424 10.1016/j.tsep.2019.04.006 10.1007/S13369‐020‐04736‐8 10.1016/j.molliq.2016.12.039 10.1166/JON.2018.1480 10.1016/j.ijthermalsci.2014.03.009 10.1002/fld.5229 10.1140/EPJP/S13360‐020‐00417‐5 10.1080/15502287.2015.1048385 10.1007/S40430‐022‐03451‐9/FIGURES/14 10.1007/s00521‐020‐05355‐y 10.1007/S00521‐016‐2400‐Y 10.1115/1.4049844 10.1080/10407790.2022.2163940 10.3390/SYM12010120 10.1016/j.camwa.2012.04.014 10.1615/COMPUTTHERMALSCIEN.2021039113 10.1002/htj.21603 10.1115/1.2150834 10.1016/j.molliq.2016.06.047 10.1108/WJE‐04‐2018‐0144 10.1140/epjp/s13360‐022‐02682‐y 10.3390/SYM13030373 10.1111/exsy.13105 10.1002/1097-0290(20010205)72:3<353::AID-BIT13>3.0.CO;2-U 10.1016/j.cmpb.2021.105973 10.1140/epjp/s13360‐019‐00066‐3 10.1002/aic.690070231 10.3389/FPHY.2019.00139/XML/NLM 10.1016/j.physa.2019.123138 10.1016/J.ASEJ.2022.101690 10.30492/ijcce.2020.120121.3927 10.2166/ws.2020.304 |
| ContentType | Journal Article |
| Copyright | 2023 John Wiley & Sons Ltd. 2024 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2023 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1002/cnm.3780 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Civil Engineering Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 2040-7947 |
| ExternalDocumentID | 37803873 10_1002_cnm_3780 |
| Genre | Journal Article |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 4.4 50Z 51W 51X 52N 52O 52P 52S 52T 52U 52W 52X 53G 66C 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCUV ABDBF ABJNI ACAHQ ACBWZ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACRPL ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ ML~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O8X O9- P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WXSBR WYISQ XG1 XV2 ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN CGR CUY CVF ECM EIF NPM RWI WRC 1OB 7QO 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c311t-6a9ed08ba5f7e4455869aa98d0f81e19a4461485124f53f4d9fbee8b10b915033 |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001076462400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2040-7939 2040-7947 |
| IngestDate | Sun Nov 09 12:48:12 EST 2025 Wed Aug 13 04:59:02 EDT 2025 Wed Feb 19 02:09:10 EST 2025 Tue Nov 18 22:12:34 EST 2025 Sat Nov 29 03:05:20 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Levenberg-Marquardt technique vertically inclined stretching surface nanoparticles Finite Element Method porous medium gyrotactic microorganisms |
| Language | English |
| License | 2023 John Wiley & Sons Ltd. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c311t-6a9ed08ba5f7e4455869aa98d0f81e19a4461485124f53f4d9fbee8b10b915033 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0005-1706-5841 0000-0001-9945-5969 |
| PMID | 37803873 |
| PQID | 2917116550 |
| PQPubID | 2034586 |
| ParticipantIDs | proquest_miscellaneous_2874263968 proquest_journals_2917116550 pubmed_primary_37803873 crossref_citationtrail_10_1002_cnm_3780 crossref_primary_10_1002_cnm_3780 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-00 2024-Jan 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-00 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Chichester |
| PublicationTitle | International journal for numerical methods in biomedical engineering |
| PublicationTitleAlternate | Int J Numer Method Biomed Eng |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_31_1 Balamurugan M (e_1_2_11_28_1) 2012 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_35_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 Sobamowo MG (e_1_2_11_24_1) 2019; 138 e_1_2_11_2_1 Mass AK‐IC in H and, 2011 U (e_1_2_11_3_1) 2001 Choi SUS (e_1_2_11_12_1) 1995 e_1_2_11_21_1 e_1_2_11_20_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_41_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_15_1 e_1_2_11_37_1 e_1_2_11_38_1 e_1_2_11_39_1 e_1_2_11_19_1 Elbashbeshy EMA (e_1_2_11_18_1) 2011; 6 |
| References_xml | – ident: e_1_2_11_21_1 doi: 10.24200/SCI.2021.56459.4734 – ident: e_1_2_11_34_1 doi: 10.3390/tropicalmed7120424 – ident: e_1_2_11_25_1 doi: 10.1016/j.tsep.2019.04.006 – ident: e_1_2_11_32_1 doi: 10.1007/S13369‐020‐04736‐8 – ident: e_1_2_11_10_1 doi: 10.1016/j.molliq.2016.12.039 – ident: e_1_2_11_19_1 doi: 10.1166/JON.2018.1480 – ident: e_1_2_11_9_1 doi: 10.1016/j.ijthermalsci.2014.03.009 – ident: e_1_2_11_33_1 doi: 10.1002/fld.5229 – ident: e_1_2_11_37_1 doi: 10.1140/EPJP/S13360‐020‐00417‐5 – ident: e_1_2_11_16_1 doi: 10.1080/15502287.2015.1048385 – year: 2012 ident: e_1_2_11_28_1 article-title: Application of particle swarm optimization for maximum power point tracking in PV system publication-title: 2016 3rd International Conference on Electrical Energy Systems (ICEES) – ident: e_1_2_11_29_1 doi: 10.1007/S40430‐022‐03451‐9/FIGURES/14 – ident: e_1_2_11_38_1 doi: 10.1007/s00521‐020‐05355‐y – start-page: 99 volume-title: Enhancing Thermal Conductivity of Fluids with Nanoparticles year: 1995 ident: e_1_2_11_12_1 – ident: e_1_2_11_31_1 doi: 10.1007/S00521‐016‐2400‐Y – ident: e_1_2_11_6_1 doi: 10.1115/1.4049844 – ident: e_1_2_11_8_1 doi: 10.1080/10407790.2022.2163940 – ident: e_1_2_11_14_1 doi: 10.3390/SYM12010120 – ident: e_1_2_11_41_1 doi: 10.1016/j.camwa.2012.04.014 – ident: e_1_2_11_7_1 doi: 10.1615/COMPUTTHERMALSCIEN.2021039113 – ident: e_1_2_11_5_1 doi: 10.1002/htj.21603 – ident: e_1_2_11_13_1 doi: 10.1115/1.2150834 – ident: e_1_2_11_4_1 doi: 10.1016/j.molliq.2016.06.047 – ident: e_1_2_11_23_1 doi: 10.1108/WJE‐04‐2018‐0144 – ident: e_1_2_11_39_1 doi: 10.1140/epjp/s13360‐022‐02682‐y – ident: e_1_2_11_26_1 doi: 10.3390/SYM13030373 – ident: e_1_2_11_36_1 doi: 10.1111/exsy.13105 – ident: e_1_2_11_2_1 doi: 10.1002/1097-0290(20010205)72:3<353::AID-BIT13>3.0.CO;2-U – ident: e_1_2_11_35_1 doi: 10.1016/j.cmpb.2021.105973 – ident: e_1_2_11_11_1 – volume: 138 start-page: 1 year: 2019 ident: e_1_2_11_24_1 article-title: A study on the effects of inclined magnetic field, flow medium porosity and thermal radiation on free convection of casson nanofluid over a vertical publication-title: World Sci News – ident: e_1_2_11_30_1 doi: 10.1140/epjp/s13360‐019‐00066‐3 – ident: e_1_2_11_17_1 doi: 10.1002/aic.690070231 – ident: e_1_2_11_22_1 doi: 10.3389/FPHY.2019.00139/XML/NLM – ident: e_1_2_11_15_1 doi: 10.1016/j.physa.2019.123138 – ident: e_1_2_11_40_1 doi: 10.1016/J.ASEJ.2022.101690 – volume-title: Bio‐thermal Convection Induced by Two Different Species of Microorganisms year: 2001 ident: e_1_2_11_3_1 – volume: 6 start-page: 1540 issue: 6 year: 2011 ident: e_1_2_11_18_1 article-title: Effects of thermal radiation and magnetic field on unsteady mixed convection flow and heat transfer over a porous stretching surface in the presence of internal heat generation/absorption publication-title: Int J Phys Sci – ident: e_1_2_11_20_1 doi: 10.30492/ijcce.2020.120121.3927 – ident: e_1_2_11_27_1 doi: 10.2166/ws.2020.304 |
| SSID | ssj0000299973 |
| Score | 2.4082904 |
| Snippet | The novelty of the present work is to acquire continuous functions as solutions rather than the discrete ones that traditional numerical methods generally... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | e3780 |
| SubjectTerms | Algorithms Back propagation networks Brownian motion Computer Simulation Continuity (mathematics) Density Error analysis Finite element method Fluid flow Hot Temperature Hydrodynamics Learning algorithms Machine learning Magnetohydrodynamics Mathematical models Microorganisms Nanofluids Nanoparticles Neural networks Numerical analysis Numerical methods Parameters Porosity Porous media Prandtl number Production methods Regression analysis Stretching Temperature Thermophoresis |
| Title | A hybrid machine learning algorithm for studying magnetized nanofluid flow containing gyrotactic microorganisms via a vertically inclined stretching surface |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37803873 https://www.proquest.com/docview/2917116550 https://www.proquest.com/docview/2874263968 |
| Volume | 40 |
| WOSCitedRecordID | wos001076462400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2040-7947 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000299973 issn: 2040-7939 databaseCode: DRFUL dateStart: 20100101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwGLW6DqG9cL8UxmQkJB6iQq61_VgxJh7QNE2b1LfISeyukDhVkpaV38Jf4D_iS5y0g0nwwEtU2c5FPSe-5fvOAeBNgpCbEm2Tmvpqt4qPE478cabGGsJwgDNXm02g01M8m5GzweCnzYVZ50gIfH1Nlv8ValkmwVaps_8Ad3dRWSB_S9DlUcIuj38F_NS52qg0LKfQcZLMGkPMHZrPy2rRXBU6tlALy6rigs4FaxbfVSAAFSXPV_JknpffdBy7cZBw5puqbHRClVOoGD7jBlUXtbNWaV2OtnWWeOcqj1ClW8qrqTyUxsRq1quK03Qn7Gh3L9IqWKgnEyvzGSlv_a11yK7RCdClrNdQ3IpOEJm2THLOqsWGiq_dcHNsUtbO6Re6vcXhh1tbHEx3hb6OeyRGm9P220bmaYefphNmATLuUL8ND0ZuNhXFu5tNJIbLQjNC1QTY-KvckOK2VXtg30dyJTYE-8fnJ5efu009Vw7uBAVW5Nj139t7HYC79uzdGdAtyxo9vbl4AO616xI4NXx6CAZMPAL32zUKbEeA-jH4MYWGXrClF7T0gh29oAQRWnrBnl6woxdU9II9vWBPL7hLLyjpBSns6QUtvWBPL9jS6wm4PPl48eHTuHX4GKeB5zXjCSUsc3FCI45YGEYRnhBKiewfOPaYR2gYKqFaOSkNeRTwMCM8YQwnnpsQT32AfwqGohTsOYBaSA4lvo-SLAzkLItjVw70LuJ8kjDqjsBb-6_HaSt_r1xY8tgId_uxhCpWGI3A667l0ki-_KHNoQUubl-QOvaJh5SaVaQu0VXL7lp9g6OClSvZBiNlkUAmeASeGcC7m1iCvLi15iU46N-PQzBsqhV7Be6k62ZRV0dgD83wUcvJX7B1yMI |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+machine+learning+algorithm+for+studying+magnetized+nanofluid+flow+containing+gyrotactic+microorganisms+via+a+vertically+inclined+stretching+surface&rft.jtitle=International+journal+for+numerical+methods+in+biomedical+engineering&rft.au=Chandra%2C+Priyanka&rft.au=Das%2C+Raja&rft.date=2024-01-01&rft.eissn=2040-7947&rft.volume=40&rft.issue=1&rft.spage=e3780&rft_id=info:doi/10.1002%2Fcnm.3780&rft_id=info%3Apmid%2F37803873&rft.externalDocID=37803873 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-7939&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-7939&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-7939&client=summon |