A hybrid machine learning algorithm for studying magnetized nanofluid flow containing gyrotactic microorganisms via a vertically inclined stretching surface

The novelty of the present work is to acquire continuous functions as solutions rather than the discrete ones that traditional numerical methods generally produce and to minimize simulation times and higher computation costs that are the fundamental barriers to employing any numerical method. In thi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal for numerical methods in biomedical engineering Ročník 40; číslo 1; s. e3780
Hlavní autoři: Chandra, Priyanka, Das, Raja
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Wiley Subscription Services, Inc 01.01.2024
Témata:
ISSN:2040-7939, 2040-7947, 2040-7947
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The novelty of the present work is to acquire continuous functions as solutions rather than the discrete ones that traditional numerical methods generally produce and to minimize simulation times and higher computation costs that are the fundamental barriers to employing any numerical method. In this study, a novel hybrid finite element‐based machine learning algorithm utilizing the Levenberg–Marquardt scheme with backpropagation in a neural network (LMBNN) is presented to analyze the nanofluid flow in the presence of magnetohydrodynamics and gyrotactic microorganisms through a vertically inclined stretching surface in a porous medium. Finite Element Method is used to generate the minimum reference dataset for LMBNN by varying six flow parameters in the form of six scenarios. Surface plots are utilized to understand how these scenarios affect velocity, temperature, concentration of nanoparticles, and density of motile microorganisms. Regression analysis, error histogram analysis, and fitness curves based on mean square error all support the LMBNN's effectiveness and dependability. Results reveal that temperature increases with the rise in Brownian motion and thermophoresis parameter, whereas the reverse trend has been noticed for Prandtl number. The motile microorganism density number decreases with the rise in Prandtl numbers but improves with the porosity parameter.
AbstractList The novelty of the present work is to acquire continuous functions as solutions rather than the discrete ones that traditional numerical methods generally produce and to minimize simulation times and higher computation costs that are the fundamental barriers to employing any numerical method. In this study, a novel hybrid finite element-based machine learning algorithm utilizing the Levenberg-Marquardt scheme with backpropagation in a neural network (LMBNN) is presented to analyze the nanofluid flow in the presence of magnetohydrodynamics and gyrotactic microorganisms through a vertically inclined stretching surface in a porous medium. Finite Element Method is used to generate the minimum reference dataset for LMBNN by varying six flow parameters in the form of six scenarios. Surface plots are utilized to understand how these scenarios affect velocity, temperature, concentration of nanoparticles, and density of motile microorganisms. Regression analysis, error histogram analysis, and fitness curves based on mean square error all support the LMBNN's effectiveness and dependability. Results reveal that temperature increases with the rise in Brownian motion and thermophoresis parameter, whereas the reverse trend has been noticed for Prandtl number. The motile microorganism density number decreases with the rise in Prandtl numbers but improves with the porosity parameter.
The novelty of the present work is to acquire continuous functions as solutions rather than the discrete ones that traditional numerical methods generally produce and to minimize simulation times and higher computation costs that are the fundamental barriers to employing any numerical method. In this study, a novel hybrid finite element-based machine learning algorithm utilizing the Levenberg-Marquardt scheme with backpropagation in a neural network (LMBNN) is presented to analyze the nanofluid flow in the presence of magnetohydrodynamics and gyrotactic microorganisms through a vertically inclined stretching surface in a porous medium. Finite Element Method is used to generate the minimum reference dataset for LMBNN by varying six flow parameters in the form of six scenarios. Surface plots are utilized to understand how these scenarios affect velocity, temperature, concentration of nanoparticles, and density of motile microorganisms. Regression analysis, error histogram analysis, and fitness curves based on mean square error all support the LMBNN's effectiveness and dependability. Results reveal that temperature increases with the rise in Brownian motion and thermophoresis parameter, whereas the reverse trend has been noticed for Prandtl number. The motile microorganism density number decreases with the rise in Prandtl numbers but improves with the porosity parameter.The novelty of the present work is to acquire continuous functions as solutions rather than the discrete ones that traditional numerical methods generally produce and to minimize simulation times and higher computation costs that are the fundamental barriers to employing any numerical method. In this study, a novel hybrid finite element-based machine learning algorithm utilizing the Levenberg-Marquardt scheme with backpropagation in a neural network (LMBNN) is presented to analyze the nanofluid flow in the presence of magnetohydrodynamics and gyrotactic microorganisms through a vertically inclined stretching surface in a porous medium. Finite Element Method is used to generate the minimum reference dataset for LMBNN by varying six flow parameters in the form of six scenarios. Surface plots are utilized to understand how these scenarios affect velocity, temperature, concentration of nanoparticles, and density of motile microorganisms. Regression analysis, error histogram analysis, and fitness curves based on mean square error all support the LMBNN's effectiveness and dependability. Results reveal that temperature increases with the rise in Brownian motion and thermophoresis parameter, whereas the reverse trend has been noticed for Prandtl number. The motile microorganism density number decreases with the rise in Prandtl numbers but improves with the porosity parameter.
Author Chandra, Priyanka
Das, Raja
Author_xml – sequence: 1
  givenname: Priyanka
  orcidid: 0009-0005-1706-5841
  surname: Chandra
  fullname: Chandra, Priyanka
  organization: Department of Mathematics, School of Advanced Sciences Vellore Institute of Technology Vellore Tamil Nadu India
– sequence: 2
  givenname: Raja
  orcidid: 0000-0001-9945-5969
  surname: Das
  fullname: Das, Raja
  organization: Department of Mathematics, School of Advanced Sciences Vellore Institute of Technology Vellore Tamil Nadu India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37803873$$D View this record in MEDLINE/PubMed
BookMark eNplkc1u1DAUhS1URMtQiSdAltiwmcGOncReVhUUpEpsYB3dOHbGlX-K7RSFZ-Fh8XTaWYA3tq6_c-7Vua_RWYhBI_SWkh0lpPmogt-xXpAX6KIhnGx7yfuz05vJc3SZ8x2pp5FS9uwVOj_gTPTsAv25wvt1THbCHtTeBo2dhhRsmDG4OSZb9h6bmHAuy7Qeyh7moIv9rSccIETjlio2Lv7CKoYC9lE7rykWUMUq7K1KMaYZgs0-4wcLGPCDTvUPnFuxDcrVvlPtkHQ5zDDjvCQDSr9BLw24rC-f7g368fnT9-sv29tvN1-vr263ilFath1IPRExQmt6zXnbik4CSDERI6imEjjvKBctbbhpmeGTNKPWYqRklLQljG3Qh6PvfYo_F53L4G1W2jkIOi55aETPm47JTlT0_T_oXVxSqNMNjaQ9pV1bHTfo3RO1jF5Pw32yHtI6POdegd0RqNnknLQZlC1QbE0wgXUDJcNht0Pd7VF0GvEkePb8D_0LRKunAQ
CitedBy_id crossref_primary_10_1615_JPorMedia_2025057165
crossref_primary_10_1016_j_cmpb_2025_108776
crossref_primary_10_1016_j_rechem_2025_102551
crossref_primary_10_1007_s12530_024_09623_3
crossref_primary_10_1088_1361_6528_add304
crossref_primary_10_1515_htmp_2025_0080
crossref_primary_10_1108_MMMS_07_2024_0209
crossref_primary_10_1142_S0219519425300029
crossref_primary_10_1080_10447318_2025_2462753
crossref_primary_10_1007_s44379_025_00023_1
Cites_doi 10.24200/SCI.2021.56459.4734
10.3390/tropicalmed7120424
10.1016/j.tsep.2019.04.006
10.1007/S13369‐020‐04736‐8
10.1016/j.molliq.2016.12.039
10.1166/JON.2018.1480
10.1016/j.ijthermalsci.2014.03.009
10.1002/fld.5229
10.1140/EPJP/S13360‐020‐00417‐5
10.1080/15502287.2015.1048385
10.1007/S40430‐022‐03451‐9/FIGURES/14
10.1007/s00521‐020‐05355‐y
10.1007/S00521‐016‐2400‐Y
10.1115/1.4049844
10.1080/10407790.2022.2163940
10.3390/SYM12010120
10.1016/j.camwa.2012.04.014
10.1615/COMPUTTHERMALSCIEN.2021039113
10.1002/htj.21603
10.1115/1.2150834
10.1016/j.molliq.2016.06.047
10.1108/WJE‐04‐2018‐0144
10.1140/epjp/s13360‐022‐02682‐y
10.3390/SYM13030373
10.1111/exsy.13105
10.1002/1097-0290(20010205)72:3<353::AID-BIT13>3.0.CO;2-U
10.1016/j.cmpb.2021.105973
10.1140/epjp/s13360‐019‐00066‐3
10.1002/aic.690070231
10.3389/FPHY.2019.00139/XML/NLM
10.1016/j.physa.2019.123138
10.1016/J.ASEJ.2022.101690
10.30492/ijcce.2020.120121.3927
10.2166/ws.2020.304
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/cnm.3780
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Civil Engineering Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2040-7947
ExternalDocumentID 37803873
10_1002_cnm_3780
Genre Journal Article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
4.4
50Z
51W
51X
52N
52O
52P
52S
52T
52U
52W
52X
53G
66C
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCUV
ABDBF
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
ML~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O8X
O9-
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WXSBR
WYISQ
XG1
XV2
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
CGR
CUY
CVF
ECM
EIF
NPM
RWI
WRC
1OB
7QO
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c311t-6a9ed08ba5f7e4455869aa98d0f81e19a4461485124f53f4d9fbee8b10b915033
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001076462400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2040-7939
2040-7947
IngestDate Sun Nov 09 12:48:12 EST 2025
Wed Aug 13 04:59:02 EDT 2025
Wed Feb 19 02:09:10 EST 2025
Tue Nov 18 22:12:34 EST 2025
Sat Nov 29 03:05:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Levenberg-Marquardt technique
vertically inclined stretching surface
nanoparticles
Finite Element Method
porous medium
gyrotactic microorganisms
Language English
License 2023 John Wiley & Sons Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c311t-6a9ed08ba5f7e4455869aa98d0f81e19a4461485124f53f4d9fbee8b10b915033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0005-1706-5841
0000-0001-9945-5969
PMID 37803873
PQID 2917116550
PQPubID 2034586
ParticipantIDs proquest_miscellaneous_2874263968
proquest_journals_2917116550
pubmed_primary_37803873
crossref_citationtrail_10_1002_cnm_3780
crossref_primary_10_1002_cnm_3780
PublicationCentury 2000
PublicationDate 2024-01-00
2024-Jan
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-00
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Chichester
PublicationTitle International journal for numerical methods in biomedical engineering
PublicationTitleAlternate Int J Numer Method Biomed Eng
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
Balamurugan M (e_1_2_11_28_1) 2012
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
Sobamowo MG (e_1_2_11_24_1) 2019; 138
e_1_2_11_2_1
Mass AK‐IC in H and, 2011 U (e_1_2_11_3_1) 2001
Choi SUS (e_1_2_11_12_1) 1995
e_1_2_11_21_1
e_1_2_11_20_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_41_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_37_1
e_1_2_11_38_1
e_1_2_11_39_1
e_1_2_11_19_1
Elbashbeshy EMA (e_1_2_11_18_1) 2011; 6
References_xml – ident: e_1_2_11_21_1
  doi: 10.24200/SCI.2021.56459.4734
– ident: e_1_2_11_34_1
  doi: 10.3390/tropicalmed7120424
– ident: e_1_2_11_25_1
  doi: 10.1016/j.tsep.2019.04.006
– ident: e_1_2_11_32_1
  doi: 10.1007/S13369‐020‐04736‐8
– ident: e_1_2_11_10_1
  doi: 10.1016/j.molliq.2016.12.039
– ident: e_1_2_11_19_1
  doi: 10.1166/JON.2018.1480
– ident: e_1_2_11_9_1
  doi: 10.1016/j.ijthermalsci.2014.03.009
– ident: e_1_2_11_33_1
  doi: 10.1002/fld.5229
– ident: e_1_2_11_37_1
  doi: 10.1140/EPJP/S13360‐020‐00417‐5
– ident: e_1_2_11_16_1
  doi: 10.1080/15502287.2015.1048385
– year: 2012
  ident: e_1_2_11_28_1
  article-title: Application of particle swarm optimization for maximum power point tracking in PV system
  publication-title: 2016 3rd International Conference on Electrical Energy Systems (ICEES)
– ident: e_1_2_11_29_1
  doi: 10.1007/S40430‐022‐03451‐9/FIGURES/14
– ident: e_1_2_11_38_1
  doi: 10.1007/s00521‐020‐05355‐y
– start-page: 99
  volume-title: Enhancing Thermal Conductivity of Fluids with Nanoparticles
  year: 1995
  ident: e_1_2_11_12_1
– ident: e_1_2_11_31_1
  doi: 10.1007/S00521‐016‐2400‐Y
– ident: e_1_2_11_6_1
  doi: 10.1115/1.4049844
– ident: e_1_2_11_8_1
  doi: 10.1080/10407790.2022.2163940
– ident: e_1_2_11_14_1
  doi: 10.3390/SYM12010120
– ident: e_1_2_11_41_1
  doi: 10.1016/j.camwa.2012.04.014
– ident: e_1_2_11_7_1
  doi: 10.1615/COMPUTTHERMALSCIEN.2021039113
– ident: e_1_2_11_5_1
  doi: 10.1002/htj.21603
– ident: e_1_2_11_13_1
  doi: 10.1115/1.2150834
– ident: e_1_2_11_4_1
  doi: 10.1016/j.molliq.2016.06.047
– ident: e_1_2_11_23_1
  doi: 10.1108/WJE‐04‐2018‐0144
– ident: e_1_2_11_39_1
  doi: 10.1140/epjp/s13360‐022‐02682‐y
– ident: e_1_2_11_26_1
  doi: 10.3390/SYM13030373
– ident: e_1_2_11_36_1
  doi: 10.1111/exsy.13105
– ident: e_1_2_11_2_1
  doi: 10.1002/1097-0290(20010205)72:3<353::AID-BIT13>3.0.CO;2-U
– ident: e_1_2_11_35_1
  doi: 10.1016/j.cmpb.2021.105973
– ident: e_1_2_11_11_1
– volume: 138
  start-page: 1
  year: 2019
  ident: e_1_2_11_24_1
  article-title: A study on the effects of inclined magnetic field, flow medium porosity and thermal radiation on free convection of casson nanofluid over a vertical
  publication-title: World Sci News
– ident: e_1_2_11_30_1
  doi: 10.1140/epjp/s13360‐019‐00066‐3
– ident: e_1_2_11_17_1
  doi: 10.1002/aic.690070231
– ident: e_1_2_11_22_1
  doi: 10.3389/FPHY.2019.00139/XML/NLM
– ident: e_1_2_11_15_1
  doi: 10.1016/j.physa.2019.123138
– ident: e_1_2_11_40_1
  doi: 10.1016/J.ASEJ.2022.101690
– volume-title: Bio‐thermal Convection Induced by Two Different Species of Microorganisms
  year: 2001
  ident: e_1_2_11_3_1
– volume: 6
  start-page: 1540
  issue: 6
  year: 2011
  ident: e_1_2_11_18_1
  article-title: Effects of thermal radiation and magnetic field on unsteady mixed convection flow and heat transfer over a porous stretching surface in the presence of internal heat generation/absorption
  publication-title: Int J Phys Sci
– ident: e_1_2_11_20_1
  doi: 10.30492/ijcce.2020.120121.3927
– ident: e_1_2_11_27_1
  doi: 10.2166/ws.2020.304
SSID ssj0000299973
Score 2.4082904
Snippet The novelty of the present work is to acquire continuous functions as solutions rather than the discrete ones that traditional numerical methods generally...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage e3780
SubjectTerms Algorithms
Back propagation networks
Brownian motion
Computer Simulation
Continuity (mathematics)
Density
Error analysis
Finite element method
Fluid flow
Hot Temperature
Hydrodynamics
Learning algorithms
Machine learning
Magnetohydrodynamics
Mathematical models
Microorganisms
Nanofluids
Nanoparticles
Neural networks
Numerical analysis
Numerical methods
Parameters
Porosity
Porous media
Prandtl number
Production methods
Regression analysis
Stretching
Temperature
Thermophoresis
Title A hybrid machine learning algorithm for studying magnetized nanofluid flow containing gyrotactic microorganisms via a vertically inclined stretching surface
URI https://www.ncbi.nlm.nih.gov/pubmed/37803873
https://www.proquest.com/docview/2917116550
https://www.proquest.com/docview/2874263968
Volume 40
WOSCitedRecordID wos001076462400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2040-7947
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000299973
  issn: 2040-7939
  databaseCode: DRFUL
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwGLW6DqG9cL8UxmQkJB6iQq61_VgxJh7QNE2b1LfISeyukDhVkpaV38Jf4D_iS5y0g0nwwEtU2c5FPSe-5fvOAeBNgpCbEm2Tmvpqt4qPE478cabGGsJwgDNXm02g01M8m5GzweCnzYVZ50gIfH1Nlv8ValkmwVaps_8Ad3dRWSB_S9DlUcIuj38F_NS52qg0LKfQcZLMGkPMHZrPy2rRXBU6tlALy6rigs4FaxbfVSAAFSXPV_JknpffdBy7cZBw5puqbHRClVOoGD7jBlUXtbNWaV2OtnWWeOcqj1ClW8qrqTyUxsRq1quK03Qn7Gh3L9IqWKgnEyvzGSlv_a11yK7RCdClrNdQ3IpOEJm2THLOqsWGiq_dcHNsUtbO6Re6vcXhh1tbHEx3hb6OeyRGm9P220bmaYefphNmATLuUL8ND0ZuNhXFu5tNJIbLQjNC1QTY-KvckOK2VXtg30dyJTYE-8fnJ5efu009Vw7uBAVW5Nj139t7HYC79uzdGdAtyxo9vbl4AO616xI4NXx6CAZMPAL32zUKbEeA-jH4MYWGXrClF7T0gh29oAQRWnrBnl6woxdU9II9vWBPL7hLLyjpBSns6QUtvWBPL9jS6wm4PPl48eHTuHX4GKeB5zXjCSUsc3FCI45YGEYRnhBKiewfOPaYR2gYKqFaOSkNeRTwMCM8YQwnnpsQT32AfwqGohTsOYBaSA4lvo-SLAzkLItjVw70LuJ8kjDqjsBb-6_HaSt_r1xY8tgId_uxhCpWGI3A667l0ki-_KHNoQUubl-QOvaJh5SaVaQu0VXL7lp9g6OClSvZBiNlkUAmeASeGcC7m1iCvLi15iU46N-PQzBsqhV7Be6k62ZRV0dgD83wUcvJX7B1yMI
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+machine+learning+algorithm+for+studying+magnetized+nanofluid+flow+containing+gyrotactic+microorganisms+via+a+vertically+inclined+stretching+surface&rft.jtitle=International+journal+for+numerical+methods+in+biomedical+engineering&rft.au=Chandra%2C+Priyanka&rft.au=Das%2C+Raja&rft.date=2024-01-01&rft.eissn=2040-7947&rft.volume=40&rft.issue=1&rft.spage=e3780&rft_id=info:doi/10.1002%2Fcnm.3780&rft_id=info%3Apmid%2F37803873&rft.externalDocID=37803873
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-7939&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-7939&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-7939&client=summon