Dark‐field hyperspectral imaging for label free detection of nano‐bio‐materials
Nanomaterials are playing an increasingly important role in cancer diagnosis and treatment. Nanoparticle (NP)‐based technologies have been utilized for targeted drug delivery during chemotherapies, photodynamic therapy, and immunotherapy. Another active area of research is the toxicity studies of th...
Gespeichert in:
| Veröffentlicht in: | Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Jg. 13; H. 1; S. e1661 - n/a |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken, USA
John Wiley & Sons, Inc
01.01.2021
Wiley Subscription Services, Inc |
| Schlagworte: | |
| ISSN: | 1939-5116, 1939-0041, 1939-0041 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Nanomaterials are playing an increasingly important role in cancer diagnosis and treatment. Nanoparticle (NP)‐based technologies have been utilized for targeted drug delivery during chemotherapies, photodynamic therapy, and immunotherapy. Another active area of research is the toxicity studies of these nanomaterials to understand the cellular uptake and transport of these materials in cells, tissues, and environment. Traditional techniques such as transmission electron microscopy, and mass spectrometry to analyze NP‐based cellular transport or toxicity effect are expensive, require extensive sample preparation, and are low‐throughput. Dark‐field hyperspectral imaging (DF‐HSI), an integration of spectroscopy and microscopy/imaging, provides the ability to investigate cellular transport of these NPs and to quantify the distribution of them within bio‐materials. DF‐HSI also offers versatility in non‐invasively monitoring microorganisms, single cell, and proteins. DF‐HSI is a low‐cost, label‐free technique that is minimally invasive and is a viable choice for obtaining high‐throughput quantitative molecular analyses. Multimodal imaging modalities such as Fourier transform infrared and Raman spectroscopy are also being integrated with HSI systems to enable chemical imaging of the samples. HSI technology is being applied in surgeries to obtain molecular information about the tissues in real‐time. This article provides brief overview of fundamental principles of DF‐HSI and its application for nanomaterials, protein‐detection, single‐cell analysis, microbiology, surgical procedures along with technical challenges and future integrative approach with other imaging and measurement modalities.
This article is categorized under:
Diagnostic Tools > in vitro Nanoparticle‐Based Sensing
Diagnostic Tools > in vivo Nanodiagnostics and Imaging
Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery
Versatile use of dark‐field hyperspectral imaging for detecting transport of nanomaterials in cells and tissues and for cancer diagnostics. |
|---|---|
| AbstractList | Nanomaterials are playing an increasingly important role in cancer diagnosis and treatment. Nanoparticle (NP)‐based technologies have been utilized for targeted drug delivery during chemotherapies, photodynamic therapy, and immunotherapy. Another active area of research is the toxicity studies of these nanomaterials to understand the cellular uptake and transport of these materials in cells, tissues, and environment. Traditional techniques such as transmission electron microscopy, and mass spectrometry to analyze NP‐based cellular transport or toxicity effect are expensive, require extensive sample preparation, and are low‐throughput. Dark‐field hyperspectral imaging (DF‐HSI), an integration of spectroscopy and microscopy/imaging, provides the ability to investigate cellular transport of these NPs and to quantify the distribution of them within bio‐materials. DF‐HSI also offers versatility in non‐invasively monitoring microorganisms, single cell, and proteins. DF‐HSI is a low‐cost, label‐free technique that is minimally invasive and is a viable choice for obtaining high‐throughput quantitative molecular analyses. Multimodal imaging modalities such as Fourier transform infrared and Raman spectroscopy are also being integrated with HSI systems to enable chemical imaging of the samples. HSI technology is being applied in surgeries to obtain molecular information about the tissues in real‐time. This article provides brief overview of fundamental principles of DF‐HSI and its application for nanomaterials, protein‐detection, single‐cell analysis, microbiology, surgical procedures along with technical challenges and future integrative approach with other imaging and measurement modalities.
This article is categorized under:
Diagnostic Tools > in vitro Nanoparticle‐Based Sensing
Diagnostic Tools > in vivo Nanodiagnostics and Imaging
Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery Nanomaterials are playing an increasingly important role in cancer diagnosis and treatment. Nanoparticle (NP)-based technologies have been utilized for targeted drug delivery during chemotherapies, photodynamic therapy, and immunotherapy. Another active area of research is the toxicity studies of these nanomaterials to understand the cellular uptake and transport of these materials in cells, tissues, and environment. Traditional techniques such as transmission electron microscopy, and mass spectrometry to analyze NP-based cellular transport or toxicity effect are expensive, require extensive sample preparation, and are low-throughput. Dark-field hyperspectral imaging (DF-HSI), an integration of spectroscopy and microscopy/imaging, provides the ability to investigate cellular transport of these NPs and to quantify the distribution of them within bio-materials. DF-HSI also offers versatility in non-invasively monitoring microorganisms, single cell, and proteins. DF-HSI is a low-cost, label-free technique that is minimally invasive and is a viable choice for obtaining high-throughput quantitative molecular analyses. Multimodal imaging modalities such as Fourier transform infrared and Raman spectroscopy are also being integrated with HSI systems to enable chemical imaging of the samples. HSI technology is being applied in surgeries to obtain molecular information about the tissues in real-time. This article provides brief overview of fundamental principles of DF-HSI and its application for nanomaterials, protein-detection, single-cell analysis, microbiology, surgical procedures along with technical challenges and future integrative approach with other imaging and measurement modalities. This article is categorized under: Diagnostic Tools > in vitro Nanoparticle-Based Sensing Diagnostic Tools > in vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.Nanomaterials are playing an increasingly important role in cancer diagnosis and treatment. Nanoparticle (NP)-based technologies have been utilized for targeted drug delivery during chemotherapies, photodynamic therapy, and immunotherapy. Another active area of research is the toxicity studies of these nanomaterials to understand the cellular uptake and transport of these materials in cells, tissues, and environment. Traditional techniques such as transmission electron microscopy, and mass spectrometry to analyze NP-based cellular transport or toxicity effect are expensive, require extensive sample preparation, and are low-throughput. Dark-field hyperspectral imaging (DF-HSI), an integration of spectroscopy and microscopy/imaging, provides the ability to investigate cellular transport of these NPs and to quantify the distribution of them within bio-materials. DF-HSI also offers versatility in non-invasively monitoring microorganisms, single cell, and proteins. DF-HSI is a low-cost, label-free technique that is minimally invasive and is a viable choice for obtaining high-throughput quantitative molecular analyses. Multimodal imaging modalities such as Fourier transform infrared and Raman spectroscopy are also being integrated with HSI systems to enable chemical imaging of the samples. HSI technology is being applied in surgeries to obtain molecular information about the tissues in real-time. This article provides brief overview of fundamental principles of DF-HSI and its application for nanomaterials, protein-detection, single-cell analysis, microbiology, surgical procedures along with technical challenges and future integrative approach with other imaging and measurement modalities. This article is categorized under: Diagnostic Tools > in vitro Nanoparticle-Based Sensing Diagnostic Tools > in vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery. Nanomaterials are playing an increasingly important role in cancer diagnosis and treatment. Nanoparticle (NP)‐based technologies have been utilized for targeted drug delivery during chemotherapies, photodynamic therapy, and immunotherapy. Another active area of research is the toxicity studies of these nanomaterials to understand the cellular uptake and transport of these materials in cells, tissues, and environment. Traditional techniques such as transmission electron microscopy, and mass spectrometry to analyze NP‐based cellular transport or toxicity effect are expensive, require extensive sample preparation, and are low‐throughput. Dark‐field hyperspectral imaging (DF‐HSI), an integration of spectroscopy and microscopy/imaging, provides the ability to investigate cellular transport of these NPs and to quantify the distribution of them within bio‐materials. DF‐HSI also offers versatility in non‐invasively monitoring microorganisms, single cell, and proteins. DF‐HSI is a low‐cost, label‐free technique that is minimally invasive and is a viable choice for obtaining high‐throughput quantitative molecular analyses. Multimodal imaging modalities such as Fourier transform infrared and Raman spectroscopy are also being integrated with HSI systems to enable chemical imaging of the samples. HSI technology is being applied in surgeries to obtain molecular information about the tissues in real‐time. This article provides brief overview of fundamental principles of DF‐HSI and its application for nanomaterials, protein‐detection, single‐cell analysis, microbiology, surgical procedures along with technical challenges and future integrative approach with other imaging and measurement modalities.This article is categorized under:Diagnostic Tools > in vitro Nanoparticle‐Based SensingDiagnostic Tools > in vivo Nanodiagnostics and ImagingImplantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery Nanomaterials are playing an increasingly important role in cancer diagnosis and treatment. Nanoparticle (NP)‐based technologies have been utilized for targeted drug delivery during chemotherapies, photodynamic therapy, and immunotherapy. Another active area of research is the toxicity studies of these nanomaterials to understand the cellular uptake and transport of these materials in cells, tissues, and environment. Traditional techniques such as transmission electron microscopy, and mass spectrometry to analyze NP‐based cellular transport or toxicity effect are expensive, require extensive sample preparation, and are low‐throughput. Dark‐field hyperspectral imaging (DF‐HSI), an integration of spectroscopy and microscopy/imaging, provides the ability to investigate cellular transport of these NPs and to quantify the distribution of them within bio‐materials. DF‐HSI also offers versatility in non‐invasively monitoring microorganisms, single cell, and proteins. DF‐HSI is a low‐cost, label‐free technique that is minimally invasive and is a viable choice for obtaining high‐throughput quantitative molecular analyses. Multimodal imaging modalities such as Fourier transform infrared and Raman spectroscopy are also being integrated with HSI systems to enable chemical imaging of the samples. HSI technology is being applied in surgeries to obtain molecular information about the tissues in real‐time. This article provides brief overview of fundamental principles of DF‐HSI and its application for nanomaterials, protein‐detection, single‐cell analysis, microbiology, surgical procedures along with technical challenges and future integrative approach with other imaging and measurement modalities. This article is categorized under: Diagnostic Tools > in vitro Nanoparticle‐Based Sensing Diagnostic Tools > in vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery Versatile use of dark‐field hyperspectral imaging for detecting transport of nanomaterials in cells and tissues and for cancer diagnostics. |
| Author | Devireddy, Ram Sahu, Sushant P. Mehta, Nishir Gartia, Manas Ranjan Shaik, Shahensha |
| Author_xml | – sequence: 1 givenname: Nishir orcidid: 0000-0003-4196-2065 surname: Mehta fullname: Mehta, Nishir organization: Louisiana State University – sequence: 2 givenname: Sushant P. surname: Sahu fullname: Sahu, Sushant P. organization: Louisiana State University – sequence: 3 givenname: Shahensha surname: Shaik fullname: Shaik, Shahensha organization: Louisiana State University – sequence: 4 givenname: Ram surname: Devireddy fullname: Devireddy, Ram organization: Louisiana State University – sequence: 5 givenname: Manas Ranjan orcidid: 0000-0001-6243-6780 surname: Gartia fullname: Gartia, Manas Ranjan email: mgartia@lsu.edu organization: Louisiana State University |
| BookMark | eNp1kM9OAjEQhxuDiYAefINNvOgB6LS7hT0S_JsQvEg8bkqZYrFssV1CuPkIPqNPYlc4Eb3MzOH7TTtfizRKVyIhl0C7QCnrbUtZdkEIOCFNyHneoTSFxmHOAMQZaYWwpFSkgmVNMr2V_v3780sbtPPkbbdGH9aoKi9tYlZyYcpFop1PrJyhTbRHTOZYRcC4MnE6ic-5GJ-Zuq5khd5IG87JqY4NLw69Tab3dy-jx874-eFpNBx3FAeADktnkDOeSdBUSZkJBVQBkzwDGY_hqAdsRgci04oznPdTyCkokaWgkUsOvE2u93vX3n1sMFTFygSF1soS3SYULOVU9IFmaUSvjtCl2_gy_i5SYpDmwHIRqd6eUt6F4FEXylSyPjYaMbYAWtSai1pzUWuOiZujxNpHcX73J3vYvjUWd_-DxetkOPlN_AB1GpEk |
| CitedBy_id | crossref_primary_10_1016_j_envint_2023_108134 crossref_primary_10_1016_j_jpha_2023_07_007 crossref_primary_10_1002_admi_202201618 crossref_primary_10_1016_j_tplants_2021_12_006 crossref_primary_10_1177_25165984211038882 crossref_primary_10_1016_j_arabjc_2021_103344 crossref_primary_10_2147_IJN_S355007 crossref_primary_10_1016_j_jclepro_2024_143454 crossref_primary_10_1515_pac_2022_0401 crossref_primary_10_1016_j_ijpharm_2021_120661 crossref_primary_10_1016_j_reactfunctpolym_2024_105959 crossref_primary_10_7717_peerj_15566 crossref_primary_10_1016_j_bios_2025_117308 crossref_primary_10_3390_ma15134572 crossref_primary_10_1016_j_jddst_2025_107057 crossref_primary_10_1016_j_ijbiomac_2022_02_137 crossref_primary_10_1021_acsomega_5c00852 crossref_primary_10_1002_advs_202508506 crossref_primary_10_1016_j_enchem_2022_100070 crossref_primary_10_3390_jfb16090351 crossref_primary_10_3390_s23031437 crossref_primary_10_1038_s41467_023_39628_6 crossref_primary_10_1016_j_mtsust_2025_101153 crossref_primary_10_1016_j_trac_2023_117186 crossref_primary_10_1016_j_eurpolymj_2024_113285 |
| Cites_doi | 10.1021/cn500242z 10.1117/1.JBO.22.8.086009 10.1021/jacs.6b00179 10.1038/srep23453 10.1016/j.talanta.2012.11.042 10.1016/j.jfoodeng.2015.11.024 10.1111/j.1751-1097.1998.tb02480.x 10.1117/12.908763 10.1109/AIPR.2011.6176379 10.1016/j.bpj.2013.06.022 10.1038/s41598-017-13560-4 10.1002/adma.200701297 10.1038/srep05948 10.1016/j.jfoodeng.2015.08.023 10.1021/ac500376e 10.1021/acsnano.5b04451 10.1039/C6FD00069J 10.1038/nmat2162 10.1117/12.700081 10.1117/1.2434950 10.1007/s00216-004-2708-9 10.1002/jrs.2683 10.1021/nl0610836 10.1021/ja044087q 10.1002/anie.201301930 10.1021/acsami.9b03005 10.1038/ncomms3890 10.1002/bip.20236 10.1021/es500898j 10.1021/acs.chemrev.7b00088 10.1021/acssensors.8b01073 10.1109/IEMBS.2008.4649387 10.1016/j.ab.2015.11.016 10.1021/ac500785u 10.1021/jacs.6b10727 10.1073/pnas.97.3.996 10.1111/1541-4337.12314 10.1021/acs.analchem.7b01882 10.1016/S0140-6736(05)67696-9 10.1006/abio.1998.2760 10.1039/c2cs35031a 10.1364/BOE.9.001097 10.1007/s00216-017-0563-8 10.1080/05704920701551530 10.1016/j.aca.2011.08.020 10.1038/nnano.2012.186 10.1021/ja5112628 10.1021/nl103025u 10.1016/j.biomaterials.2015.01.072 10.1109/TSMC.1973.4309314 10.1021/ja109316p 10.1021/acs.analchem.6b02429 10.1021/jacs.7b08523 10.1038/nprot.2013.030 10.1002/cncr.23286 10.1115/1.4038638 10.1016/j.talanta.2015.01.012 10.1111/1541-4337.12432 10.1038/nprot.2014.110 10.1016/j.nano.2013.03.005 10.1117/1.JBO.17.7.076005 10.1007/s11947-012-0933-3 10.1038/ncomms2722 10.1021/acsnano.6b08282 10.1117/1.3540657 10.13031/2013.42345 10.1073/pnas.1400502111 10.1021/nn9010973 10.1002/anie.201305980 10.1051/aas:1996266 10.1021/nn3036232 10.1016/j.bios.2015.06.059 10.1016/j.talanta.2011.03.061 10.1021/ac0601967 10.1117/1.JBO.17.3.036003 10.1039/C6CC04283J 10.1021/am507218g 10.1021/nl034372s 10.1002/anie.201604710 10.4161/cbt.6.3.4018 10.1146/annurev.physchem.58.032806.104607 10.1002/biot.200800358 10.1002/adhm.201300003 10.1021/jp984796o 10.1002/jemt.22637 10.1039/C8NR01879K 10.1155/2015/127235 10.1002/smll.201201061 10.1021/jp057170o 10.1002/ange.201309307 10.1002/jbio.201300067 10.1255/jnirs.1003 10.1117/12.2508731 10.1117/1.3505010 10.1021/acsami.9b14110 10.3390/cancers11060756 10.1039/C3CS60346F 10.1002/adfm.201602966 10.1073/pnas.0607826104 10.1021/nn404694e 10.1021/acssensors.9b00946 10.1088/0031-9155/58/11/R37 10.1038/ncomms14843 10.1073/pnas.0708090105 10.1109/TBME.2010.2049110 10.1038/nprot.2016.036 10.1117/1.JBO.19.1.010901 10.1016/j.talanta.2010.05.059 10.3844/jcssp.2007.419.423 10.1038/nnano.2014.73 10.1002/1097-0320(20010401)43:4<239::AID-CYTO1056>3.0.CO;2-Z 10.1046/j.0022-202x.2001.01577.x 10.1109/CSAE.2012.6272897 10.1021/ja047118q 10.1021/ac7017348 10.1109/MEMB.2004.1360407 10.1038/ncomms14402 10.1366/000370206775382758 10.1117/1.JBO.19.5.051207 10.1167/iovs.15-17406 10.1038/nbt1100 10.1109/10.7291 10.1007/s00464-012-2701-x 10.1088/0031-9155/44/4/012 10.1126/science.1212822 10.1021/acs.energyfuels.7b02715 10.1016/j.bios.2013.09.070 10.1021/jacs.6b09538 10.1038/srep10142 10.1021/ac070367n 10.1255/jnirs.1043 10.1039/C6AN02384C 10.3390/bios8040107 10.1038/ncomms12499 10.4218/etrij.06.0106.0061 10.1021/acsami.9b14980 10.1039/C7CS00451F 10.1039/C4AN00636D 10.1021/acs.analchem.8b01024 10.1038/s41467-019-08769-y 10.1021/ac401673e 10.1016/j.compbiomed.2017.06.018 10.1364/OE.11.001223 10.1186/1743-8977-10-50 10.1039/c3cc44182b 10.1111/j.1349-7006.2011.01849.x 10.1038/srep44027 10.1016/j.jvs.2011.06.022 10.1016/j.bios.2010.07.121 10.1016/j.jfoodeng.2013.11.006 10.1021/acs.jpcc.6b02401 10.1002/biot.201800741 10.1039/C7SC00990A 10.1038/nnano.2008.246 10.3233/BSI-160133 10.1038/s41597-019-0260-x 10.1021/nl301159v 10.3390/bios9020065 10.1021/jacs.7b12772 10.1126/science.1114849 10.1117/1.2003369 |
| ContentType | Journal Article |
| Copyright | 2020 Wiley Periodicals LLC. 2021 Wiley Periodicals LLC. |
| Copyright_xml | – notice: 2020 Wiley Periodicals LLC. – notice: 2021 Wiley Periodicals LLC. |
| DBID | AAYXX CITATION 7QL 7QO 7QP 7TK 7U7 8FD C1K FR3 K9. M7N P64 RC3 7X8 |
| DOI | 10.1002/wnan.1661 |
| DatabaseName | CrossRef Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Genetics Abstracts |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-0041 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_wnan_1661 WNAN1661 |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: Louisiana Board of Regents funderid: LEQSF (2017‐20)‐RD‐A‐04 – fundername: Louisiana State University Start up fund |
| GroupedDBID | --- 05W 0R~ 1OC 1VH 31~ 33P 4.4 53G 5DZ 8-0 8-1 8UM A00 AAESR AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADKYN ADMGS ADNMO ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI DCZOG DRFUL DRMAN DRSTM EBS EJD EMOBN F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXMAN MXSTM MY. MY~ O66 O9- P2W ROL SUPJJ SV3 WBKPD WHWMO WIH WIK WOHZO WVDHM WXSBR WYJ XV2 ZZTAW AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION LH4 7QL 7QO 7QP 7TK 7U7 8FD C1K FR3 K9. M7N P64 RC3 7X8 |
| ID | FETCH-LOGICAL-c3111-24b19235a1f0caa56c10c12a351a0023ef82b0865fc32ed741901c6541fe3a313 |
| IEDL.DBID | DRFUL |
| ISSN | 1939-5116 1939-0041 |
| IngestDate | Fri Jul 11 15:35:50 EDT 2025 Sat Nov 29 14:40:41 EST 2025 Sat Nov 29 02:10:45 EST 2025 Tue Nov 18 22:18:54 EST 2025 Wed Jan 22 16:31:20 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3111-24b19235a1f0caa56c10c12a351a0023ef82b0865fc32ed741901c6541fe3a313 |
| Notes | Funding information Nishir Mehta and Sushant Sahu contributed equally to this work. Louisiana Board of Regents, Grant/Award Number: LEQSF (2017‐20)‐RD‐A‐04; Louisiana State University Start up fund ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-4196-2065 0000-0001-6243-6780 |
| PQID | 2468491296 |
| PQPubID | 2034620 |
| PageCount | 28 |
| ParticipantIDs | proquest_miscellaneous_2430671054 proquest_journals_2468491296 crossref_citationtrail_10_1002_wnan_1661 crossref_primary_10_1002_wnan_1661 wiley_primary_10_1002_wnan_1661_WNAN1661 |
| PublicationCentury | 2000 |
| PublicationDate | January/February 2021 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: January/February 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
| PublicationTitle | Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2007; 104 2010; 10 2014; 139 2013; 4 2010; 15 2013; 2 2019; 11 2019; 10 2017; 88 2015; 74 2004; 23 2017; 89 1999; 44 2020; 15 2011; 54 2019; 18 2008; 105 2012; 17 2013; 7 2013; 8 2012; 12 2013; 6 2007; 79 2013; 9 2018; 47 2001; 43 2018; 9 2018; 8 2013; 58 2010; 26 2015; 137 2006; 28 2013; 52 2000; 97 2007; 6 2014; 19 2008; 114 2008; 20 2007; 3 2005; 77 2012; 20 2014; 126 2019; 9 2019; 4 2019; 6 2015; 51 2013; 105 2013; 85 2014; 48 2006; 110 1999; 103 2007; 12 2011; 133 2014; 43 2017; 139 2016; 11 1998; 68 2016; 5 2016; 6 2016; 7 2018; 17 2011; 706 2005; 366 2002; 62 2005; 127 2015; 2015 2011; 85 2018; 90 2005; 10 2017; 142 1973; SMC‐3 2016; 170 2018; 10 2016; 26 1996; 119 2016; 174 2012; 41 1998; 262 2017; 7 2017; 8 2017; 1 2004; 126 2010; 57 2013; 27 2006; 78 2013; 21 2008b 2008a 2008; 7 1988; 35 2008; 3 2011; 16 2012; 55 2016; 79 2005; 23 2003; 11 2017; 117 2013; 19 2006; 60 2017; 409 2014; 4 2004; 379 2013; 10 2017; 32 2003; 3 2014; 9 2016; 193 2014; 6 2016; 88 2014; 53 2011; 334 2015; 5 2018; 140 2013; 49 2012 2011 2017; 22 2008 2007 2016; 52 2006; 6 2004 2014; 111 2015; 9 2015; 7 2016; 120 2016; 57 2007; 58 2014; 86 2006; 311 2016; 55 2010; 82 2011; 102 2020 2017; 11 2011; 42 2019 2016; 495 2016; 139 2016; 138 2009; 4 2009; 3 2007; 42 2012; 7 2008; 80 2001; 117 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_131_1 e_1_2_10_158_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_135_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_154_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_120_1 e_1_2_10_166_1 e_1_2_10_147_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_143_1 e_1_2_10_45_1 Haka A. S. (e_1_2_10_54_1) 2002; 62 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 Wang Y. W. (e_1_2_10_149_1) 2017; 1 e_1_2_10_151_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_167_1 e_1_2_10_148_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_156_1 Bohren C. (e_1_2_10_20_1) 2008 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 e_1_2_10_145_1 e_1_2_10_168_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_126_1 e_1_2_10_160_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_122_1 e_1_2_10_164_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_108_1 e_1_2_10_130_1 e_1_2_10_157_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_96_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_153_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 Weinkauf H. (e_1_2_10_150_1) 2009; 4 e_1_2_10_146_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_161_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_47_1 e_1_2_10_89_1 |
| References_xml | – year: 2011 – volume: 140 issue: 2 year: 2018 article-title: Single‐cell analysis using hyperspectral imaging modalities publication-title: Journal of Biomechanical Engineering – volume: 11 start-page: 664 issue: 4 year: 2016 end-page: 687 article-title: Using Raman spectroscopy to characterize biological materials publication-title: Nature Protocols – volume: 9 start-page: 474 issue: 6 year: 2014 end-page: 480 article-title: Quantitative imaging of single mRNA splice variants in living cells publication-title: Nature Nanotechnology – volume: 42 start-page: 493 issue: 5 year: 2007 end-page: 541 article-title: Raman spectroscopy of biological tissues publication-title: Applied Spectroscopy Reviews – volume: 23 start-page: 741 issue: 6 year: 2005 end-page: 745 article-title: A molecular ruler based on plasmon coupling of single gold and silver nanoparticles publication-title: Nature Biotechnology – volume: 74 start-page: 341 year: 2015 end-page: 346 article-title: A nanoplasmonic biosensor for label‐free multiplex detection of cancer biomarkers publication-title: Biosensors and Bioelectronics – volume: 7 start-page: 1 issue: 1 year: 2017 end-page: 12 article-title: Hyperspectral imaging for presymptomatic detection of tobacco disease with successive projections algorithm and machine‐learning classifiers publication-title: Scientific Reports – volume: 12 start-page: 3973 issue: 8 year: 2012 end-page: 3978 article-title: Nano‐FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution publication-title: Nano Letters – volume: 4 start-page: 871 issue: 6 year: 2009 end-page: 879 article-title: Enhanced dark field microscopy for rapid artifact‐free detection of nanoparticle binding to cells and hyphae publication-title: Biotechnology Journal: Healthcare Nutrition Technology – volume: 10 issue: 4 year: 2005 article-title: Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development publication-title: Journal of Biomedical Optics – volume: 15 issue: 6 year: 2010 article-title: Identification of different bacterial species in biofilms using confocal Raman microscopy publication-title: Journal of Biomedical Optics – volume: 120 start-page: 7295 issue: 13 year: 2016 end-page: 7298 article-title: Hyperspectral dark field optical microscopy of single silver nanospheres publication-title: The Journal of Physical Chemistry C – volume: 6 year: 2016 article-title: Quantitative non‐invasive cell characterisation and discrimination based on multispectral autofluorescence features publication-title: Scientific Reports – volume: 126 start-page: 98 year: 2014 end-page: 106 article-title: A method for nondestructive prediction of pork meat quality and safety attributes by hyperspectral imaging technique publication-title: Journal of Food Engineering – volume: 86 start-page: 5513 issue: 11 year: 2014 end-page: 5518 article-title: New insights into electrocatalysis based on plasmon resonance for the real‐time monitoring of catalytic events on single gold nanorods publication-title: Analytical Chemistry – volume: 79 start-page: 4709 issue: 12 year: 2007 end-page: 4715 article-title: Characterization of a near‐infrared laparoscopic hyperspectral imaging system for minimally invasive surgery publication-title: Analytical Chemistry – volume: 48 start-page: 8760 issue: 15 year: 2014 end-page: 8767 article-title: Potential of hyperspectral imaging microscopy for semi‐quantitative analysis of nanoparticle uptake by protozoa publication-title: Environmental Science & Technology – volume: 17 start-page: 104 issue: 1 year: 2018 end-page: 122 article-title: Fourier transform infrared and Raman and hyperspectral imaging techniques for quality determinations of powdery foods: A review publication-title: Comprehensive Reviews in Food Science and Food Safety – volume: 11 start-page: 756 issue: 6 year: 2019 article-title: In‐vivo and ex‐vivo tissue analysis through hyperspectral imaging techniques: Revealing the invisible features of cancer publication-title: Cancers – volume: 7 year: 2017 article-title: On/off‐switchable LSPR nano‐immunoassay for troponin‐T publication-title: Scientific Reports – volume: 193 start-page: 371 year: 2016 end-page: 385 article-title: Imaging electrocatalytic processes on single gold nanorods publication-title: Faraday Discussions – volume: 26 start-page: 404 issue: 2 year: 2010 end-page: 410 article-title: Gold nanorod‐based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma publication-title: Biosensors and Bioelectronics – volume: 53 start-page: 295 year: 2014 end-page: 300 article-title: A gold nanoparticles colorimetric assay for label‐free detection of protein kinase activity based on phosphorylation protection against exopeptidase cleavage publication-title: Biosensors and Bioelectronics – volume: 137 start-page: 43 year: 2015 end-page: 54 article-title: Recent applications of hyperspectral imaging in microbiology publication-title: Talanta – volume: 133 start-page: 7376 issue: 19 year: 2011 end-page: 7383 article-title: Imaging secondary structure of individual amyloid fibrils of a β2‐microglobulin fragment using near‐field infrared spectroscopy publication-title: Journal of the American Chemical Society – volume: 52 start-page: 9933 issue: 64 year: 2016 end-page: 9936 article-title: Plasmon resonance scattering at perovskite CH NH PbI coated single gold nanoparticles: Evidence for electron transfer publication-title: Chemical Communications – volume: 51 start-page: 226 year: 2015 end-page: 237 article-title: Rapid determination of plasmonic nanoparticle agglomeration status in blood publication-title: Biomaterials – year: 2008 – volume: 12 issue: 1 year: 2007 article-title: Snapshot hyperspectral imaging in ophthalmology publication-title: Journal of Biomedical Optics – volume: 706 start-page: 8 issue: 1 year: 2011 end-page: 24 article-title: Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review publication-title: Analytica Chimica Acta – volume: 2015 start-page: 1 year: 2015 end-page: 12 article-title: Impact of silver and iron nanoparticle exposure on cholesterol uptake by macrophages publication-title: Journal of Nanomaterials – volume: 6 start-page: 439 issue: 3 year: 2007 end-page: 446 article-title: Medical hyperspectral imaging to facilitate residual tumor identification during surgery publication-title: Cancer Biology & Therapy – volume: 138 start-page: 6765 issue: 21 year: 2016 end-page: 6773 article-title: The ligand shell as an energy barrier in surface reactions on transition metal nanoparticles publication-title: Journal of the American Chemical Society – volume: 80 start-page: 984 issue: 4 year: 2008 end-page: 989 article-title: Label‐free plasmonic detection of biomolecular binding by a single gold nanorod publication-title: Analytical Chemistry – volume: 10 start-page: 12805 issue: 26 year: 2018 end-page: 12812 article-title: Galvanic exchange process visualized on single silver nanoparticles via dark‐field microscopic imaging publication-title: Nanoscale – volume: 43 start-page: 3835 issue: 11 year: 2014 end-page: 3853 article-title: Plasmonic nanomaterials for biodiagnostics publication-title: Chemical Society Reviews – volume: 174 start-page: 92 year: 2016 end-page: 100 article-title: Lamb muscle discrimination using hyperspectral imaging: Comparison of various machine learning algorithms publication-title: Journal of Food Engineering – year: 2019 – volume: 102 start-page: 852 issue: 4 year: 2011 end-page: 857 article-title: Cancer detection using infrared hyperspectral imaging publication-title: Cancer Science – volume: 138 start-page: 16686 issue: 51 year: 2016 end-page: 16695 article-title: Photodynamic therapy mediated by nontoxic core–shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumor immunity and antimetastatic effect on breast cancer publication-title: Journal of the American Chemical Society – volume: 82 start-page: 803 issue: 2 year: 2010 end-page: 809 article-title: Label‐free optical diagnosis of hepatitis B virus with genetically engineered fusion proteins publication-title: Talanta – volume: 17 issue: 7 year: 2012 article-title: Hyperspectral imaging and quantitative analysis for prostate cancer detection publication-title: Journal of Biomedical Optics – volume: 4 year: 2014 article-title: Spatiotemporal mapping of three dimensional rotational dynamics of single ultrasmall gold nanorods publication-title: Scientific Reports – volume: 139 start-page: 583 issue: 2 year: 2016 end-page: 586 article-title: Label‐free imaging of neurotransmitter acetylcholine at neuromuscular junctions with stimulated Raman scattering publication-title: Journal of the American Chemical Society – volume: 11 start-page: 46462 issue: 50 year: 2019 end-page: 46471 article-title: Core–shell gold/silver nanoparticles for localized surface Plasmon resonance‐based naked‐eye toxin biosensing publication-title: ACS Applied Materials & Interfaces – volume: 5 start-page: 10142 year: 2015 article-title: Brightening gold nanoparticles: New sensing approach based on plasmon resonance energy transfer publication-title: Scientific Reports – volume: 32 start-page: 2673 issue: 3 year: 2017 end-page: 2680 article-title: Photocatalytic activity of reduced graphene oxide–gold nanoparticle nanomaterials: Interaction with asphaltene and conversion of a model compound publication-title: Energy & Fuels – volume: 137 start-page: 1903 issue: 5 year: 2015 end-page: 1908 article-title: Single gold@ silver nanoprobes for real‐time tracing the entire autophagy process at single‐cell level publication-title: Journal of the American Chemical Society – volume: 9 start-page: 1771 issue: 8 year: 2014 end-page: 1791 article-title: Using Fourier transform IR spectroscopy to analyze biological materials publication-title: Nature Protocols – volume: 8 start-page: 107 issue: 4 year: 2018 article-title: Raman spectroscopy and microscopy applications in cardiovascular diseases: From molecules to organs publication-title: Biosensors – volume: 126 start-page: 12669 issue: 39 year: 2004 end-page: 12676 article-title: A comparative analysis of localized and propagating surface plasmon resonance sensors: The binding of concanavalin A to a monosaccharide functionalized self‐assembled monolayer publication-title: Journal of the American Chemical Society – volume: 90 start-page: 8896 issue: 15 year: 2018 end-page: 8904 article-title: FT‐IR hyperspectral imaging and artificial neural network analysis for identification of pathogenic bacteria publication-title: Analytical Chemistry – volume: 60 start-page: 1 issue: 1 year: 2006 end-page: 8 article-title: Raman and infrared microspectral imaging of mitotic cells publication-title: Applied Spectroscopy – volume: 4 start-page: 1 issue: 1 year: 2013 end-page: 9 article-title: Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy publication-title: Nature Communications – year: 2007 – volume: 117 start-page: 12942 issue: 20 year: 2017 end-page: 13038 article-title: Synthesis, assembly, and applications of hybrid nanostructures for biosensing publication-title: Chemical Reviews – volume: 85 start-page: 9564 issue: 20 year: 2013 end-page: 9571 article-title: Quantitative real‐time imaging of protein–protein interactions by LSPR detection with micropatterned gold nanoparticles publication-title: Analytical Chemistry – volume: 19 issue: 1 year: 2014 article-title: Medical hyperspectral imaging: A review publication-title: Journal of Biomedical Optics – volume: 16 issue: 2 year: 2011 article-title: Hyperspectral imaging of atherosclerotic plaques in vitro publication-title: Journal of Biomedical Optics – volume: 7 start-page: 442 year: 2008 end-page: 453 – volume: 11 start-page: 1223 issue: 10 year: 2003 end-page: 1236 article-title: Multispectral digital colposcopy for in vivo detection of cervical cancer publication-title: Optics Express – volume: 78 start-page: 4416 issue: 13 year: 2006 end-page: 4423 article-title: Improving the instrumental resolution of sensors based on localized surface plasmon resonance publication-title: Analytical Chemistry – volume: 58 start-page: R37 issue: 11 year: 2013 end-page: R61 article-title: Optical properties of biological tissues: A review publication-title: Physics in Medicine & Biology – volume: 114 start-page: 13 issue: 1 year: 2008 end-page: 21 article-title: Use of hyperspectral imaging to distinguish normal, precancerous, and cancerous cells publication-title: Cancer Cytopathology: Interdisciplinary International Journal of the American Cancer Society – volume: 142 start-page: 248 issue: 2 year: 2017 end-page: 256 article-title: Analytical methods based on the light‐scattering of plasmonic nanoparticles at the single particle level with dark‐field microscopy imaging publication-title: Analyst – volume: 55 start-page: 1997 issue: 5 year: 2012 end-page: 2006 article-title: Acousto‐optic tunable filter hyperspectral microscope imaging method for characterizing spectra from foodborne pathogens publication-title: Transactions of the ASABE – volume: 18 start-page: 853 issue: 4 year: 2019 end-page: 866 article-title: Principles of hyperspectral microscope imaging techniques and their applications in food quality and safety detection: A review publication-title: Comprehensive Reviews in Food Science and Food Safety – volume: 19 issue: 5 year: 2013 article-title: Hyperspectral fluorescence imaging for cellular iron mapping in the in vitro model of Parkinson's disease publication-title: Journal of Biomedical Optics – volume: 103 start-page: 4212 issue: 21 year: 1999 end-page: 4217 article-title: Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles publication-title: The Journal of Physical Chemistry B – volume: 126 start-page: 2911 issue: 11 year: 2014 end-page: 2916 article-title: Identification of a critical intermediate in galvanic exchange reactions by single‐nanoparticle‐resolved kinetics publication-title: Angewandte Chemie – volume: 22 issue: 8 year: 2017 article-title: Label‐free reflectance hyperspectral imaging for tumor margin assessment: A pilot study on surgical specimens of cancer patients publication-title: Journal of Biomedical Optics – volume: 49 start-page: 7531 issue: 68 year: 2013 end-page: 7533 article-title: Detection of DNA induced gold nanoparticle aggregation with dark field imaging publication-title: Chemical Communications – volume: 9 start-page: 234 issue: 2 year: 2013 end-page: 240 article-title: Distance‐mediated plasmonic dimers for reusable colorimetric switches: A measurable peak shift of more than 60 nm publication-title: Small – volume: 89 start-page: 7262 issue: 13 year: 2017 end-page: 7268 article-title: In situ detection and imaging of telomerase activity in cancer cell lines via disassembly of plasmonic core–satellites nanostructured probe publication-title: Analytical Chemistry – volume: 139 start-page: 4411 issue: 18 year: 2014 end-page: 4444 article-title: Vibrational spectroscopic methods for cytology and cellular research publication-title: Analyst – volume: 379 start-page: 920 issue: 7–8 year: 2004 end-page: 930 article-title: A unified view of propagating and localized surface plasmon resonance biosensors publication-title: Analytical and Bioanalytical Chemistry – volume: 3 start-page: 598 issue: 10 year: 2008 end-page: 602 article-title: Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy publication-title: Nature Nanotechnology – volume: 10 start-page: 1 issue: 1 year: 2019 end-page: 13 article-title: Single gold‐bridged nanoprobes for identification of single point DNA mutations publication-title: Nature Communications – volume: 97 start-page: 996 issue: 3 year: 2000 end-page: 1001 article-title: Single‐target molecule detection with nonbleaching multicolor optical immunolabels publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 334 start-page: 1377 issue: 6061 year: 2011 end-page: 1380 article-title: Carving at the nanoscale: Sequential galvanic exchange and Kirkendall growth at room temperature publication-title: Science – volume: 11 start-page: 42943 issue: 46 year: 2019 end-page: 42955 article-title: Label‐free pathogen detection based on yttrium‐doped carbon nanoparticles up to single‐cell resolution publication-title: ACS Applied Materials & Interfaces – volume: 9 start-page: 1097 issue: 3 year: 2018 end-page: 1110 article-title: Real‐time, label‐free, intraoperative visualization of peripheral nerves and micro‐vasculatures using multimodal optical imaging techniques publication-title: Biomedical Optics Express – volume: 79 start-page: 349 issue: 5 year: 2016 end-page: 358 article-title: Hyperspectral imaging of nanoparticles in biological samples: Simultaneous visualization and elemental identification publication-title: Microscopy Research and Technique – volume: 42 start-page: 167 issue: 2 year: 2011 end-page: 173 article-title: Time‐lapse Raman imaging of single live lymphocytes publication-title: Journal of Raman Spectroscopy – volume: 23 start-page: 40 issue: 5 year: 2004 end-page: 49 article-title: A hyperspectral imaging system for in vivo optical diagnostics publication-title: IEEE Engineering in Medicine and Biology Magazine – volume: 119 start-page: 531 issue: 3 year: 1996 end-page: 546 article-title: 3D: The next generation near‐infrared imaging spectrometer publication-title: Astronomy and Astrophysics Supplement Series – volume: 6 start-page: 306 issue: 2 year: 2014 end-page: 315 article-title: Hyperspectral imaging signatures detect amyloidopathy in Alzheimer's mouse retina well before onset of cognitive decline publication-title: ACS Chemical Neuroscience – volume: 47 start-page: 2485 issue: 7 year: 2018 end-page: 2508 article-title: Imaging the chemical activity of single nanoparticles with optical microscopy publication-title: Chemical Society Reviews – volume: 111 start-page: 7191 issue: 20 year: 2014 end-page: 7196 article-title: Ultrabroadband infrared nanospectroscopic imaging publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 8 start-page: 1 issue: 1 year: 2017 end-page: 10 article-title: Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy publication-title: Nature Communications – volume: 20 start-page: 483 issue: 5 year: 2012 end-page: 508 article-title: Hyperspectral imaging: A review of best practice, performance and pitfalls for in‐line and on‐line applications publication-title: Journal of Near Infrared Spectroscopy – volume: 4 year: 2013 article-title: Highly sensitive sulphide mapping in live cells by kinetic spectral analysis of single Au–Ag core–shell nanoparticles publication-title: Nature Communications – volume: 58 start-page: 267 year: 2007 end-page: 297 article-title: Localized surface plasmon resonance spectroscopy and sensing publication-title: Annual Review of Physical Chemistry – volume: 54 start-page: 1679 issue: 6 year: 2011 end-page: 1688 article-title: Evaluation of hyperspectral technology for assessing the presence and severity of peripheral artery disease publication-title: Journal of Vascular Surgery – volume: 11 start-page: 2085 issue: 2 year: 2017 end-page: 2093 article-title: Photoinduced electron transfer process visualized on single silver nanoparticles publication-title: ACS Nano – volume: 77 start-page: 264 issue: 5 year: 2005 end-page: 272 article-title: Direct observation of spectral differences between normal and basal cell carcinoma (BCC) tissues using confocal Raman microscopy publication-title: Biopolymers: Original Research on Biomolecules – volume: 9 start-page: 1018 issue: 7 year: 2013 end-page: 1026 article-title: Highly sensitive localized surface plasmon resonance immunosensor for label‐free detection of HIV‐1 publication-title: Nanomedicine: Nanotechnology, Biology and Medicine – volume: 52 start-page: 11542 issue: 44 year: 2013 end-page: 11545 article-title: Nanoplasmonic imaging of latent fingerprints and identification of cocaine publication-title: Angewandte Chemie International Edition – year: 2008b – volume: 88 start-page: 60 year: 2017 end-page: 71 article-title: Hyperspectral image analysis for rapid and accurate discrimination of bacterial infections: A benchmark study publication-title: Computers in Biology and Medicine – volume: 2 start-page: 976 issue: 7 year: 2013 end-page: 982 article-title: Gold nanoparticle‐loaded neural stem cells for photothermal ablation of cancer publication-title: Advanced Healthcare Materials – volume: 4 start-page: 1950 issue: 7 year: 2019 end-page: 1956 article-title: Dark‐field microwells toward high‐throughput direct miRNA sensing with gold nanoparticles publication-title: ACS Sensors – volume: 68 start-page: 141 issue: 2 year: 1998 end-page: 142 article-title: PhotochemCAD: A computer‐aided design and research tool in photochemistry publication-title: Photochemistry and Photobiology – volume: 10 start-page: 4962 issue: 12 year: 2010 end-page: 4969 article-title: An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media publication-title: Nano Letters – volume: 105 start-page: 244 year: 2013 end-page: 249 article-title: Determination of total viable count (TVC) in chicken breast fillets by near‐infrared hyperspectral imaging and spectroscopic transforms publication-title: Talanta – volume: 127 start-page: 2264 issue: 7 year: 2005 end-page: 2271 article-title: Detection of a biomarker for Alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor publication-title: Journal of the American Chemical Society – volume: 170 start-page: 8 year: 2016 end-page: 15 article-title: Rapid and non‐destructive detection of chicken adulteration in minced beef using visible near‐infrared hyperspectral imaging and machine learning publication-title: Journal of Food Engineering – volume: 86 start-page: 4663 issue: 10 year: 2014 end-page: 4667 article-title: High‐throughput sulfide sensing with colorimetric analysis of single Au–Ag core–shell nanoparticles publication-title: Analytical Chemistry – volume: 105 start-page: 602 issue: 3 year: 2013 end-page: 608 article-title: Quantitative imaging of protein secretions from single cells in real time publication-title: Biophysical Journal – volume: 41 start-page: 2707 issue: 7 year: 2012 end-page: 2717 article-title: Long‐term tracking of cells using inorganic nanoparticles as contrast agents: Are we there yet? publication-title: Chemical Society Reviews – volume: 35 start-page: 842 issue: 10 year: 1988 end-page: 850 article-title: Multispectral imaging of burn wounds: A new clinical instrument for evaluating burn depth publication-title: IEEE Transactions on Biomedical Engineering – volume: 117 start-page: 1452 issue: 6 year: 2001 end-page: 1457 article-title: Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy publication-title: Journal of Investigative Dermatology – volume: 9 start-page: 65 issue: 2 year: 2019 article-title: An alternative medical diagnosis method: Biosensors for virus detection publication-title: Biosensors – volume: 7 start-page: 2459 issue: 4 year: 2015 end-page: 2466 article-title: Plasmonic nanobiosensor based on hairpin DNA for detection of trace oligonucleotides biomarker in cancers publication-title: ACS Applied Materials & Interfaces – volume: 6 start-page: 1307 issue: 7 year: 2006 end-page: 1310 article-title: Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution publication-title: Nano Letters – volume: 4 start-page: 335 issue: 2 year: 2019 end-page: 343 article-title: Plasmonic nanosensor array for multiplexed DNA‐based pathogen detection publication-title: ACS Sensors – volume: 5 start-page: 175 issue: 2 year: 2016 end-page: 184 article-title: Building up spectral libraries for mapping erythrocytes by hyperspectral dark field microscopy publication-title: Biomedical Spectroscopy and Imaging – volume: 9 start-page: 11924 issue: 12 year: 2015 end-page: 11932 article-title: Single‐cell quantification of cytosine modifications by hyperspectral dark‐field imaging publication-title: ACS Nano – volume: 27 start-page: 1851 issue: 6 year: 2013 end-page: 1859 article-title: Advanced intraoperative imaging methods for laparoscopic anatomy navigation: An overview publication-title: Surgical Endoscopy – volume: 10 start-page: 50 issue: 1 year: 2013 article-title: Label‐free in vitro toxicity and uptake assessment of citrate stabilised gold nanoparticles in three cell lines publication-title: Particle and Fibre Toxicology – volume: 262 start-page: 157 issue: 2 year: 1998 end-page: 176 article-title: Light‐scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: II. Experimental characterization publication-title: Analytical Biochemistry – volume: 6 start-page: 1 issue: 1 year: 2019 end-page: 8 article-title: Noise‐free simulation of an FT‐IR imaging hyperspectral dataset of pancreatic biopsy core bound by experiment publication-title: Scientific Data – volume: 57 start-page: 3231 issue: 7 year: 2016 end-page: 3238 article-title: Early detection of amyloidopathy in Alzheimer's mice by hyperspectral endoscopy publication-title: Investigative Ophthalmology & Visual Science – volume: 8 start-page: 677 issue: 4 year: 2013 end-page: 692 article-title: Raman and SERS microscopy for molecular imaging of live cells publication-title: Nature Protocols – year: 2004 – volume: 43 start-page: 239 issue: 4 year: 2001 end-page: 247 article-title: Hyperspectral imaging: A novel approach for microscopic analysis publication-title: Cytometry – volume: 44 start-page: 967 issue: 4 year: 1999 end-page: 981 article-title: The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady‐state diffuse reflectance spectroscopy publication-title: Physics in Medicine & Biology – volume: 409 start-page: 6227 issue: 26 year: 2017 end-page: 6234 article-title: Gold nanoparticle‐based localized surface plasmon immunosensor for staphylococcal enterotoxin A (SEA) detection publication-title: Analytical and Bioanalytical Chemistry – volume: 7 year: 2016 article-title: Core–shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy publication-title: Nature Communications – volume: 104 start-page: 2667 issue: 8 year: 2007 end-page: 2672 article-title: Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 7 start-page: 4733 issue: 6 year: 2013 end-page: 4745 article-title: Nanoplasmonic quantitative detection of intact viruses from unprocessed whole blood publication-title: ACS Nano – volume: 88 start-page: 8849 issue: 17 year: 2016 end-page: 8856 article-title: Quantification of cancer biomarkers in serum using scattering‐based quantitative single particle intensity measurement with a dark‐field microscope publication-title: Analytical Chemistry – volume: 57 start-page: 2011 issue: 8 year: 2010 end-page: 2017 article-title: Detection and analysis of the intestinal ischemia using visible and invisible hyperspectral imaging publication-title: IEEE Transactions on Biomedical Engineering – volume: 311 start-page: 189 issue: 5758 year: 2006 end-page: 193 article-title: Plasmonics: Merging photonics and electronics at nanoscale dimensions publication-title: Science – volume: 139 start-page: 14277 issue: 40 year: 2017 end-page: 14284 article-title: Nanobubbles: An effective way to study gas‐generating catalysis on a single nanoparticle publication-title: Journal of the American Chemical Society – volume: 6 start-page: 960 issue: 11–12 year: 2013 end-page: 967 article-title: Hyperspectral enhanced dark field microscopy for imaging blood cells publication-title: Journal of Biophotonics – volume: 3 start-page: 3552 issue: 11 year: 2009 end-page: 3559 article-title: Label‐free Raman spectral imaging of intracellular delivery and degradation of polymeric nanoparticle systems publication-title: ACS Nano – volume: 28 start-page: 770 issue: 6 year: 2006 end-page: 776 article-title: Hyperspectral fluorescence imaging for mouse skin tumor detection publication-title: ETRI Journal – volume: 6 start-page: 2503 issue: 9 year: 2013 end-page: 2513 article-title: Detecting fertility and early embryo development of chicken eggs using near‐infrared hyperspectral imaging publication-title: Food and Bioprocess Technology – volume: 17 issue: 3 year: 2012 article-title: Wide‐field spectral imaging of human ovary autofluorescence and oncologic diagnosis via previously collected probe data publication-title: Journal of Biomedical Optics – volume: 11 start-page: 18923 issue: 21 year: 2019 end-page: 18929 article-title: Sensitive plasmonic detection of miR‐10b in biological samples using enzyme‐assisted target recycling and developed LSPR probe publication-title: ACS Applied Materials & Interfaces – volume: 3 start-page: 419 issue: 6 year: 2007 end-page: 423 article-title: The performance of maximum likelihood, spectral angle mapper, neural network and decision tree classifiers in hyperspectral image analysis publication-title: Journal of Computer Science – volume: 495 start-page: 32 year: 2016 end-page: 36 article-title: Development of a localized surface plasmon resonance‐based gold nanobiosensor for the determination of prolactin hormone in human serum publication-title: Analytical Biochemistry – volume: 52 start-page: 6011 issue: 23 year: 2013 end-page: 6014 article-title: Plasmon resonance scattering spectroscopy at the single‐nanoparticle level: Real‐time monitoring of a click reaction publication-title: Angewandte Chemie International Edition – volume: 62 start-page: 5375 issue: 18 year: 2002 end-page: 5380 article-title: Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy publication-title: Cancer Research – volume: 55 start-page: 9979 issue: 34 year: 2016 end-page: 9983 article-title: In situ single‐nanoparticle spectroscopy study of bimetallic nanostructure formation publication-title: Angewandte Chemie International Edition – year: 2012 – volume: 1 start-page: 369 issue: 4 year: 2017 article-title: Multiplexed optical imaging of tumor‐directed nanoparticles: A review of imaging systems and approaches publication-title: Nano – volume: 140 start-page: 3988 issue: 11 year: 2018 end-page: 3993 article-title: Single‐molecule analysis of microRNA and logic operations using a smart plasmonic nanobiosensor publication-title: Journal of the American Chemical Society – volume: 26 start-page: 8031 issue: 44 year: 2016 end-page: 8041 article-title: Hyperspectral imaging offers visual and quantitative evidence of drug release from zwitterionic‐phospholipid‐nanocarbon when concurrently tracked in 3D intracellular space publication-title: Advanced Functional Materials – year: 2008a – volume: 15 issue: 1 year: 2020 article-title: DNA‐functionalized plasmonic nanomaterials for optical biosensing publication-title: Biotechnology Journal – volume: 21 start-page: 81 issue: 2 year: 2013 end-page: 95 article-title: Hyperspectral imaging for differentiating colonies of non‐0157 Shiga‐toxin producing (STEC) serogroups on spread plates of pure cultures publication-title: Journal of Near Infrared Spectroscopy – volume: 7 start-page: 821 issue: 12 year: 2012 end-page: 824 article-title: Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye publication-title: Nature Nanotechnology – volume: 110 start-page: 7238 issue: 14 year: 2006 end-page: 7248 article-title: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine publication-title: The Journal of Physical Chemistry B – volume: 7 start-page: 11026 issue: 12 year: 2013 end-page: 11034 article-title: Real‐time dark‐field scattering microscopic monitoring of the in situ growth of single Ag@ Hg nanoalloys publication-title: ACS Nano – volume: 366 start-page: 1711 issue: 9498 year: 2005 end-page: 1717 article-title: Early changes in the skin microcirculation and muscle metabolism of the diabetic foot publication-title: The Lancet – volume: 8 start-page: 5019 issue: 7 year: 2017 end-page: 5023 article-title: Visualizing the bidirectional electron transfer in a Schottky junction consisting of single CdS nanoparticles and a planar gold film publication-title: Chemical Science – volume: SMC‐3 start-page: 610 issue: 6 year: 1973 end-page: 621 article-title: Textural features for image classification publication-title: IEEE Transactions on Systems, Man, and Cybernetics – year: 2020 – volume: 8 start-page: 1 issue: 1 year: 2017 end-page: 9 article-title: Quantitative volumetric Raman imaging of three dimensional cell cultures publication-title: Nature Communications – volume: 85 start-page: 276 issue: 1 year: 2011 end-page: 281 article-title: Rapid detection of contamination in packaged fresh spinach using hyperspectral imaging publication-title: Talanta – volume: 105 start-page: 4050 issue: 10 year: 2008 end-page: 4055 article-title: In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 20 start-page: 717 issue: 4 year: 2008 end-page: 723 article-title: Galvanic replacement reaction on metal films: A one‐step approach to create nanoporous surfaces for catalysis publication-title: Advanced Materials – volume: 3 start-page: 1057 issue: 8 year: 2003 end-page: 1062 article-title: Single silver nanoparticles as real‐time optical sensors with zeptomole sensitivity publication-title: Nano Letters – ident: e_1_2_10_98_1 doi: 10.1021/cn500242z – ident: e_1_2_10_5_1 – ident: e_1_2_10_41_1 doi: 10.1117/1.JBO.22.8.086009 – ident: e_1_2_10_132_1 doi: 10.1021/jacs.6b00179 – ident: e_1_2_10_46_1 doi: 10.1038/srep23453 – ident: e_1_2_10_42_1 doi: 10.1016/j.talanta.2012.11.042 – ident: e_1_2_10_120_1 doi: 10.1016/j.jfoodeng.2015.11.024 – ident: e_1_2_10_37_1 doi: 10.1111/j.1751-1097.1998.tb02480.x – ident: e_1_2_10_140_1 doi: 10.1117/12.908763 – ident: e_1_2_10_50_1 doi: 10.1109/AIPR.2011.6176379 – ident: e_1_2_10_116_1 doi: 10.1016/j.bpj.2013.06.022 – ident: e_1_2_10_165_1 doi: 10.1038/s41598-017-13560-4 – ident: e_1_2_10_15_1 doi: 10.1002/adma.200701297 – ident: e_1_2_10_27_1 doi: 10.1038/srep05948 – ident: e_1_2_10_71_1 doi: 10.1016/j.jfoodeng.2015.08.023 – ident: e_1_2_10_56_1 doi: 10.1021/ac500376e – ident: e_1_2_10_43_1 – ident: e_1_2_10_147_1 doi: 10.1021/acsnano.5b04451 – ident: e_1_2_10_119_1 – ident: e_1_2_10_67_1 doi: 10.1039/C6FD00069J – ident: e_1_2_10_11_1 doi: 10.1038/nmat2162 – ident: e_1_2_10_104_1 doi: 10.1117/12.700081 – ident: e_1_2_10_69_1 doi: 10.1117/1.2434950 – volume-title: Absorption and scattering of light by small particles year: 2008 ident: e_1_2_10_20_1 – ident: e_1_2_10_53_1 doi: 10.1007/s00216-004-2708-9 – ident: e_1_2_10_115_1 doi: 10.1002/jrs.2683 – ident: e_1_2_10_22_1 doi: 10.1021/nl0610836 – ident: e_1_2_10_52_1 doi: 10.1021/ja044087q – ident: e_1_2_10_128_1 doi: 10.1002/anie.201301930 – ident: e_1_2_10_72_1 doi: 10.1021/acsami.9b03005 – ident: e_1_2_10_10_1 doi: 10.1038/ncomms3890 – ident: e_1_2_10_31_1 doi: 10.1002/bip.20236 – ident: e_1_2_10_99_1 doi: 10.1021/es500898j – ident: e_1_2_10_160_1 doi: 10.1021/acs.chemrev.7b00088 – ident: e_1_2_10_167_1 doi: 10.1021/acssensors.8b01073 – ident: e_1_2_10_4_1 doi: 10.1109/IEMBS.2008.4649387 – ident: e_1_2_10_40_1 doi: 10.1016/j.ab.2015.11.016 – ident: e_1_2_10_68_1 doi: 10.1021/ac500785u – ident: e_1_2_10_44_1 doi: 10.1021/jacs.6b10727 – ident: e_1_2_10_125_1 doi: 10.1073/pnas.97.3.996 – ident: e_1_2_10_136_1 doi: 10.1111/1541-4337.12314 – ident: e_1_2_10_145_1 doi: 10.1021/acs.analchem.7b01882 – ident: e_1_2_10_48_1 doi: 10.1016/S0140-6736(05)67696-9 – ident: e_1_2_10_157_1 doi: 10.1006/abio.1998.2760 – ident: e_1_2_10_138_1 doi: 10.1039/c2cs35031a – ident: e_1_2_10_25_1 doi: 10.1364/BOE.9.001097 – ident: e_1_2_10_51_1 doi: 10.1007/s00216-017-0563-8 – ident: e_1_2_10_100_1 doi: 10.1080/05704920701551530 – ident: e_1_2_10_112_1 doi: 10.1016/j.aca.2011.08.020 – ident: e_1_2_10_35_1 doi: 10.1038/nnano.2012.186 – ident: e_1_2_10_28_1 doi: 10.1021/ja5112628 – ident: e_1_2_10_156_1 doi: 10.1021/nl103025u – ident: e_1_2_10_66_1 doi: 10.1016/j.biomaterials.2015.01.072 – ident: e_1_2_10_57_1 doi: 10.1109/TSMC.1973.4309314 – ident: e_1_2_10_109_1 doi: 10.1021/ja109316p – ident: e_1_2_10_113_1 doi: 10.1021/acs.analchem.6b02429 – ident: e_1_2_10_83_1 doi: 10.1021/jacs.7b08523 – ident: e_1_2_10_106_1 doi: 10.1038/nprot.2013.030 – ident: e_1_2_10_129_1 doi: 10.1002/cncr.23286 – ident: e_1_2_10_94_1 doi: 10.1115/1.4038638 – ident: e_1_2_10_47_1 doi: 10.1016/j.talanta.2015.01.012 – ident: e_1_2_10_114_1 doi: 10.1111/1541-4337.12432 – ident: e_1_2_10_14_1 doi: 10.1038/nprot.2014.110 – ident: e_1_2_10_77_1 doi: 10.1016/j.nano.2013.03.005 – ident: e_1_2_10_3_1 doi: 10.1117/1.JBO.17.7.076005 – ident: e_1_2_10_87_1 doi: 10.1007/s11947-012-0933-3 – ident: e_1_2_10_154_1 doi: 10.1038/ncomms2722 – ident: e_1_2_10_80_1 doi: 10.1021/acsnano.6b08282 – ident: e_1_2_10_75_1 doi: 10.1117/1.3540657 – ident: e_1_2_10_108_1 doi: 10.13031/2013.42345 – ident: e_1_2_10_16_1 doi: 10.1073/pnas.1400502111 – ident: e_1_2_10_29_1 doi: 10.1021/nn9010973 – ident: e_1_2_10_81_1 doi: 10.1002/anie.201305980 – ident: e_1_2_10_151_1 doi: 10.1051/aas:1996266 – ident: e_1_2_10_63_1 doi: 10.1021/nn3036232 – ident: e_1_2_10_78_1 doi: 10.1016/j.bios.2015.06.059 – ident: e_1_2_10_130_1 doi: 10.1016/j.talanta.2011.03.061 – ident: e_1_2_10_34_1 doi: 10.1021/ac0601967 – ident: e_1_2_10_118_1 doi: 10.1117/1.JBO.17.3.036003 – ident: e_1_2_10_155_1 doi: 10.1039/C6CC04283J – ident: e_1_2_10_60_1 doi: 10.1021/am507218g – ident: e_1_2_10_93_1 doi: 10.1021/nl034372s – ident: e_1_2_10_131_1 doi: 10.1002/anie.201604710 – ident: e_1_2_10_107_1 doi: 10.4161/cbt.6.3.4018 – ident: e_1_2_10_152_1 doi: 10.1146/annurev.physchem.58.032806.104607 – volume: 4 start-page: 871 issue: 6 year: 2009 ident: e_1_2_10_150_1 article-title: Enhanced dark field microscopy for rapid artifact‐free detection of nanoparticle binding to Candida albicans cells and hyphae publication-title: Biotechnology Journal: Healthcare Nutrition Technology doi: 10.1002/biot.200800358 – ident: e_1_2_10_122_1 doi: 10.1002/adhm.201300003 – ident: e_1_2_10_86_1 doi: 10.1021/jp984796o – ident: e_1_2_10_110_1 doi: 10.1002/jemt.22637 – ident: e_1_2_10_164_1 doi: 10.1039/C8NR01879K – ident: e_1_2_10_126_1 doi: 10.1155/2015/127235 – ident: e_1_2_10_49_1 doi: 10.1002/smll.201201061 – ident: e_1_2_10_65_1 doi: 10.1021/jp057170o – ident: e_1_2_10_133_1 doi: 10.1002/ange.201309307 – ident: e_1_2_10_141_1 doi: 10.1002/jbio.201300067 – ident: e_1_2_10_21_1 doi: 10.1255/jnirs.1003 – ident: e_1_2_10_95_1 doi: 10.1117/12.2508731 – ident: e_1_2_10_17_1 doi: 10.1117/1.3505010 – ident: e_1_2_10_8_1 doi: 10.1021/acsami.9b14110 – ident: e_1_2_10_55_1 doi: 10.3390/cancers11060756 – ident: e_1_2_10_59_1 doi: 10.1039/C3CS60346F – ident: e_1_2_10_96_1 doi: 10.1002/adfm.201602966 – ident: e_1_2_10_117_1 doi: 10.1073/pnas.0607826104 – ident: e_1_2_10_88_1 doi: 10.1021/nn404694e – ident: e_1_2_10_62_1 doi: 10.1021/acssensors.9b00946 – ident: e_1_2_10_64_1 doi: 10.1088/0031-9155/58/11/R37 – ident: e_1_2_10_70_1 doi: 10.1038/ncomms14843 – ident: e_1_2_10_142_1 doi: 10.1073/pnas.0708090105 – ident: e_1_2_10_6_1 doi: 10.1109/TBME.2010.2049110 – ident: e_1_2_10_24_1 doi: 10.1038/nprot.2016.036 – ident: e_1_2_10_90_1 doi: 10.1117/1.JBO.19.1.010901 – ident: e_1_2_10_162_1 doi: 10.1016/j.talanta.2010.05.059 – ident: e_1_2_10_74_1 doi: 10.3844/jcssp.2007.419.423 – ident: e_1_2_10_79_1 doi: 10.1038/nnano.2014.73 – ident: e_1_2_10_124_1 doi: 10.1002/1097-0320(20010401)43:4<239::AID-CYTO1056>3.0.CO;2-Z – ident: e_1_2_10_166_1 doi: 10.1046/j.0022-202x.2001.01577.x – ident: e_1_2_10_82_1 doi: 10.1109/CSAE.2012.6272897 – ident: e_1_2_10_158_1 doi: 10.1021/ja047118q – ident: e_1_2_10_102_1 doi: 10.1021/ac7017348 – ident: e_1_2_10_144_1 doi: 10.1109/MEMB.2004.1360407 – ident: e_1_2_10_9_1 doi: 10.1038/ncomms14402 – ident: e_1_2_10_92_1 doi: 10.1366/000370206775382758 – volume: 62 start-page: 5375 issue: 18 year: 2002 ident: e_1_2_10_54_1 article-title: Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy publication-title: Cancer Research – ident: e_1_2_10_103_1 doi: 10.1117/1.JBO.19.5.051207 – ident: e_1_2_10_97_1 doi: 10.1167/iovs.15-17406 – ident: e_1_2_10_134_1 doi: 10.1038/nbt1100 – ident: e_1_2_10_2_1 doi: 10.1109/10.7291 – ident: e_1_2_10_123_1 doi: 10.1007/s00464-012-2701-x – ident: e_1_2_10_36_1 doi: 10.1088/0031-9155/44/4/012 – ident: e_1_2_10_45_1 doi: 10.1126/science.1212822 – ident: e_1_2_10_111_1 doi: 10.1021/acs.energyfuels.7b02715 – ident: e_1_2_10_163_1 doi: 10.1016/j.bios.2013.09.070 – ident: e_1_2_10_38_1 doi: 10.1021/jacs.6b09538 – ident: e_1_2_10_127_1 doi: 10.1038/srep10142 – ident: e_1_2_10_168_1 doi: 10.1021/ac070367n – ident: e_1_2_10_159_1 doi: 10.1255/jnirs.1043 – ident: e_1_2_10_84_1 doi: 10.1039/C6AN02384C – ident: e_1_2_10_26_1 doi: 10.3390/bios8040107 – ident: e_1_2_10_58_1 doi: 10.1038/ncomms12499 – ident: e_1_2_10_73_1 doi: 10.4218/etrij.06.0106.0061 – ident: e_1_2_10_89_1 doi: 10.1021/acsami.9b14980 – ident: e_1_2_10_146_1 doi: 10.1039/C7CS00451F – ident: e_1_2_10_32_1 doi: 10.1039/C4AN00636D – ident: e_1_2_10_76_1 doi: 10.1021/acs.analchem.8b01024 – ident: e_1_2_10_91_1 doi: 10.1038/s41467-019-08769-y – ident: e_1_2_10_19_1 doi: 10.1021/ac401673e – ident: e_1_2_10_12_1 doi: 10.1016/j.compbiomed.2017.06.018 – ident: e_1_2_10_18_1 doi: 10.1364/OE.11.001223 – volume: 1 start-page: 369 issue: 4 year: 2017 ident: e_1_2_10_149_1 article-title: Multiplexed optical imaging of tumor‐directed nanoparticles: A review of imaging systems and approaches publication-title: Nano – ident: e_1_2_10_143_1 doi: 10.1186/1743-8977-10-50 – ident: e_1_2_10_23_1 doi: 10.1039/c3cc44182b – ident: e_1_2_10_7_1 doi: 10.1111/j.1349-7006.2011.01849.x – ident: e_1_2_10_13_1 doi: 10.1038/srep44027 – ident: e_1_2_10_30_1 doi: 10.1016/j.jvs.2011.06.022 – ident: e_1_2_10_148_1 doi: 10.1016/j.bios.2010.07.121 – ident: e_1_2_10_137_1 doi: 10.1016/j.jfoodeng.2013.11.006 – ident: e_1_2_10_39_1 doi: 10.1021/acs.jpcc.6b02401 – ident: e_1_2_10_139_1 doi: 10.1002/biot.201800741 – ident: e_1_2_10_85_1 doi: 10.1039/C7SC00990A – ident: e_1_2_10_101_1 doi: 10.1038/nnano.2008.246 – ident: e_1_2_10_33_1 doi: 10.3233/BSI-160133 – ident: e_1_2_10_153_1 doi: 10.1038/s41597-019-0260-x – ident: e_1_2_10_61_1 doi: 10.1021/nl301159v – ident: e_1_2_10_121_1 doi: 10.3390/bios9020065 – ident: e_1_2_10_161_1 doi: 10.1021/jacs.7b12772 – ident: e_1_2_10_105_1 doi: 10.1126/science.1114849 – ident: e_1_2_10_135_1 doi: 10.1117/1.2003369 |
| SSID | ssj0064625 |
| Score | 2.402086 |
| SecondaryResourceType | review_article |
| Snippet | Nanomaterials are playing an increasingly important role in cancer diagnosis and treatment. Nanoparticle (NP)‐based technologies have been utilized for... Nanomaterials are playing an increasingly important role in cancer diagnosis and treatment. Nanoparticle (NP)-based technologies have been utilized for... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e1661 |
| SubjectTerms | Biocompatibility Diagnostic software Diagnostic systems Drug delivery Fourier analysis Fourier transforms Hyperspectral imaging hyperspectral microscopy Immunotherapy In vivo methods and tests Infrared analysis label‐free imaging Mass spectrometry Mass spectroscopy Medical imaging Microbiology Microorganisms Microscopy Nanomaterials Nanoparticles Nanotechnology Photodynamic therapy plasmonics Proteins Raman spectroscopy Sample preparation Spectroscopy Surgery Surgical equipment Surgical instruments Toxicity Transmission electron microscopy tumor diagnostics |
| Title | Dark‐field hyperspectral imaging for label free detection of nano‐bio‐materials |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwnan.1661 https://www.proquest.com/docview/2468491296 https://www.proquest.com/docview/2430671054 |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1939-0041 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064625 issn: 1939-5116 databaseCode: DRFUL dateStart: 20090101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NitswEB7SpIf2sNu_pdmfoJYeenFjSbZss6dl09BDCKU0NDcjyxINzdrFSbrXfYR9xn2SHcl2koUuFHoxBo-QGM1ovpGlbwA-6Nj4JoipF5ok9gLuay8xmKwkOooozRU3xvHMTqLpNJ7Pk68dOG_vwtT8ENsNN-sZbr22Di6z1XBHGnpdyOITFTb16TG027ALvdG38WzSLsQiEK7mKkKUxENcIVpiIZ8Nt40fhqMdxtxHqi7UjA__a5Av4KBBmOSiNomX0NHFK3i-xzv4GmYjWf26u7l1x9fIT0xF6xuXFbZbXLm6RQTBLEEL0UtiKq1Jrtfu0FZBSkOwuxKbZwv7RMhbW_EbmI0_f7_84jX1FTzFcYnzWJBZfBdKanwlZSgU9RVlkodU2liuTcwyTHlCozjTOWIPBA_KFg43mktO-RF0i7LQb4GEeSxozk0U-VmA8omSGBK5EQllvg5ZHz62ak5VQz5ua2As05o2maVWU6nVVB_eb0V_14wbfxM6becqbZxulbJAxAF2mIg-vNt-Rnex_0BkocuNlbE5EoLKAIfkZu7xTtIf04upfTn-d9ETeMbsqRe3SXMK3XW10WfwVP1ZL1bVAJ5E83jQ2Ok9DVft2w |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4hQIIeKOVHXQrFRRy4BOKfOInEBZWuQN1GCLGCW-R1bHVVyKKwtFcegWfskzB2kgUkkJC4RJEylq3xjOcbx_4GYNskNrQioUFk0yQQPDRBajFZSU0cU1pobq3nme3FWZZcXKQnU7Df3oWp-SEmG27OM_x67RzcbUjvPbKG_itVuUuly31mBJoR2vfM4Wm332tXYimkL7qKGCUNEFjIllkoZHuTxs_j0SPIfApVfazpfnzfKBdhocGY5KA2ik8wZcol-PCEeXAZ-oeq-vP_7t4fYCO_MRmt71xW2G545SsXEYSzBG3EXBJbGUMKM_bHtkoysgS7G2HzwdA9EfTWdrwC_e6Ps-9HQVNhIdAcF7mAiYFDeJGiNtRKRVLTUFOmeESVi-bGJmyASU9kNWemQPSB8EG70uHWcMUpX4XpclSaz0CiIpG04DaOw4FA-VQrDIrcypSy0ESsAzutnnPd0I-7KhiXeU2czHKnqdxpqgNbE9HrmnPjJaH1drLyxu1uciZkIrDDVHbg2-QzOoz7C6JKM7p1Mi5LQlgpcEh-6l7vJD_PDjL3svZ20U2YOzr71ct7x9nPLzDP3BkYv2WzDtPj6tZswKz-Ox7eVF8bc30Ap6Lw4w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEB9klePu4dT74NbPePhwLz2bj6Yt-CKui-JSRG4530o2TbhF7UpdvVf_BP9G_xInabsqeCDcSyl0QsJkJvObNPkNwLZJbGhFQoPIpkkgeGiC1GKykpo4prTQ3FrPMzuIsyw5O0tP5mC3vQtT80PMNtycZ_j12jm4uSrszhNr6N9SlT-pdLnPvHBFZDow3zvtDwftSiyF9EVXEaOkAQIL2TILhWxn1vhlPHoCmc-hqo81_cX_G-USfGwwJtmrjWIZ5kz5CT48Yx78DMOeqs4f7u79ATbyB5PR-s5lhe3Gl75yEUE4S9BGzAWxlTGkMFN_bKskE0uwuwk2H43dE0FvbcdfYNg_-LV_GDQVFgLNcZELmBg5hBcpakOtVCQ1DTVlikdUuWhubMJGmPREVnNmCkQfCB-0Kx1uDVec8q_QKSel-QYkKhJJC27jOBwJlE-1wqDIrUwpC03EuvCj1XOuG_pxVwXjIq-Jk1nuNJU7TXXh-0z0qubceE1orZ2svHG765wJmQjsMJVd2Jp9Rodxf0FUaSY3TsZlSQgrBQ7JT92_O8l_Z3uZe1l5u-gmvDvp9fPBUXa8Cu-ZOwLjd2zWoDOtbsw6LOjb6fi62mis9RFKfPBe |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dark%E2%80%90field+hyperspectral+imaging+for+label+free+detection+of+nano%E2%80%90bio%E2%80%90materials&rft.jtitle=Wiley+interdisciplinary+reviews.+Nanomedicine+and+nanobiotechnology&rft.au=Mehta%2C+Nishir&rft.au=Sahu%2C+Sushant+P.&rft.au=Shaik%2C+Shahensha&rft.au=Devireddy%2C+Ram&rft.date=2021-01-01&rft.issn=1939-5116&rft.eissn=1939-0041&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1002%2Fwnan.1661&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_wnan_1661 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-5116&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-5116&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-5116&client=summon |