Encoder-Decoder Architectures for Generating Questions

With exploding textual data on the internet with e-books, legal documents and products information, it is an opportunity to harness it for applications which can aid human tasks. Developing systems for question generation can be used for making frequently-asked-questions, creating school quiz-es and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Procedia computer science Jg. 132; S. 1041 - 1048
Hauptverfasser: Singh, Jaspreet, Sharma, Yashvardhan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 2018
Schlagworte:
ISSN:1877-0509, 1877-0509
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With exploding textual data on the internet with e-books, legal documents and products information, it is an opportunity to harness it for applications which can aid human tasks. Developing systems for question generation can be used for making frequently-asked-questions, creating school quiz-es and serve for the purpose of unified AI. Here in this study various encoder decoder architectures for generating questions from text inputs have been explored using Stanford’s SQuAD dataset as for training development and test sets and evaluation metrics such as BLEU, ROUGUE and training time were used to compare the effectiveness of the models. The article develops upon the work of current end-to-end system by using gated recurrent unit in place of long short term memory which give similar accuracy but with lesser training time, further it also show the successfully use of a convolution based encoder for this task which gives results comparable to current state of the art system with much lesser training time.
AbstractList With exploding textual data on the internet with e-books, legal documents and products information, it is an opportunity to harness it for applications which can aid human tasks. Developing systems for question generation can be used for making frequently-asked-questions, creating school quiz-es and serve for the purpose of unified AI. Here in this study various encoder decoder architectures for generating questions from text inputs have been explored using Stanford’s SQuAD dataset as for training development and test sets and evaluation metrics such as BLEU, ROUGUE and training time were used to compare the effectiveness of the models. The article develops upon the work of current end-to-end system by using gated recurrent unit in place of long short term memory which give similar accuracy but with lesser training time, further it also show the successfully use of a convolution based encoder for this task which gives results comparable to current state of the art system with much lesser training time.
Author Singh, Jaspreet
Sharma, Yashvardhan
Author_xml – sequence: 1
  givenname: Jaspreet
  surname: Singh
  fullname: Singh, Jaspreet
  email: f2014152@pilani.bits-pilani.ac.in
  organization: Department of Computer Science Information System Birla Institute of Technology Science, Pilani Campus Pilani-333031
– sequence: 2
  givenname: Yashvardhan
  surname: Sharma
  fullname: Sharma, Yashvardhan
  organization: Department of Computer Science Information System Birla Institute of Technology Science, Pilani Campus Pilani-333031
BookMark eNqFkE1LAzEQhoNUsNb-Ai_7B3adbJrs5uCh1FqFggh6Dmky0ZSalGQr-O_dfhzEg87lncvzMvNckkGIAQm5plBRoOJmXW1TNLmqgbYV8AqoPCND2jZNCRzk4Md-QcY5r6Ef1raSNkMi5sFEi6m8w0MW02TefYem2yXMhYupWGDApDsf3ornHebOx5CvyLnTm4zjU47I6_38ZfZQLp8Wj7PpsjSMUllau0JnXY0IgjtOjRGmtkJrFNDYxtkJamxhhYw5NI1gjHPRWok4kW7igI2IPPaaFHNO6JTxnd6f0CXtN4qC2jtQa3VwoPYOFHDVO-hZ9ovdJv-h09c_1O2Rwv6tT49JZeMxGLQ-9VaUjf5P_ht563rK
CitedBy_id crossref_primary_10_1007_s10639_022_11356_2
crossref_primary_10_1016_j_knosys_2020_105863
Cites_doi 10.3115/v1/P14-2053
10.18653/v1/D15-1166
10.18653/v1/P17-1096
10.3115/1218955.1219032
10.1145/365153.365168
10.18653/v1/P17-1012
10.3115/1073083.1073135
10.5087/dad.2012.205
10.18653/v1/D17-1219
10.3115/v1/P15-1086
10.3115/1118894.1118897
10.3115/v1/D14-1162
10.3115/1220575.1220678
10.1145/219717.219748
10.3115/v1/D14-1179
10.1162/neco.1997.9.8.1735
10.18653/v1/P17-1123
10.18653/v1/D16-1264
ContentType Journal Article
Copyright 2018 The Author(s)
Copyright_xml – notice: 2018 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2018.05.019
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 1048
ExternalDocumentID 10_1016_j_procs_2018_05_019
S1877050918307518
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
9DU
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
~HD
ID FETCH-LOGICAL-c3119-ddbefdf2ee065f51cc6c2d6aae607d7fd4eae80be33fec76335568d9ee49f4f03
ISSN 1877-0509
IngestDate Tue Nov 18 22:34:34 EST 2025
Sat Nov 29 06:58:10 EST 2025
Tue May 16 23:59:32 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Neural Networks
Language Generation
Automatic Question Generation
Natural Language Processing
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3119-ddbefdf2ee065f51cc6c2d6aae607d7fd4eae80be33fec76335568d9ee49f4f03
OpenAccessLink https://dx.doi.org/10.1016/j.procs.2018.05.019
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_procs_2018_05_019
crossref_primary_10_1016_j_procs_2018_05_019
elsevier_sciencedirect_doi_10_1016_j_procs_2018_05_019
PublicationCentury 2000
PublicationDate 2018
2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationTitle Procedia computer science
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mazidi, K., Nielsen, R.D. (2014). Linguistic considerations in automatic question generation. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) (Vol. 2, pp. 321-326).
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
Rus, V., Wyse, B., Piwek, P., Lintean, M., Stoyanchev, S., Moldovan, C. (2010, July). The first question generation shared task evaluation challenge. In Proceedings of the 6th International Natural Language Generation Conference (pp. 251-257). Association for Computational Linguistics.
Du, X., Shao, J., & Cardie, C. (2017). Learning to ask: Neural question generation for reading comprehension. arXiv preprint arXiv:1705.00106.
Gehring, J., Auli, M., Grangier, D., & Dauphin, Y. N. (2016). A convolutional encoder model for neural machine translation. arXiv preprint arXiv:1611.02344.
Kunichika, H., Katayama, T., Hirashima, T., & Takeuchi, A. (2004). Automated question generation methods for intelligent English learning systems and its evaluation. In Proc. of ICCE.
Labutov, I., Basu, S., & Vanderwende, L. (2015). Deep questions without deep understanding. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) (Vol. 1, pp. 889-898).
Papineni, K., Roukos, S., Ward, T., & Zhu, W.J. (2002, July). BLEU: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting on association for computational linguistics (pp. 311-318). Association for Computational Linguistics.
Wang, T., Yuan, X., & Trischler, A. (2017). A Joint Model for Question Answering and Question Generation. arXiv preprint arXiv:1706.01450.
Sutskever, Vinyals, Le (bib00022) 2014
Becker, L., Basu, S., & Vanderwende, L. (2012, June). Mind the gap: learning to choose gaps for question generation. In Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 742-751). Association for Computational Linguistics.
Mostow, Chen (bib00016) 2009
Yang, Z., Hu, J., Salakhutdinov, R., & Cohen, W.W. (2017). Semi-supervised QA with generative domain-adaptive nets. arXiv preprint arXiv:1702.02206.
Ranzato, M.A., Chopra, S., Auli, M., & Zaremba, W. (2015). Sequence level training with recurrent neural networks. arXiv preprint arXiv:1511.06732.
Heilman, M., & Smith, N.A. (2010, June). Good question! statistical ranking for question generation. In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics (pp. 609-617). Association for Computational Linguistics.
Miller (bib00010) 1995; 38
Liu, Calvo, Rus (bib0003) 2012; 3
Agarwal, M., Mannem, P. (2011, June). Automatic gap-fill question generation from text books. In Proceedings of the 6th Workshop on Innovative Use of NLP for Building Educational Applications (pp. 56-64). Association for Computational Linguistics.
Mitkov, R., & Ha, L.A. (2003, May). Computer-aided generation of multiple-choice tests. In Proceedings of the HLT-NAACL 03 workshop on Building educational applications using natural language processing-Volume 2 (pp. 17-22). Association for Computational Linguistics.
Luong, M.T., Pham, H., & Manning, C.D. (2015). Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025.
Brown, J.C., Frishkoff, G.A., & Eskenazi, M. (2005, October). Automatic question generation for vocabulary assessment. In Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing (pp. 819-826). Association for Computational Linguistics.
Nguyen, T., Rosenberg, M., Song, X., Gao, J., Tiwary, S., Majumder, R., & Deng, L. (2016). Ms marco: A human generated machine reading comprehension dataset. arXiv preprint arXiv:1611.09268.
.
Weizenbaum (bib0006) 1966; 9
Du, X., & Cardie, C. (2017). Identifying where to focus in reading comprehension for neural question generation. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (pp. 2067-2073).
Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532-1543).
Lin, C.Y., & Och, F.J. (2004, July). Automatic evaluation of machine translation quality using longest common subsequence and skip-bigram statistics. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics (p. 605). Association for Computational Linguistics.
Hochreiter, Schmidhuber (bib00024) 1997; 9
Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). Squad: 100, 000+ questions for machine comprehension of text. arXiv preprint arXiv:1606.05250.
Lindberg, D., Popowich, F., Nesbit, J., & Winne, P. (2013). Generating natural language questions to support learning on-line. In Proceedings of the 14th European Workshop on Natural Language Generation (pp. 105-114).
Sutskever (10.1016/j.procs.2018.05.019_bib00022) 2014
10.1016/j.procs.2018.05.019_bib00021
10.1016/j.procs.2018.05.019_bib00023
10.1016/j.procs.2018.05.019_bib00020
10.1016/j.procs.2018.05.019_bib0004
10.1016/j.procs.2018.05.019_bib0002
10.1016/j.procs.2018.05.019_bib0001
10.1016/j.procs.2018.05.019_bib00029
Miller (10.1016/j.procs.2018.05.019_bib00010) 1995; 38
10.1016/j.procs.2018.05.019_bib0009
10.1016/j.procs.2018.05.019_bib0008
10.1016/j.procs.2018.05.019_bib00026
10.1016/j.procs.2018.05.019_bib0007
10.1016/j.procs.2018.05.019_bib00025
10.1016/j.procs.2018.05.019_bib00028
10.1016/j.procs.2018.05.019_bib0005
10.1016/j.procs.2018.05.019_bib00027
10.1016/j.procs.2018.05.019_bib00011
10.1016/j.procs.2018.05.019_bib00013
10.1016/j.procs.2018.05.019_bib00012
Mostow (10.1016/j.procs.2018.05.019_bib00016) 2009
10.1016/j.procs.2018.05.019_bib00030
Hochreiter (10.1016/j.procs.2018.05.019_bib00024) 1997; 9
Weizenbaum (10.1016/j.procs.2018.05.019_bib0006) 1966; 9
Liu (10.1016/j.procs.2018.05.019_bib0003) 2012; 3
10.1016/j.procs.2018.05.019_bib00019
10.1016/j.procs.2018.05.019_bib00018
10.1016/j.procs.2018.05.019_bib00015
10.1016/j.procs.2018.05.019_bib00014
10.1016/j.procs.2018.05.019_bib00017
References_xml – reference: Rus, V., Wyse, B., Piwek, P., Lintean, M., Stoyanchev, S., Moldovan, C. (2010, July). The first question generation shared task evaluation challenge. In Proceedings of the 6th International Natural Language Generation Conference (pp. 251-257). Association for Computational Linguistics.
– reference: Lin, C.Y., & Och, F.J. (2004, July). Automatic evaluation of machine translation quality using longest common subsequence and skip-bigram statistics. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics (p. 605). Association for Computational Linguistics.
– start-page: 3104
  year: 2014
  end-page: 3112
  ident: bib00022
  article-title: Sequence to sequence learning with neural networks
  publication-title: Advances in neural information processing systems
– start-page: 465
  year: 2009
  end-page: 472
  ident: bib00016
  publication-title: Generating Instruction Automatically for the Reading Strategy of Self-Questioning
– reference: Wang, T., Yuan, X., & Trischler, A. (2017). A Joint Model for Question Answering and Question Generation. arXiv preprint arXiv:1706.01450.
– reference: Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). Squad: 100, 000+ questions for machine comprehension of text. arXiv preprint arXiv:1606.05250.
– reference: Brown, J.C., Frishkoff, G.A., & Eskenazi, M. (2005, October). Automatic question generation for vocabulary assessment. In Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing (pp. 819-826). Association for Computational Linguistics.
– reference: Ranzato, M.A., Chopra, S., Auli, M., & Zaremba, W. (2015). Sequence level training with recurrent neural networks. arXiv preprint arXiv:1511.06732.
– reference: Becker, L., Basu, S., & Vanderwende, L. (2012, June). Mind the gap: learning to choose gaps for question generation. In Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 742-751). Association for Computational Linguistics.
– reference: Yang, Z., Hu, J., Salakhutdinov, R., & Cohen, W.W. (2017). Semi-supervised QA with generative domain-adaptive nets. arXiv preprint arXiv:1702.02206.
– reference: Du, X., & Cardie, C. (2017). Identifying where to focus in reading comprehension for neural question generation. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (pp. 2067-2073).
– volume: 3
  start-page: 101
  year: 2012
  end-page: 124
  ident: bib0003
  article-title: G-Asks: An intelligent automatic question generation system for academic writing support
  publication-title: Dialogue Discourse
– reference: Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
– reference: Lindberg, D., Popowich, F., Nesbit, J., & Winne, P. (2013). Generating natural language questions to support learning on-line. In Proceedings of the 14th European Workshop on Natural Language Generation (pp. 105-114).
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib00024
  article-title: Long short-term memory
  publication-title: Neural computation
– reference: Du, X., Shao, J., & Cardie, C. (2017). Learning to ask: Neural question generation for reading comprehension. arXiv preprint arXiv:1705.00106.
– reference: Gehring, J., Auli, M., Grangier, D., & Dauphin, Y. N. (2016). A convolutional encoder model for neural machine translation. arXiv preprint arXiv:1611.02344.
– reference: Agarwal, M., Mannem, P. (2011, June). Automatic gap-fill question generation from text books. In Proceedings of the 6th Workshop on Innovative Use of NLP for Building Educational Applications (pp. 56-64). Association for Computational Linguistics.
– volume: 38
  start-page: 39
  year: 1995
  end-page: 41
  ident: bib00010
  article-title: Word Net: a lexical database for English
  publication-title: Communications of the ACM
– reference: Papineni, K., Roukos, S., Ward, T., & Zhu, W.J. (2002, July). BLEU: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting on association for computational linguistics (pp. 311-318). Association for Computational Linguistics.
– reference: Nguyen, T., Rosenberg, M., Song, X., Gao, J., Tiwary, S., Majumder, R., & Deng, L. (2016). Ms marco: A human generated machine reading comprehension dataset. arXiv preprint arXiv:1611.09268.
– reference: Heilman, M., & Smith, N.A. (2010, June). Good question! statistical ranking for question generation. In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics (pp. 609-617). Association for Computational Linguistics.
– reference: Mazidi, K., Nielsen, R.D. (2014). Linguistic considerations in automatic question generation. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) (Vol. 2, pp. 321-326).
– reference: .
– reference: Labutov, I., Basu, S., & Vanderwende, L. (2015). Deep questions without deep understanding. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) (Vol. 1, pp. 889-898).
– reference: Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532-1543).
– reference: Mitkov, R., & Ha, L.A. (2003, May). Computer-aided generation of multiple-choice tests. In Proceedings of the HLT-NAACL 03 workshop on Building educational applications using natural language processing-Volume 2 (pp. 17-22). Association for Computational Linguistics.
– reference: Kunichika, H., Katayama, T., Hirashima, T., & Takeuchi, A. (2004). Automated question generation methods for intelligent English learning systems and its evaluation. In Proc. of ICCE.
– volume: 9
  start-page: 36
  year: 1966
  end-page: 45
  ident: bib0006
  article-title: ELIZA—a computer program for the study of natural language communication between man and machine
  publication-title: Communications of the ACM
– reference: Luong, M.T., Pham, H., & Manning, C.D. (2015). Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025.
– ident: 10.1016/j.procs.2018.05.019_bib00013
  doi: 10.3115/v1/P14-2053
– ident: 10.1016/j.procs.2018.05.019_bib00023
  doi: 10.18653/v1/D15-1166
– ident: 10.1016/j.procs.2018.05.019_bib00019
– ident: 10.1016/j.procs.2018.05.019_bib00015
– ident: 10.1016/j.procs.2018.05.019_bib00018
  doi: 10.18653/v1/P17-1096
– ident: 10.1016/j.procs.2018.05.019_bib00030
  doi: 10.3115/1218955.1219032
– ident: 10.1016/j.procs.2018.05.019_bib0008
– volume: 9
  start-page: 36
  issue: 1
  year: 1966
  ident: 10.1016/j.procs.2018.05.019_bib0006
  article-title: ELIZA—a computer program for the study of natural language communication between man and machine
  publication-title: Communications of the ACM
  doi: 10.1145/365153.365168
– ident: 10.1016/j.procs.2018.05.019_bib00026
  doi: 10.18653/v1/P17-1012
– ident: 10.1016/j.procs.2018.05.019_bib00029
  doi: 10.3115/1073083.1073135
– volume: 3
  start-page: 101
  issue: 2
  year: 2012
  ident: 10.1016/j.procs.2018.05.019_bib0003
  article-title: G-Asks: An intelligent automatic question generation system for academic writing support
  publication-title: Dialogue Discourse
  doi: 10.5087/dad.2012.205
– ident: 10.1016/j.procs.2018.05.019_bib00020
  doi: 10.18653/v1/D17-1219
– ident: 10.1016/j.procs.2018.05.019_bib00014
  doi: 10.3115/v1/P15-1086
– ident: 10.1016/j.procs.2018.05.019_bib0004
  doi: 10.3115/1118894.1118897
– ident: 10.1016/j.procs.2018.05.019_bib00012
– ident: 10.1016/j.procs.2018.05.019_bib00028
  doi: 10.3115/v1/D14-1162
– ident: 10.1016/j.procs.2018.05.019_bib0002
  doi: 10.3115/1220575.1220678
– ident: 10.1016/j.procs.2018.05.019_bib0005
– volume: 38
  start-page: 39
  issue: 11
  year: 1995
  ident: 10.1016/j.procs.2018.05.019_bib00010
  article-title: Word Net: a lexical database for English
  publication-title: Communications of the ACM
  doi: 10.1145/219717.219748
– ident: 10.1016/j.procs.2018.05.019_bib0007
– start-page: 465
  year: 2009
  ident: 10.1016/j.procs.2018.05.019_bib00016
– ident: 10.1016/j.procs.2018.05.019_bib0009
– ident: 10.1016/j.procs.2018.05.019_bib00021
  doi: 10.3115/v1/D14-1179
– ident: 10.1016/j.procs.2018.05.019_bib00027
– ident: 10.1016/j.procs.2018.05.019_bib00025
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.procs.2018.05.019_bib00024
  article-title: Long short-term memory
  publication-title: Neural computation
  doi: 10.1162/neco.1997.9.8.1735
– ident: 10.1016/j.procs.2018.05.019_bib00011
– ident: 10.1016/j.procs.2018.05.019_bib00017
  doi: 10.18653/v1/P17-1123
– start-page: 3104
  year: 2014
  ident: 10.1016/j.procs.2018.05.019_bib00022
  article-title: Sequence to sequence learning with neural networks
  publication-title: Advances in neural information processing systems
– ident: 10.1016/j.procs.2018.05.019_bib0001
  doi: 10.18653/v1/D16-1264
SSID ssj0000388917
Score 2.1425006
Snippet With exploding textual data on the internet with e-books, legal documents and products information, it is an opportunity to harness it for applications which...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1041
SubjectTerms Automatic Question Generation
Language Generation
Natural Language Processing
Neural Networks
Title Encoder-Decoder Architectures for Generating Questions
URI https://dx.doi.org/10.1016/j.procs.2018.05.019
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV05T8MwFLYqYGDhRtzKwAaWcjW2R8QhhARiAIktcuxnFYRC1RbExG_n-UhaoKpgYEkat3bTfO67_Pw9Qg4TkJxLFlNm0ormUgKVqDZpzKBAhytnMlWu2AS7ueEPD-K207lq9sK8PbO65u_vov-vUGMbgm23zv4B7nZQbMDXCDoeEXY8_gr489puUx_QM3Dno5OJpQJHvhCopl2-s4t3tiG7YKS6zQM4b1y-uS35cBT0ZBuOwa49n2M77NtV7fYNR4TtxLoc9mzRoV6YfSGw8EUKcsaoJYbxSmJKWyM6Q2zSCz_07JIJRYqXfKqQ9vGCJ6silGVMT7gnTxVjndSsw39TVW0CYZOb9lS6QUo7SBl3y9gywM6nrCtsGY_rj3G8zbLeCFeAuf0lDQmVS_f7cTPTDZUJ4-NuhSwFryE68Wivkg7Ua2S5qcgRBQG9Topv4EdfwI8Q_GgMftSCv0HuL87vTi9pqIxBVZYkgmpdgdEmBUAL0nQTpQqV6gL_aUXMNDM6Bwk8riDLDChUIZklmtMCIBcmN3G2Sebqlxq2SIQeQsqh4gykzKuKV7lWJtXo5TOhuKy2Sdo8hlIF2nhbveS5nIHBNjluO_U9a8rsjxfN8y3DhPYGXYlTZlbHnb99zy5ZtFc-grZH5kaDV9gnC-pt9DgcHLj58gljUXyd
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Encoder-Decoder+Architectures+for+Generating+Questions&rft.jtitle=Procedia+computer+science&rft.au=Singh%2C+Jaspreet&rft.au=Sharma%2C+Yashvardhan&rft.date=2018&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=132&rft.spage=1041&rft.epage=1048&rft_id=info:doi/10.1016%2Fj.procs.2018.05.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2018_05_019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon