Early fault detection method for nuclear power plants based on sparse denoising autoencoder and kernel principal component analysis

•A data-driven fault detection method is proposed, which can accurately detect early faults in nuclear power plants.•The proposed grouping strategy effectively overcomes the insensitivity of single models to early faults.•The combination of SDAE and KPCA demonstrates good feature extraction and nonl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of nuclear energy Jg. 220; S. 111460
Hauptverfasser: Yin, Wenzhe, Xia, Hong, Huang, Xueying, Shan, Longfei, Ran, Wenhao, Jia, Zhujun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.09.2025
Schlagworte:
ISSN:0306-4549
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A data-driven fault detection method is proposed, which can accurately detect early faults in nuclear power plants.•The proposed grouping strategy effectively overcomes the insensitivity of single models to early faults.•The combination of SDAE and KPCA demonstrates good feature extraction and nonlinear data processing capabilities. Effective fault detection technology is of great significance to the safety and economy of nuclear power plants (NPPs). To accurately identify early faults in NPPs, this study proposes a novel fault detection method based on sparse denoising autoencoder (SDAE) and kernel principal component analysis (KPCA). First, the operating data of NPPs is collected by numerous sensors, and the operating parameters are grouped according to physical properties. Then, the corresponding fault detection model is established according to each parameter group, and each detection model consists of the SDAE and KPCA. The case study evaluated four accident scenarios (LOCA, SLBIC, FHAIC, FHAIAB) across two development degrees (0–1 % and 0–0.1 %). The proposed method achieved fault detection rates of 99.07 %, 95.20 %, 99.73 %, and 99.60 % for the 0–1 % degree with zero false alarms. Even for the subtler 0–0.1 % degree, it maintained a 94.84 % average detection rate and no false alarms. Compared to traditional methods, its average fault detection rate was higher than that of PCA and KPCA by 62.9 % and 32.4 % (0–1 % degree), and by 89.5 % and 88 % (0–0.1% degree), demonstrating its potential application value in NPPs.
AbstractList •A data-driven fault detection method is proposed, which can accurately detect early faults in nuclear power plants.•The proposed grouping strategy effectively overcomes the insensitivity of single models to early faults.•The combination of SDAE and KPCA demonstrates good feature extraction and nonlinear data processing capabilities. Effective fault detection technology is of great significance to the safety and economy of nuclear power plants (NPPs). To accurately identify early faults in NPPs, this study proposes a novel fault detection method based on sparse denoising autoencoder (SDAE) and kernel principal component analysis (KPCA). First, the operating data of NPPs is collected by numerous sensors, and the operating parameters are grouped according to physical properties. Then, the corresponding fault detection model is established according to each parameter group, and each detection model consists of the SDAE and KPCA. The case study evaluated four accident scenarios (LOCA, SLBIC, FHAIC, FHAIAB) across two development degrees (0–1 % and 0–0.1 %). The proposed method achieved fault detection rates of 99.07 %, 95.20 %, 99.73 %, and 99.60 % for the 0–1 % degree with zero false alarms. Even for the subtler 0–0.1 % degree, it maintained a 94.84 % average detection rate and no false alarms. Compared to traditional methods, its average fault detection rate was higher than that of PCA and KPCA by 62.9 % and 32.4 % (0–1 % degree), and by 89.5 % and 88 % (0–0.1% degree), demonstrating its potential application value in NPPs.
ArticleNumber 111460
Author Ran, Wenhao
Jia, Zhujun
Yin, Wenzhe
Xia, Hong
Huang, Xueying
Shan, Longfei
Author_xml – sequence: 1
  givenname: Wenzhe
  surname: Yin
  fullname: Yin, Wenzhe
– sequence: 2
  givenname: Hong
  surname: Xia
  fullname: Xia, Hong
  email: xiahong@hrbeu.edu.cn
– sequence: 3
  givenname: Xueying
  surname: Huang
  fullname: Huang, Xueying
– sequence: 4
  givenname: Longfei
  surname: Shan
  fullname: Shan, Longfei
– sequence: 5
  givenname: Wenhao
  surname: Ran
  fullname: Ran, Wenhao
– sequence: 6
  givenname: Zhujun
  surname: Jia
  fullname: Jia, Zhujun
BookMark eNqFkM1OQyEQRlnUxLb6CCa8QCtwuTdtXBjT1J-kiRtdkykMSqVwA1TTtS8uTbty0w2zYM6X-c6IDEIMSMgNZ1POeHe7mULYaQw4FUy0U8657NiADFnDuols5fySjHLeMMbFTMoh-V1C8ntqYecLNVhQFxcD3WL5jIbamGiN8wiJ9vEH6-shlEzXkNHQuph7SBkrGaLLLnxQ2JWIQUdTlyEY-oUpoKd9ckG7HjzVcdvXm0Op3-D32eUrcmHBZ7w-zTF5f1y-LZ4nq9enl8XDaqIbzstEoEHOOhDAZmthbAvM2DnXKLWWnZWskd2cC2tn2IpZa5rWGoGNEVY23La8GZO7Y65OMeeEVmlX4NC3JHBecaYODtVGnRyqg0N1dFjp9h9dO20h7c9y90cOa7Vvh0ll7aohNC5V28pEdybhD24clvI
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2025_127831
crossref_primary_10_1016_j_compchemeng_2025_109394
Cites_doi 10.3390/s22062205
10.1002/aic.10978
10.1016/j.jpowsour.2006.07.004
10.1016/j.anucene.2024.110416
10.1016/j.jlp.2016.01.011
10.1016/j.ymssp.2020.106956
10.1080/00223131.2017.1394228
10.1109/TCST.2021.3107200
10.1093/nsr/nwx110
10.1016/j.pnucene.2021.103990
10.1038/323533a0
10.1016/j.jprocont.2020.11.005
10.1002/wics.101
10.13182/NT01-A3240
10.1038/s41597-022-01879-1
10.1016/j.anucene.2011.10.016
10.1016/j.measurement.2020.108388
10.1016/j.pnucene.2010.12.001
10.1016/j.anucene.2020.107786
10.1109/ACCESS.2018.2858277
10.1109/TAC.2003.822856
10.1109/TPWRD.2006.876659
10.1109/ACC.1995.529780
10.1016/j.jsv.2018.04.036
10.1016/j.compchemeng.2006.09.004
10.3390/en14164787
10.1016/j.pnucene.2018.06.003
10.1109/TR.2013.2285033
10.1162/089976698300017467
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.anucene.2025.111460
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
ExternalDocumentID 10_1016_j_anucene_2025_111460
S0306454925002774
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KCYFY
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSJ
SSR
SSZ
T5K
~G-
~HD
.GJ
53G
6TJ
8WZ
9DU
A6W
AAQXK
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
AFFNX
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
UHS
WUQ
ID FETCH-LOGICAL-c311t-2ede106a2a08b2df5a0df91ce4cc46f40346912ff8e5285d35fd2e3d2f431f513
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001487154000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-4549
IngestDate Sat Nov 29 07:14:58 EST 2025
Tue Nov 18 21:02:26 EST 2025
Sat Nov 08 17:35:33 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Fault detection
Nuclear power plant
Kernel principal component analysis
Early fault
Sparse denoising autoencoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c311t-2ede106a2a08b2df5a0df91ce4cc46f40346912ff8e5285d35fd2e3d2f431f513
ParticipantIDs crossref_citationtrail_10_1016_j_anucene_2025_111460
crossref_primary_10_1016_j_anucene_2025_111460
elsevier_sciencedirect_doi_10_1016_j_anucene_2025_111460
PublicationCentury 2000
PublicationDate 2025-09-15
PublicationDateYYYYMMDD 2025-09-15
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-15
  day: 15
PublicationDecade 2020
PublicationTitle Annals of nuclear energy
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Safaeipour, Forouzanfar, Casavola (b0100) 2021; 97
Simmini, Rampazzo, Peterle, Susto, Beghi (b0115) 2021; 30
Di Maio, Baraldi, Zio, Seraoui (b0020) 2013; 62
Elshenawy, Halawa, Mahmoud, Awad, Abdo (b0025) 2021; 142
Abdi, Williams (b0005) 2010; 2
Cheng, Shih, Chiang, Weng (b0015) 2012; 40
Li, Yang, Wang, Liu, Liang (b0055) 2018; 428
Wang, Liu (b0135) 2021; 168
Yan, Han (b0160) 2018; 6
Wang, Peng, Yu, Saeed, Hao, Liu (b0130) 2021; 150
Gertler, J. 1995. Diagnosing parametric faults: from parameter estimation to parity relations. In Proceedings of 1995 American Control Conference-ACC. 3, 1615-1620.
Wen, Lu, Liu, Yan (b0145) 2020; 145
Rumelhart, Hinton, Williams (b0095) 1986; 323
Lee, Qin, Lee (b0045) 2006; 52
Qi, Xiao, Liang, Po, Zhang, Tong (b0090) 2022; 9
Peng, Xia, Liu, Yang, Guo, Zhu (b0085) 2018; 108
Kaistha, Upadhyaya (b0040) 2001; 136
Mansouri, Nounou, Nounou, Karim (b0075) 2016; 40
Schölkopf, Smola, Müller (b0105) 1998; 10
Liu, Abiodun, Zhi-bin, Mao-pu, Min-jun, Wei-feng (b0060) 2018; 55
Tamura, Tsujita (b0120) 2007; 31
Vincent, Larochelle, Bengio, Manzagol (b0125) 2008
Li (b0050) 2018; 5
Chen, Li, Tao, Barnett, Rudin, Su (b0010) 2019; 32
Guo, Zhang, Zhang, Zhou, Yu, Lei, Lv (b0035) 2021; 14
Mollah (b0080) 2018; 3
Silva, Souza, Brito (b0110) 2006; 21
Ye, Wang, Ding (b0165) 2004; 49
Mandal, Santhi, Sridhar, Vinolia, Swaminathan (b0070) 2017; 64
Xue, Tang, Sammes, Ding (b0155) 2006; 162
Webert, Döß, Kaupp, Simons (b0140) 2022; 22
Ma, Jiang (b0065) 2011; 53
Xu, Yao, Yong, Xia, Ge, Yu (b0150) 2024; 201
Wang (10.1016/j.anucene.2025.111460_b0135) 2021; 168
10.1016/j.anucene.2025.111460_b0030
Silva (10.1016/j.anucene.2025.111460_b0110) 2006; 21
Simmini (10.1016/j.anucene.2025.111460_b0115) 2021; 30
Liu (10.1016/j.anucene.2025.111460_b0060) 2018; 55
Xue (10.1016/j.anucene.2025.111460_b0155) 2006; 162
Wang (10.1016/j.anucene.2025.111460_b0130) 2021; 150
Peng (10.1016/j.anucene.2025.111460_b0085) 2018; 108
Xu (10.1016/j.anucene.2025.111460_b0150) 2024; 201
Lee (10.1016/j.anucene.2025.111460_b0045) 2006; 52
Li (10.1016/j.anucene.2025.111460_b0055) 2018; 428
Ye (10.1016/j.anucene.2025.111460_b0165) 2004; 49
Qi (10.1016/j.anucene.2025.111460_b0090) 2022; 9
Schölkopf (10.1016/j.anucene.2025.111460_b0105) 1998; 10
Wen (10.1016/j.anucene.2025.111460_b0145) 2020; 145
Abdi (10.1016/j.anucene.2025.111460_b0005) 2010; 2
Li (10.1016/j.anucene.2025.111460_b0050) 2018; 5
Tamura (10.1016/j.anucene.2025.111460_b0120) 2007; 31
Rumelhart (10.1016/j.anucene.2025.111460_b0095) 1986; 323
Mollah (10.1016/j.anucene.2025.111460_b0080) 2018; 3
Elshenawy (10.1016/j.anucene.2025.111460_b0025) 2021; 142
Yan (10.1016/j.anucene.2025.111460_b0160) 2018; 6
Safaeipour (10.1016/j.anucene.2025.111460_b0100) 2021; 97
Cheng (10.1016/j.anucene.2025.111460_b0015) 2012; 40
Webert (10.1016/j.anucene.2025.111460_b0140) 2022; 22
Chen (10.1016/j.anucene.2025.111460_b0010) 2019; 32
Di Maio (10.1016/j.anucene.2025.111460_b0020) 2013; 62
Mandal (10.1016/j.anucene.2025.111460_b0070) 2017; 64
Ma (10.1016/j.anucene.2025.111460_b0065) 2011; 53
Kaistha (10.1016/j.anucene.2025.111460_b0040) 2001; 136
Vincent (10.1016/j.anucene.2025.111460_b0125) 2008
Mansouri (10.1016/j.anucene.2025.111460_b0075) 2016; 40
Guo (10.1016/j.anucene.2025.111460_b0035) 2021; 14
References_xml – volume: 52
  start-page: 3501
  year: 2006
  end-page: 3514
  ident: b0045
  article-title: Fault detection and diagnosis based on modified independent component analysis
  publication-title: AIChE J.
– volume: 32
  year: 2019
  ident: b0010
  article-title: This looks like that: deep learning for interpretable image recognition
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 145
  year: 2020
  ident: b0145
  article-title: Graph modeling of singular values for early fault detection and diagnosis of rolling element bearings
  publication-title: Mech. Syst. Sig. Process.
– volume: 31
  start-page: 1035
  year: 2007
  end-page: 1046
  ident: b0120
  article-title: A study on the number of principal components and sensitivity of fault detection using PCA
  publication-title: Comput. Chem. Eng.
– volume: 22
  start-page: 2205
  year: 2022
  ident: b0140
  article-title: Fault handling in industry 4.0: definition, process and applications
  publication-title: Sensors
– volume: 162
  start-page: 388
  year: 2006
  end-page: 399
  ident: b0155
  article-title: Model-based condition monitoring of PEM fuel cell using Hotelling T2 control limit
  publication-title: J. Power Sources
– volume: 2
  start-page: 433
  year: 2010
  end-page: 459
  ident: b0005
  article-title: Principal component analysis
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
– volume: 53
  start-page: 255
  year: 2011
  end-page: 266
  ident: b0065
  article-title: Applications of fault detection and diagnosis methods in nuclear power plants: a review
  publication-title: Prog. Nucl. Energy
– volume: 55
  start-page: 254
  year: 2018
  end-page: 266
  ident: b0060
  article-title: A cascade intelligent fault diagnostic technique for nuclear power plants
  publication-title: J. Nucl. Sci. Technol.
– volume: 168
  year: 2021
  ident: b0135
  article-title: Wind turbine condition monitoring based on a novel multivariate state estimation technique
  publication-title: Measurement
– volume: 49
  start-page: 281
  year: 2004
  end-page: 287
  ident: b0165
  article-title: A new parity space approach for fault detection based on stationary wavelet transform
  publication-title: IEEE Trans. Autom. Control
– volume: 62
  start-page: 833
  year: 2013
  end-page: 845
  ident: b0020
  article-title: Fault detection in nuclear power plants components by a combination of statistical methods
  publication-title: IEEE Trans. Reliab.
– volume: 40
  start-page: 334
  year: 2016
  end-page: 347
  ident: b0075
  article-title: Kernel PCA-based GLRT for nonlinear fault detection of chemical processes
  publication-title: J. Loss Prev. Process Ind.
– volume: 10
  start-page: 1299
  year: 1998
  end-page: 1319
  ident: b0105
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural Comput.
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: b0095
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– volume: 6
  start-page: 41238
  year: 2018
  end-page: 41248
  ident: b0160
  article-title: Effective feature extraction via stacked sparse autoencoder to improve intrusion detection system
  publication-title: IEEE Access
– volume: 142
  year: 2021
  ident: b0025
  article-title: Unsupervised machine learning techniques for fault detection and diagnosis in nuclear power plants
  publication-title: Prog. Nucl. Energy
– volume: 9
  start-page: 766
  year: 2022
  ident: b0090
  article-title: An open time-series simulated dataset covering various accidents for nuclear power plants
  publication-title: Sci. Data
– volume: 30
  start-page: 1359
  year: 2021
  end-page: 1374
  ident: b0115
  article-title: A self-tuning KPCA-based approach to fault detection in chiller systems
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 201
  year: 2024
  ident: b0150
  article-title: Intelligent multi-severity nuclear accident identification under transferable operation conditions
  publication-title: Ann. Nucl. Energy
– volume: 150
  year: 2021
  ident: b0130
  article-title: Fault identification and diagnosis based on KPCA and similarity clustering for nuclear power plants
  publication-title: Ann. Nucl. Energy
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: b0125
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: In Proceedings of the 25th International Conference on Machine Learning
– volume: 136
  start-page: 221
  year: 2001
  end-page: 230
  ident: b0040
  article-title: Incipient fault detection and isolation of field devices in nuclear power systems using principal component analysis
  publication-title: Nucl. Technol.
– volume: 3
  start-page: 1
  year: 2018
  end-page: 10
  ident: b0080
  article-title: PCTRAN: Education tool for simulation of safety and transient analysis of a pressurized water reactor
  publication-title: Int. J. Integr. Sci. Technol.
– volume: 64
  start-page: 1526
  year: 2017
  end-page: 1534
  ident: b0070
  article-title: Nuclear power plant thermocouple sensor-fault detection and classification using deep learning and generalized likelihood ratio test
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 40
  start-page: 122
  year: 2012
  end-page: 129
  ident: b0015
  article-title: Introducing PCTRAN as an evaluation tool for nuclear power plant emergency responses
  publication-title: Ann. Nucl. Energy
– volume: 21
  start-page: 2058
  year: 2006
  end-page: 2063
  ident: b0110
  article-title: Fault detection and classification in transmission lines based on wavelet transform and ANN
  publication-title: IEEE Trans. Power Delivery
– volume: 97
  start-page: 1
  year: 2021
  end-page: 16
  ident: b0100
  article-title: A survey and classification of incipient fault diagnosis approaches
  publication-title: J. Process Control
– volume: 5
  start-page: 24
  year: 2018
  end-page: 26
  ident: b0050
  article-title: Deep learning for natural language processing: advantages and challenges
  publication-title: Natl. Sci. Rev.
– volume: 108
  start-page: 419
  year: 2018
  end-page: 427
  ident: b0085
  article-title: Research on intelligent fault diagnosis method for nuclear power plant based on correlation analysis and deep belief network
  publication-title: Prog. Nucl. Energy
– volume: 428
  start-page: 72
  year: 2018
  end-page: 86
  ident: b0055
  article-title: Early fault diagnosis of rolling bearings based on hierarchical symbol dynamic entropy and binary tree support vector machine
  publication-title: J. Sound Vib.
– reference: Gertler, J. 1995. Diagnosing parametric faults: from parameter estimation to parity relations. In Proceedings of 1995 American Control Conference-ACC. 3, 1615-1620.
– volume: 14
  start-page: 4787
  year: 2021
  ident: b0035
  article-title: An adaptive early fault detection model of induced draft fans based on multivariate state estimation technique
  publication-title: Energies
– volume: 22
  start-page: 2205
  issue: 6
  year: 2022
  ident: 10.1016/j.anucene.2025.111460_b0140
  article-title: Fault handling in industry 4.0: definition, process and applications
  publication-title: Sensors
  doi: 10.3390/s22062205
– volume: 52
  start-page: 3501
  issue: 10
  year: 2006
  ident: 10.1016/j.anucene.2025.111460_b0045
  article-title: Fault detection and diagnosis based on modified independent component analysis
  publication-title: AIChE J.
  doi: 10.1002/aic.10978
– volume: 162
  start-page: 388
  issue: 1
  year: 2006
  ident: 10.1016/j.anucene.2025.111460_b0155
  article-title: Model-based condition monitoring of PEM fuel cell using Hotelling T2 control limit
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.07.004
– volume: 201
  year: 2024
  ident: 10.1016/j.anucene.2025.111460_b0150
  article-title: Intelligent multi-severity nuclear accident identification under transferable operation conditions
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2024.110416
– volume: 40
  start-page: 334
  year: 2016
  ident: 10.1016/j.anucene.2025.111460_b0075
  article-title: Kernel PCA-based GLRT for nonlinear fault detection of chemical processes
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2016.01.011
– volume: 3
  start-page: 1
  year: 2018
  ident: 10.1016/j.anucene.2025.111460_b0080
  article-title: PCTRAN: Education tool for simulation of safety and transient analysis of a pressurized water reactor
  publication-title: Int. J. Integr. Sci. Technol.
– volume: 145
  year: 2020
  ident: 10.1016/j.anucene.2025.111460_b0145
  article-title: Graph modeling of singular values for early fault detection and diagnosis of rolling element bearings
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2020.106956
– volume: 55
  start-page: 254
  issue: 3
  year: 2018
  ident: 10.1016/j.anucene.2025.111460_b0060
  article-title: A cascade intelligent fault diagnostic technique for nuclear power plants
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/00223131.2017.1394228
– volume: 30
  start-page: 1359
  issue: 4
  year: 2021
  ident: 10.1016/j.anucene.2025.111460_b0115
  article-title: A self-tuning KPCA-based approach to fault detection in chiller systems
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2021.3107200
– volume: 5
  start-page: 24
  issue: 1
  year: 2018
  ident: 10.1016/j.anucene.2025.111460_b0050
  article-title: Deep learning for natural language processing: advantages and challenges
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwx110
– volume: 142
  year: 2021
  ident: 10.1016/j.anucene.2025.111460_b0025
  article-title: Unsupervised machine learning techniques for fault detection and diagnosis in nuclear power plants
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2021.103990
– volume: 32
  year: 2019
  ident: 10.1016/j.anucene.2025.111460_b0010
  article-title: This looks like that: deep learning for interpretable image recognition
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 10.1016/j.anucene.2025.111460_b0095
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 97
  start-page: 1
  year: 2021
  ident: 10.1016/j.anucene.2025.111460_b0100
  article-title: A survey and classification of incipient fault diagnosis approaches
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2020.11.005
– volume: 2
  start-page: 433
  issue: 4
  year: 2010
  ident: 10.1016/j.anucene.2025.111460_b0005
  article-title: Principal component analysis
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
  doi: 10.1002/wics.101
– volume: 136
  start-page: 221
  issue: 2
  year: 2001
  ident: 10.1016/j.anucene.2025.111460_b0040
  article-title: Incipient fault detection and isolation of field devices in nuclear power systems using principal component analysis
  publication-title: Nucl. Technol.
  doi: 10.13182/NT01-A3240
– volume: 9
  start-page: 766
  issue: 1
  year: 2022
  ident: 10.1016/j.anucene.2025.111460_b0090
  article-title: An open time-series simulated dataset covering various accidents for nuclear power plants
  publication-title: Sci. Data
  doi: 10.1038/s41597-022-01879-1
– volume: 40
  start-page: 122
  issue: 1
  year: 2012
  ident: 10.1016/j.anucene.2025.111460_b0015
  article-title: Introducing PCTRAN as an evaluation tool for nuclear power plant emergency responses
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2011.10.016
– volume: 168
  year: 2021
  ident: 10.1016/j.anucene.2025.111460_b0135
  article-title: Wind turbine condition monitoring based on a novel multivariate state estimation technique
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108388
– volume: 53
  start-page: 255
  issue: 3
  year: 2011
  ident: 10.1016/j.anucene.2025.111460_b0065
  article-title: Applications of fault detection and diagnosis methods in nuclear power plants: a review
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2010.12.001
– volume: 150
  year: 2021
  ident: 10.1016/j.anucene.2025.111460_b0130
  article-title: Fault identification and diagnosis based on KPCA and similarity clustering for nuclear power plants
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2020.107786
– volume: 6
  start-page: 41238
  year: 2018
  ident: 10.1016/j.anucene.2025.111460_b0160
  article-title: Effective feature extraction via stacked sparse autoencoder to improve intrusion detection system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2858277
– volume: 49
  start-page: 281
  issue: 2
  year: 2004
  ident: 10.1016/j.anucene.2025.111460_b0165
  article-title: A new parity space approach for fault detection based on stationary wavelet transform
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2003.822856
– volume: 21
  start-page: 2058
  issue: 4
  year: 2006
  ident: 10.1016/j.anucene.2025.111460_b0110
  article-title: Fault detection and classification in transmission lines based on wavelet transform and ANN
  publication-title: IEEE Trans. Power Delivery
  doi: 10.1109/TPWRD.2006.876659
– ident: 10.1016/j.anucene.2025.111460_b0030
  doi: 10.1109/ACC.1995.529780
– volume: 428
  start-page: 72
  year: 2018
  ident: 10.1016/j.anucene.2025.111460_b0055
  article-title: Early fault diagnosis of rolling bearings based on hierarchical symbol dynamic entropy and binary tree support vector machine
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2018.04.036
– volume: 64
  start-page: 1526
  issue: 6
  year: 2017
  ident: 10.1016/j.anucene.2025.111460_b0070
  article-title: Nuclear power plant thermocouple sensor-fault detection and classification using deep learning and generalized likelihood ratio test
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 31
  start-page: 1035
  issue: 9
  year: 2007
  ident: 10.1016/j.anucene.2025.111460_b0120
  article-title: A study on the number of principal components and sensitivity of fault detection using PCA
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2006.09.004
– volume: 14
  start-page: 4787
  issue: 16
  year: 2021
  ident: 10.1016/j.anucene.2025.111460_b0035
  article-title: An adaptive early fault detection model of induced draft fans based on multivariate state estimation technique
  publication-title: Energies
  doi: 10.3390/en14164787
– start-page: 1096
  year: 2008
  ident: 10.1016/j.anucene.2025.111460_b0125
  article-title: Extracting and composing robust features with denoising autoencoders
– volume: 108
  start-page: 419
  year: 2018
  ident: 10.1016/j.anucene.2025.111460_b0085
  article-title: Research on intelligent fault diagnosis method for nuclear power plant based on correlation analysis and deep belief network
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2018.06.003
– volume: 62
  start-page: 833
  issue: 4
  year: 2013
  ident: 10.1016/j.anucene.2025.111460_b0020
  article-title: Fault detection in nuclear power plants components by a combination of statistical methods
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2013.2285033
– volume: 10
  start-page: 1299
  issue: 5
  year: 1998
  ident: 10.1016/j.anucene.2025.111460_b0105
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural Comput.
  doi: 10.1162/089976698300017467
SSID ssj0012844
Score 2.4071157
Snippet •A data-driven fault detection method is proposed, which can accurately detect early faults in nuclear power plants.•The proposed grouping strategy effectively...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111460
SubjectTerms Early fault
Fault detection
Kernel principal component analysis
Nuclear power plant
Sparse denoising autoencoder
Title Early fault detection method for nuclear power plants based on sparse denoising autoencoder and kernel principal component analysis
URI https://dx.doi.org/10.1016/j.anucene.2025.111460
Volume 220
WOSCitedRecordID wos001487154000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0306-4549
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0012844
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFiQ4ICggykt74FY5rNev9bFCRQWhCokicrOcfagpwYkSpypc-SP8VGZ31muDokIPXKxotQ8n82VmPJ75hpCXWpkkZ5JFWqRplMpcRaLOTZTnhY5td1uOhcLvi5MTMZmUH0ajn10tzMW8aBpxeVku_6uoYQyEbUtnryHusCkMwGcQOlxB7HD9J8EjZbGpN_P2QOlWYy9w7BTtkgobS2FsGa5tgzTbRtpmwlhrpuybA9Awq7UtpmoWMxdHqDftwrJdWtIJG2X_oleNnh8sMUrv6EW-LhcN5qojw8nQ4-0ZmrtztSs3DOoGSQw-6-b7WQDZBFN4jxferjrc-cj2ZKO_zfrxj2e-egLmGj0bRjF4ZlMusI6zq95iueVfL4eamXM20K2xLaBmW9U-RiDObbW2hC8xtieM-_m_02z_Yf5CUmKX73Ze-W0qu02F29wgu7zIStCbu4dvjybvwpsqMO9IUebvv68Se7X1frb7PwOf5vQeuesfRughgug-Gelmj9wZUFTukVsuRViuH5AfDljUAYsGYFEEFgVgUS9g6oBFEVjUAYvCRAQWDcCiA2BRABZFYNEALBqARTtgPSSf3hydvj6OfAuPSCZx3EZcKx2zvOY1E1OuTFYzZcpY6lTKNDcpS9K8jLkxQmdcZCrJjOI6UdyAY2uyOHlEdho46TGhRnChVM2FBLdyqlg5BdOiCi1YIg1P1T5Jux-2kp7f3rZZmVdXCnafjMOyJRK8_G2B6KRWeS8Vvc8K0Hj10ifXPespud3_WZ6RnXa10c_JTXnRztarFx6KvwBa6rzg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+fault+detection+method+for+nuclear+power+plants+based+on+sparse+denoising+autoencoder+and+kernel+principal+component+analysis&rft.jtitle=Annals+of+nuclear+energy&rft.au=Yin%2C+Wenzhe&rft.au=Xia%2C+Hong&rft.au=Huang%2C+Xueying&rft.au=Shan%2C+Longfei&rft.date=2025-09-15&rft.issn=0306-4549&rft.volume=220&rft.spage=111460&rft_id=info:doi/10.1016%2Fj.anucene.2025.111460&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_anucene_2025_111460
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4549&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4549&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4549&client=summon