Optimization of Oil Well Production Prediction Model Based on Inter-Attention and BiLSTM

Accurate prediction of future oil production is critical for decision-making in oil well operations. However, existing prediction models often lack precision due to the vast and complex nature of oil well data. This study proposes an oil well production prediction model based on the Inter-Attention...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronics (Basel) Ročník 14; číslo 5; s. 1004
Hlavní autoři: Meng, Xin, Liu, Xingyu, Duan, Hancong, Hu, Ze, Wang, Min
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.03.2025
Témata:
ISSN:2079-9292, 2079-9292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Accurate prediction of future oil production is critical for decision-making in oil well operations. However, existing prediction models often lack precision due to the vast and complex nature of oil well data. This study proposes an oil well production prediction model based on the Inter-Attention Mechanism (IAM) and Bidirectional Long Short-Term Memory Network (BiLSTM), optimized using a Comprehensive Search Algorithm (CSA). By incorporating the Inter-Attention Mechanism, the model enhances its capacity to model complex time-series data. The CSA, combined with Sequential Quadratic Programming (SQP) and Monotone Basin Hopping (MBH) algorithms, ensures both global and local parameter optimization. Using historical data from an oil well in Sichuan, the feasibility of the proposed model was validated, demonstrating superior accuracy and robustness compared to other prediction models and optimization algorithms.
AbstractList Accurate prediction of future oil production is critical for decision-making in oil well operations. However, existing prediction models often lack precision due to the vast and complex nature of oil well data. This study proposes an oil well production prediction model based on the Inter-Attention Mechanism (IAM) and Bidirectional Long Short-Term Memory Network (BiLSTM), optimized using a Comprehensive Search Algorithm (CSA). By incorporating the Inter-Attention Mechanism, the model enhances its capacity to model complex time-series data. The CSA, combined with Sequential Quadratic Programming (SQP) and Monotone Basin Hopping (MBH) algorithms, ensures both global and local parameter optimization. Using historical data from an oil well in Sichuan, the feasibility of the proposed model was validated, demonstrating superior accuracy and robustness compared to other prediction models and optimization algorithms.
Audience Academic
Author Meng, Xin
Duan, Hancong
Liu, Xingyu
Wang, Min
Hu, Ze
Author_xml – sequence: 1
  givenname: Xin
  orcidid: 0009-0000-0623-1350
  surname: Meng
  fullname: Meng, Xin
– sequence: 2
  givenname: Xingyu
  surname: Liu
  fullname: Liu, Xingyu
– sequence: 3
  givenname: Hancong
  surname: Duan
  fullname: Duan, Hancong
– sequence: 4
  givenname: Ze
  surname: Hu
  fullname: Hu, Ze
– sequence: 5
  givenname: Min
  surname: Wang
  fullname: Wang, Min
BookMark eNptUEtPAjEQbgwmIvILvGziebEvdtsjEB8kEEjE6G1T-jAlS4ttOeivt7AePDhzmJlvvnnkuwY9550G4BbBESEc3utWyxS8szIiCscIQnoB-hjWvOSY496f_AoMY9zBbBwRRmAfvK8Oye7tt0jWu8KbYmXb4k23bbEOXh3lGV4HrWyXLr3SbTEVUasil3OXdCgnKWl3bguniqldvGyWN-DSiDbq4W8cgNfHh83suVysnuazyaKUBKFUktPDBtNKcoQrBhXZCqmrsTLGYFJngGHGZG0g02NUSyjUlo65IgpXgnJMBuCu23sI_vOoY2p2_hhcPtkQVFekrhnlmTXqWB-i1Y11xqcgZHal91ZmPY3N-IQRxBHllOQB0g3I4GMM2jSHYPcifDUINifZm39kJz8g43kS
Cites_doi 10.1007/s10589-007-9127-8
10.1109/LSP.2021.3079850
10.1016/j.neucom.2021.03.091
10.3390/ma17143521
10.1016/j.engappai.2004.11.010
10.1109/TNNLS.2020.2979670
10.1007/s10994-023-06467-x
10.1371/journal.pone.0288044
10.1109/ICSESS47205.2019.9040779
10.1016/S1876-3804(21)60001-0
10.2118/176750-MS
10.1007/s00521-020-04849-z
10.3233/IDA-2004-8206
10.1007/s00500-016-2474-6
10.2118/229-G
10.1007/s11600-024-01388-2
10.1016/j.atech.2023.100230
10.1016/j.neunet.2021.08.030
10.1016/j.physd.2019.132306
10.3390/electronics10101163
10.1109/ACCESS.2023.3349216
10.1016/j.eswa.2022.117670
10.3390/min14070686
10.1002/anie.202218565
10.1016/j.energy.2021.121503
10.3390/electronics11121906
10.3389/feart.2022.1106622
10.1016/j.petrol.2020.107013
10.1007/s10898-024-01373-5
10.3390/s22145326
10.1109/ACCESS.2024.3468470
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics14051004
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID A831914943
10_3390_electronics14051004
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c311t-30510f246c912680d3bace65dfff23780d8288c7f08e517c0adb459d3d26a4923
IEDL.DBID PIMPY
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001444142800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Fri Jul 25 21:26:44 EDT 2025
Tue Nov 04 18:14:53 EST 2025
Sat Nov 29 07:14:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c311t-30510f246c912680d3bace65dfff23780d8288c7f08e517c0adb459d3d26a4923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0000-0623-1350
OpenAccessLink https://www.proquest.com/publiccontent/docview/3176377849?pq-origsite=%requestingapplication%
PQID 3176377849
PQPubID 2032404
ParticipantIDs proquest_journals_3176377849
gale_infotracacademiconefile_A831914943
crossref_primary_10_3390_electronics14051004
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Otter (ref_18) 2020; 32
Sabah (ref_24) 2024; 12
Niu (ref_27) 2021; 452
Azevedo (ref_13) 2024; 113
ref_14
ref_35
Sherstinsky (ref_22) 2020; 404
ref_10
Yadav (ref_34) 2023; 4
Nguyen (ref_12) 2004; 8
ref_19
ref_16
ref_15
Baioletti (ref_30) 2024; 89
Kuang (ref_3) 2021; 48
Landi (ref_25) 2021; 144
Luo (ref_21) 2021; 28
Grosso (ref_31) 2009; 43
Jalilinasrabady (ref_6) 2021; 236
Rana (ref_33) 2020; 32
Lawal (ref_2) 2024; 12
Panja (ref_17) 2022; 205
ref_23
Wang (ref_32) 2018; 22
Timmerman (ref_8) 1953; 5
ref_20
Seumer (ref_29) 2023; 62
Liu (ref_1) 2020; 189
Nguyen (ref_5) 2005; 18
ref_28
ref_26
ref_9
ref_4
ref_7
Liu (ref_11) 2024; 73
References_xml – volume: 43
  start-page: 23
  year: 2009
  ident: ref_31
  article-title: Solving molecular distance geometry problems by global optimization algorithms
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-007-9127-8
– volume: 28
  start-page: 1060
  year: 2021
  ident: ref_21
  article-title: A deep feature fusion network based on multiple attention mechanisms for joint iris-periocular biometric recognition
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2021.3079850
– volume: 452
  start-page: 48
  year: 2021
  ident: ref_27
  article-title: A review on the attention mechanism of deep learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.091
– ident: ref_26
  doi: 10.3390/ma17143521
– volume: 18
  start-page: 549
  year: 2005
  ident: ref_5
  article-title: Applications of data analysis techniques for oil production prediction
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2004.11.010
– volume: 32
  start-page: 604
  year: 2020
  ident: ref_18
  article-title: A survey of the usages of deep learning for natural language processing
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2979670
– volume: 113
  start-page: 4055
  year: 2024
  ident: ref_13
  article-title: Hybrid approaches to optimization and machine learning methods: A systematic literature review
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-023-06467-x
– ident: ref_28
  doi: 10.1371/journal.pone.0288044
– ident: ref_15
  doi: 10.1109/ICSESS47205.2019.9040779
– ident: ref_16
– volume: 48
  start-page: 1
  year: 2021
  ident: ref_3
  article-title: Application and development trend of artificial intelligence in petroleum exploration and development
  publication-title: Pet. Explor. Dev.
  doi: 10.1016/S1876-3804(21)60001-0
– ident: ref_14
– ident: ref_4
  doi: 10.2118/176750-MS
– volume: 32
  start-page: 16245
  year: 2020
  ident: ref_33
  article-title: Whale optimization algorithm: A systematic review of contemporary applications, modifications and developments
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04849-z
– ident: ref_35
– volume: 8
  start-page: 183
  year: 2004
  ident: ref_12
  article-title: Prediction of oil well production: A multiple-neural-network approach
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-2004-8206
– volume: 22
  start-page: 387
  year: 2018
  ident: ref_32
  article-title: Particle swarm optimization algorithm: An overview
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2474-6
– volume: 5
  start-page: 51
  year: 1953
  ident: ref_8
  article-title: Application of the Material Balance Equation to a Partial Water-Drive Reservoir
  publication-title: J. Pet. Technol.
  doi: 10.2118/229-G
– volume: 73
  start-page: 295
  year: 2024
  ident: ref_11
  article-title: Reservoir production capacity prediction of Zananor field based on LSTM neural network
  publication-title: Acta Geophys.
  doi: 10.1007/s11600-024-01388-2
– volume: 4
  start-page: 100230
  year: 2023
  ident: ref_34
  article-title: An artificial neural network-particle swarm optimization (ANN-PSO) approach to predict the aeration efficiency of venturi aeration system
  publication-title: Smart Agric. Technol.
  doi: 10.1016/j.atech.2023.100230
– volume: 144
  start-page: 334
  year: 2021
  ident: ref_25
  article-title: Working memory connections for LSTM
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2021.08.030
– volume: 404
  start-page: 132306
  year: 2020
  ident: ref_22
  article-title: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network
  publication-title: Phys. D Nonlinear Phenom.
  doi: 10.1016/j.physd.2019.132306
– ident: ref_19
  doi: 10.3390/electronics10101163
– volume: 12
  start-page: 19035
  year: 2024
  ident: ref_2
  article-title: Machine Learning in Oil and Gas Exploration—A Review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3349216
– volume: 205
  start-page: 117670
  year: 2022
  ident: ref_17
  article-title: Prediction of well performance in SACROC field using stacked Long Short-Term Memory (LSTM) network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117670
– ident: ref_7
  doi: 10.3390/min14070686
– volume: 62
  start-page: e202218565
  year: 2023
  ident: ref_29
  article-title: Computational evolution of new catalysts for the Morita–Baylis–Hillman reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202218565
– volume: 236
  start-page: 121503
  year: 2021
  ident: ref_6
  article-title: Numerical simulation and production prediction assessment of Takigami geothermal reservoir
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121503
– ident: ref_23
  doi: 10.3390/electronics11121906
– ident: ref_9
  doi: 10.3389/feart.2022.1106622
– volume: 189
  start-page: 107013
  year: 2020
  ident: ref_1
  article-title: Forecasting oil production using ensemble empirical model decomposition based Long Short-Term Memory neural network
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2020.107013
– volume: 89
  start-page: 803
  year: 2024
  ident: ref_30
  article-title: A performance analysis of Basin hopping compared to established metaheuristics for global optimization
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-024-01373-5
– ident: ref_10
  doi: 10.3390/s22145326
– ident: ref_20
– volume: 12
  start-page: 142957
  year: 2024
  ident: ref_24
  article-title: A BiLSTM-Based Feature Fusion with CNN Model: Integrating Smartphone Sensor Data for Pedestrian Activity Recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3468470
SSID ssj0000913830
Score 2.318477
Snippet Accurate prediction of future oil production is critical for decision-making in oil well operations. However, existing prediction models often lack precision...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Index Database
StartPage 1004
SubjectTerms Accuracy
Algorithms
Analysis
Artificial intelligence
Computational linguistics
Data processing
Decision-making
Deep learning
Efficiency
Language processing
Machine learning
Mathematical optimization
Natural language interfaces
Neural networks
Oil wells
Optimization
Optimization algorithms
Petroleum industry
Petroleum mining
Prediction models
Quadratic programming
Search algorithms
Simulation
Title Optimization of Oil Well Production Prediction Model Based on Inter-Attention and BiLSTM
URI https://www.proquest.com/docview/3176377849
Volume 14
WOSCitedRecordID wos001444142800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB5Bu4flwGN3EeVR-YDEZa0mdhInJ9SiIpBoiXiI7l6ixA-pUmmhDRz57XgSFxYJ7YlLlDiHRJ7xjGc8830Ah4m2msM8QxnTOQ0KY2iiAk2lp5RMrEopUVRkE2I4jEejJHXt0QtXVrm0iZWhrtGesW7bGuGOmknMmHes14u4EHGQHD88UuSQwrNWR6ixCk0E3vIa0EzPB-mft5wLYmDG3KvBh7iN9jvvXDMLG2mECJ_2wUF9bqYr33O68bV_vQnrbg9KurXSbMGKnv6AtX-QCX_C6NKaknvXo0lmhlyOJ-ROTyYkrSFicTid4ylPdYuUahPSsy5REftY5RlptyzrYkqSTxXpjS-ubwa_4Pa0f3NyRh0JA5Xc90vKcVYMCyKZ-CyKPcWLXOooVMYYxoUdsDFbLIXxYh36Qnq5KoIwUVyxKEf0t21oTGdTvQPERlYat3yFFEVguLHqI3zlRVLokCmmWvB7OfPZQ421kdkYBQWVfSKoFhyhdDJcieU8l7lrKLAfQ0yrrBtzBK9LAt6C_aV0MrdEF9m7MHb__3oPvjMk_a0Kz_ahUc6f9AF8k8_leDFvQ7PXH6ZXbVgdvPTtNQ3_tp3evQJfruh-
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFAk4QIFWBArdQxEXVl3v2l7voUJpoWrUJLVEEOFk7P2QIoWkJIaqf6q_kR1_tCBV3HrozV5Ltux5ntnZnXkPYFdZjxzOHOXc5jQsnKPKhJZqZoxWHlJGFpXYhByNkslEpWtw2fbCYFll6xMrR20WGtfI93yci4WUSag-nP2kqBqFu6uthEYNixN7ce5TttV-_6O371vOjz6ND49poypAtQiCkgqEoeNhrFXA44QZUeTaxpFxznEh_YBPQhItHUtsFEjNclOEkTLC8DhHOjN_33uwHnqwsw6sp_1h-u1qVQdZNhPBanojIRTbu1azWflcJkKCtn9C4M2BoIpuR0_u2nfZgMfNPJr0auA_hTU7fwaP_mJXfA6TU-8OfzR9pmThyOl0Rr7a2YykNc0tDqdL3KmqDlEWbkYOfFg3xJ9Wa6W0V5Z1QSjJ54YcTAefx8NN-HIrr7YFnflibl8A8dmhxWlroWUROuH8LyADw2ItbcQNN11439o2O6v5QjKfZyEUshug0IV3aP8MvUm5zHXeNEX4hyEvV9ZLBBLwqVB0Ybu1f9a4mVV2bfyX_7-8Aw-Ox8NBNuiPTl7BQ44ixlUh3TZ0yuUv-xru69_ldLV80yCawPfbBssfsIk0uw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLULlwLvqQgEfQFywNrGTOD4gtEu7omrZRlDE3kLih7TSdrfsBlD_Wn8dM3lQkCpuPXBLHClR7M8znvH4-wBeaIfIEYHnQriCR6X3XNvIcRNYazRCyqqyFptQk0k6nepsAy66szBUVtnZxNpQ26WhHPkA_VwilUojPfBtWUS2N3579o2TghTttHZyGg1EDt35Twzf1m8O9nCsXwox3j959563CgPcyDCsuCRIehElRociSQMry8K4JLbeeyEVNmBAkhrlg9TFoTJBYcso1lZakRREbYbvvQGbSmLQ04PN0f4k-_g7w0OMm6kMGqojKXUwuFS2WWNcExNZ21_u8GqnUHu68d3_uY_uwZ12fc2GzYS4Dxtu8QBu_8G6-BCmx2gmT9vzp2zp2fFszr64-ZxlDf0tNWcr2sGqL0kubs5G6O4tw9s6h8qHVdUUirJiYdlodvTp5MMj-Hwtv7YNvcVy4XaAYdToaDlbGlVGXnqcGiq0QWKUi4UVtg-vu3HOzxoekRzjL4JFfgUs-vCKsJCTlalWhSnawxL4MeLryoepJGI-Hck-7HZYyFvzs84vgfD434-fwy1ESH50MDl8AluCtI3r-rpd6FWr7-4p3DQ_qtl69awFN4Ov142VX2k2PVU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Oil+Well+Production+Prediction+Model+Based+on+Inter-Attention+and+BiLSTM&rft.jtitle=Electronics+%28Basel%29&rft.au=Meng%2C+Xin&rft.au=Liu%2C+Xingyu&rft.au=Duan%2C+Hancong&rft.au=Hu%2C+Ze&rft.date=2025-03-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=14&rft.issue=5&rft.spage=1004&rft_id=info:doi/10.3390%2Felectronics14051004&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics14051004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon