Coulombic Surface-Ion Interactions Induce Nonlinear and Chemistry-Specific Charging Kinetics

While important for many industrial applications, chemical reactions responsible for the charging of solids in water are often poorly understood. We theoretically investigate the charging kinetics of solid-liquid interfaces and find that the time-dependent equilibration of surface charge contains ke...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters Vol. 130; no. 5; p. 058001
Main Authors: Boon, W. Q., Dijkstra, M., van Roij, R.
Format: Journal Article
Language:English
Published: United States 03.02.2023
ISSN:0031-9007, 1079-7114, 1079-7114
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:While important for many industrial applications, chemical reactions responsible for the charging of solids in water are often poorly understood. We theoretically investigate the charging kinetics of solid-liquid interfaces and find that the time-dependent equilibration of surface charge contains key information not only on the reaction mechanism, but also on the valency of the reacting ions. We construct a nonlinear differential equation describing surface charging by combining chemical Langmuir kinetics and electrostatic Poisson-Boltzmann theory. Our results reveal a clear distinction between late-time (near-equilibrium) and short-time (far-from-equilibrium) relaxation rates, the ratio of which contains information on the charge valency and ad- or desorption mechanism of the charging process. Similarly, we find that single-ion reactions can be distinguished from two-ion reactions, as the latter show an inflection point during equilibration. Interestingly, such inflection points are characteristic of autocatalytic reactions, and we conclude that the Coulombic ion-surface interaction is an autocatalytic feedback mechanism.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0031-9007
1079-7114
1079-7114
DOI:10.1103/PhysRevLett.130.058001