Analytical and innovative modeling investigations on the performance of nanoparticle-modified self-compacting mortars
The transition of a material from macro- to Nano-scale brings about significant changes in electron conductivity, optical absorption, mechanical properties, chemical reactivity, and surface morphology. These changes present opportunities for creating innovative composite mixtures. As there is a grow...
Saved in:
| Published in: | European journal of environmental and civil engineering Vol. 29; no. 5; pp. 881 - 900 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Taylor & Francis
04.04.2025
|
| Subjects: | |
| ISSN: | 1964-8189, 2116-7214 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The transition of a material from macro- to Nano-scale brings about significant changes in electron conductivity, optical absorption, mechanical properties, chemical reactivity, and surface morphology. These changes present opportunities for creating innovative composite mixtures. As there is a growing need for improved infrastructure, it becomes crucial to develop new, high-performance materials. To enhance the performance of concrete mixtures, various methods have been explored, including the utilization of nanoparticles (NPs). Incorporating NPs aims to improve the fresh and mechanical properties of self-compacting concrete (SCC) while also enhancing the permeability and absorption capacity of the composite by introducing extremely fine particles to fill micro-pores and voids. Numerous initiatives have been implemented to explore the mechanical characteristics of SCC. Typically, compressive strength (CS) serves as a crucial mechanical parameter for assessing concrete quality. Conventional methods for determining SCC's CS are costly, time-intensive, and restrictive due to the intricate interplay of various mixing proportions and curing processes. Thus, this investigation employs machine learning techniques, including artificial neural network (ANN), multi-expression programming (MEP), full quadratic (FQ), and linear regression (LR), to predict self-compacting mortar's CS. Approximately 292 CS values from the literature were extracted and analyzed to facilitate model development. Six influential variables were used as input parameters and one as an output during the modeling process. Four statistical metrics gauged model performance, and sensitivity analysis was conducted. Results indicate that the ANN model outperformed other models in predicting self-compacting mortar's CS. Meanwhile, the water-to-binder ratio, nanoparticle dosage, and concrete age significantly influence self-compacting mortar's CS. |
|---|---|
| AbstractList | The transition of a material from macro- to Nano-scale brings about significant changes in electron conductivity, optical absorption, mechanical properties, chemical reactivity, and surface morphology. These changes present opportunities for creating innovative composite mixtures. As there is a growing need for improved infrastructure, it becomes crucial to develop new, high-performance materials. To enhance the performance of concrete mixtures, various methods have been explored, including the utilization of nanoparticles (NPs). Incorporating NPs aims to improve the fresh and mechanical properties of self-compacting concrete (SCC) while also enhancing the permeability and absorption capacity of the composite by introducing extremely fine particles to fill micro-pores and voids. Numerous initiatives have been implemented to explore the mechanical characteristics of SCC. Typically, compressive strength (CS) serves as a crucial mechanical parameter for assessing concrete quality. Conventional methods for determining SCC's CS are costly, time-intensive, and restrictive due to the intricate interplay of various mixing proportions and curing processes. Thus, this investigation employs machine learning techniques, including artificial neural network (ANN), multi-expression programming (MEP), full quadratic (FQ), and linear regression (LR), to predict self-compacting mortar's CS. Approximately 292 CS values from the literature were extracted and analyzed to facilitate model development. Six influential variables were used as input parameters and one as an output during the modeling process. Four statistical metrics gauged model performance, and sensitivity analysis was conducted. Results indicate that the ANN model outperformed other models in predicting self-compacting mortar's CS. Meanwhile, the water-to-binder ratio, nanoparticle dosage, and concrete age significantly influence self-compacting mortar's CS. |
| Author | Rafiq, Serwan Khwrshid Faraj, Rabar H. Sor, Nadhim Hamah Ahmed, Hemn Unis |
| Author_xml | – sequence: 1 givenname: Rabar H. surname: Faraj fullname: Faraj, Rabar H. organization: Civil Engineering Department, University of Halabja – sequence: 2 givenname: Hemn Unis surname: Ahmed fullname: Ahmed, Hemn Unis organization: Civil Engineering Department, College of Engineering, University of Sulaimani – sequence: 3 givenname: Serwan Khwrshid surname: Rafiq fullname: Rafiq, Serwan Khwrshid organization: Civil Engineering Department, College of Engineering, University of Sulaimani – sequence: 4 givenname: Nadhim Hamah surname: Sor fullname: Sor, Nadhim Hamah organization: Civil Engineering Department, University of Garmian, Kalar, Kurdistan Region |
| BookMark | eNqFkMtKAzEUhoNUsNY-gpAXmJpMMpfgxlK8QcGNrkMmlxrJJCWJlb69M23duNCzOXD4vx_OdwkmPngNwDVGC4xadINZTVvcskWJSrooKWaUkDMwLTGui6bEdAKmY6YYQxdgntIHGoYQXBM2BZ9LL9w-WykcFF5B633YiWx3GvZBaWf9ZrjtdMp2M5yDTzB4mN813OpoQuyFlxoGA73wYSvi0OR0MaDWWK1g0s4UMvRbIfNY1YeYRUxX4NwIl_T8tGfg7eH-dfVUrF8en1fLdSEJRrkwqjGqpU1Tya4qq7JtRV1rXWnBFKolrQhriWg61inc4Q6xShmmW8oQwzVuMJmB22OvjCGlqA2XNh_eyFFYxzHio0T-I5GPEvlJ4kBXv-httL2I-3-5uyNn_cHQV4hO8Sz2LkQTB2E2cfJ3xTdJMY2_ |
| CitedBy_id | crossref_primary_10_1007_s41024_025_00650_4 crossref_primary_10_1016_j_scp_2025_102182 |
| Cites_doi | 10.3390/app112110468 10.1007/s11356-022-20863-1 10.1007/s00521-022-07427-7 10.1016/j.conbuildmat.2015.03.006 10.1016/j.conbuildmat.2019.116888 10.7551/mitpress/1090.001.0001 10.1016/j.conbuildmat.2017.10.067 10.1016/j.conbuildmat.2015.08.049 10.1371/journal.pone.0253006 10.1016/j.conbuildmat.2023.132266 10.1016/j.jobe.2023.106820 10.1007/s00366-021-01385-9 10.1016/j.conbuildmat.2018.05.266 10.1016/j.jobe.2020.101271 10.1016/0950-0618(90)90005-L 10.3139/146.111245 10.1016/j.jobe.2019.100808 10.1016/j.conbuildmat.2015.07.063 10.1016/j.matpr.2019.09.177 10.1016/j.conbuildmat.2015.03.100 10.1007/BF02483294 10.1016/j.rser.2017.05.128 10.1007/s00521-023-08378-3 10.1007/s40808-017-0410-0 10.1002/suco.202200769 10.1016/B978-0-08-100370-1.00004-4 10.3844/ajeassp.2016.323.333 10.3390/su141912876 10.1080/19648189.2015.1042070 |
| ContentType | Journal Article |
| Copyright | 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 |
| Copyright_xml | – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 |
| DBID | AAYXX CITATION |
| DOI | 10.1080/19648189.2024.2419433 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2116-7214 |
| EndPage | 900 |
| ExternalDocumentID | 10_1080_19648189_2024_2419433 2419433 |
| Genre | Review Article |
| GroupedDBID | .7F .QJ 0BK 0R~ 30N 4.4 5GY AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFO ACGFS ACTIO ACUHS ADCVX ADGTB ADMLS AEISY AENEX AEOZL AEPSL AEYOC AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG DGEBU DKSSO DU5 EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TTHFI TUROJ UT5 UU3 ZGOLN ~S~ AAYXX CITATION |
| ID | FETCH-LOGICAL-c310t-fd7fd84775cb525288a66ee5ea9d06c453983a7b9bd1b1b095df9e84909161713 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001341194100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1964-8189 |
| IngestDate | Tue Nov 18 22:02:26 EST 2025 Sat Nov 29 08:11:33 EST 2025 Mon Oct 20 23:47:44 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c310t-fd7fd84775cb525288a66ee5ea9d06c453983a7b9bd1b1b095df9e84909161713 |
| PageCount | 20 |
| ParticipantIDs | crossref_citationtrail_10_1080_19648189_2024_2419433 crossref_primary_10_1080_19648189_2024_2419433 informaworld_taylorfrancis_310_1080_19648189_2024_2419433 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-04 |
| PublicationDateYYYYMMDD | 2025-04-04 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationTitle | European journal of environmental and civil engineering |
| PublicationYear | 2025 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | e_1_3_4_4_1 e_1_3_4_3_1 e_1_3_4_2_1 e_1_3_4_9_1 e_1_3_4_7_1 e_1_3_4_6_1 e_1_3_4_5_1 e_1_3_4_23_1 e_1_3_4_24_1 e_1_3_4_21_1 e_1_3_4_22_1 e_1_3_4_27_1 e_1_3_4_28_1 e_1_3_4_25_1 e_1_3_4_26_1 e_1_3_4_29_1 Courard L. (e_1_3_4_8_1) 2002 Miyandehi B. M. (e_1_3_4_20_1) 2014; 10 e_1_3_4_31_1 e_1_3_4_30_1 e_1_3_4_12_1 e_1_3_4_13_1 e_1_3_4_10_1 e_1_3_4_11_1 e_1_3_4_32_1 e_1_3_4_16_1 e_1_3_4_17_1 e_1_3_4_14_1 e_1_3_4_15_1 e_1_3_4_18_1 e_1_3_4_19_1 |
| References_xml | – ident: e_1_3_4_13_1 doi: 10.3390/app112110468 – ident: e_1_3_4_4_1 doi: 10.1007/s11356-022-20863-1 – ident: e_1_3_4_3_1 doi: 10.1007/s00521-022-07427-7 – ident: e_1_3_4_21_1 doi: 10.1016/j.conbuildmat.2015.03.006 – ident: e_1_3_4_23_1 doi: 10.1016/j.conbuildmat.2019.116888 – ident: e_1_3_4_12_1 doi: 10.7551/mitpress/1090.001.0001 – ident: e_1_3_4_16_1 doi: 10.1016/j.conbuildmat.2017.10.067 – ident: e_1_3_4_24_1 doi: 10.1016/j.conbuildmat.2015.08.049 – ident: e_1_3_4_6_1 doi: 10.1371/journal.pone.0253006 – ident: e_1_3_4_5_1 doi: 10.1016/j.conbuildmat.2023.132266 – ident: e_1_3_4_15_1 doi: 10.1016/j.jobe.2023.106820 – ident: e_1_3_4_9_1 doi: 10.1007/s00366-021-01385-9 – volume: 10 start-page: 229 issue: 11 year: 2014 ident: e_1_3_4_20_1 article-title: An experimental investigation on nano-Al2O3 based self-compacting mortar publication-title: J. Am. Sci – ident: e_1_3_4_7_1 doi: 10.1016/j.conbuildmat.2018.05.266 – ident: e_1_3_4_26_1 doi: 10.1016/j.jobe.2020.101271 – ident: e_1_3_4_30_1 doi: 10.1016/0950-0618(90)90005-L – ident: e_1_3_4_31_1 doi: 10.3139/146.111245 – ident: e_1_3_4_10_1 doi: 10.1016/j.jobe.2019.100808 – ident: e_1_3_4_17_1 doi: 10.1016/j.conbuildmat.2015.07.063 – ident: e_1_3_4_14_1 doi: 10.1016/j.matpr.2019.09.177 – ident: e_1_3_4_19_1 doi: 10.1016/j.conbuildmat.2015.03.100 – ident: e_1_3_4_32_1 doi: 10.1007/BF02483294 – ident: e_1_3_4_29_1 doi: 10.1016/j.rser.2017.05.128 – ident: e_1_3_4_2_1 doi: 10.1007/s00521-023-08378-3 – ident: e_1_3_4_27_1 doi: 10.1007/s40808-017-0410-0 – ident: e_1_3_4_25_1 doi: 10.1002/suco.202200769 – ident: e_1_3_4_18_1 doi: 10.1016/B978-0-08-100370-1.00004-4 – ident: e_1_3_4_22_1 doi: 10.3844/ajeassp.2016.323.333 – ident: e_1_3_4_11_1 doi: 10.3390/su141912876 – ident: e_1_3_4_28_1 doi: 10.1080/19648189.2015.1042070 – start-page: 267 volume-title: Proceeding of the 1st North American Conference on the Design and Use of Self-Consolidating Concrete year: 2002 ident: e_1_3_4_8_1 |
| SSID | ssj0000331639 |
| Score | 2.34134 |
| SecondaryResourceType | review_article |
| Snippet | The transition of a material from macro- to Nano-scale brings about significant changes in electron conductivity, optical absorption, mechanical properties,... |
| SourceID | crossref informaworld |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 881 |
| SubjectTerms | artificial neural network modeling multi-expression programming nanoparticles Self-compacting mortar |
| Title | Analytical and innovative modeling investigations on the performance of nanoparticle-modified self-compacting mortars |
| URI | https://www.tandfonline.com/doi/abs/10.1080/19648189.2024.2419433 |
| Volume | 29 |
| WOSCitedRecordID | wos001341194100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals customDbUrl: eissn: 2116-7214 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331639 issn: 1964-8189 databaseCode: TFW dateStart: 20080201 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQADb0R5yQOrSx07D48IUTGgiqFAt8iObalSlVZN2t_P2XFKOwADrFHuHPmR-2zffR9Cd4pSaSIuCVVpQXimORGCC5JqqYxNtJW-vuL9JR0Os_FYvIZswiqkVbo9tG2IIvy_2i1uqao2I-7ecUhBnHFlJhHvQQgSnDm-Twj9bmmOBh_rU5Y-YwA4hL9aTjhxVm0Zz3eOtgLUFn3pRuAZHP7DJx-hg4A68UMzTY7RjilP0P4GF-EpWnp6En-yjaEZPAlyqSuDvVoOvATP1qQcMFnxrMQAH_H8q_YAzywuZQkb8aYlAqYTCygXV2ZqiU94L1yiNfgE2L-oztDb4Gn0-EyCJgMpAAjWxOrUaohoaVyoOIqjLJNJYkxspND9pOAxExmTqRJKU0UVADhthcm4AFwCYImyc9QpZ6W5QFgI2ATHTlZXai5orCTlEvCEAbd9Km0X8XYg8iIQljvdjGlOA69p26u569U89GoX9dZm84ax4zcDsTnKee2PSmyja5KzH20v_2B7hfYiJybsM4GuUadeLM0N2i1W9aRa3Pp5_AmN_e9W |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagIAEDb0R5emB1qRPn4REhqiJKpwLdIju2pUpVWrVpfz9nJynpAAywRrlzZDu5z5e770PoTlIqtMcEoTJKCYsVI5wzTiIlpDahMsL1V7z3on4_Hg55vRfGllXaM7QpiCLct9q-3DYZXZXE3VsSKQg0ts_EYy2IQZz5_ibaCiDWWv78QedjlWdp-z5ADu5-LoeMWLOqkec7T2shao3AtBZ6Ogf_8dCHaL8Envih2ClHaENnx2ivRkd4ghaOocQltzGMg0elYupSYyeYAzfBtRUvB-xXPMkwIEg8_Wo_wBODM5HBWbwYiYDpyADQxXM9NsTVvKe21hp8AvKfzU_RW-dp8NglpSwDSQEL5sSoyCgIalGQysALvDgWYah1oAVX7TBlgc9jX0SSS0UllYDhlOE6ZhygCeAl6p-hRjbJ9DnCnMM5OLDKukIxTgMpKBMAKTS4bVNhmohVK5GkJWe5lc4YJ7SkNq1mNbGzmpSz2kStldm0IO34zYDXlznJXbbEFNImif-j7cUfbG_RTnfw2kt6z_2XS7TrWW1hVxh0hRr5bKGv0Xa6zEfz2Y3b1J-_5POA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagIAQDb0R5emA11Inz8IiACERVdSjQLbJjW6pUpVWT9vdzdtLSDsAAa5Q7R_Yl99m5-z6EbiSlQntMECqjjLBYMcI54yRSQmoTKiNcf8V7O-p04n6fd-tqwqIuq7R7aFMRRbhvtX25x8rMK-LuLIcU5BnbZuKxW0hBnPn-OtoA6BzaIO8lH4tjlpbvA-Lg7t9yyIg1m_fxfOdpJUOt8JcuZZ5k7x-eeR_t1rAT31dxcoDWdH6IdpbICI_Q1PGTuKNtDMPgQa2XOtPYyeXATXBtwcoB0YpHOQb8iMdfzQd4ZHAuctiJVyMRMB0YgLm40ENDXMV7ZiutwSfg_klxjN6Sp97DM6lFGUgGSLAkRkVGQUqLgkwGXuDFsQhDrQMtuGqFGQt8HvsiklwqKqkEBKcM1zHjAEwALVH_BDXyUa5PEeYcdsGB1dUVinEaSEGZAEChwW2LCtNEbL4QaVYzllvhjGFKa2LT-aymdlbTelab6HZhNq4oO34z4MurnJburMRUwiap_6Pt2R9sr9FW9zFJ2y-d13O07VlhYVcVdIEa5WSqL9FmNisHxeTKhfQn5mjyMg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytical+and+innovative+modeling+investigations+on+the+performance+of+nanoparticle-modified+self-compacting+mortars&rft.jtitle=European+journal+of+environmental+and+civil+engineering&rft.au=Faraj%2C+Rabar+H.&rft.au=Ahmed%2C+Hemn+Unis&rft.au=Rafiq%2C+Serwan+Khwrshid&rft.au=Sor%2C+Nadhim+Hamah&rft.date=2025-04-04&rft.pub=Taylor+%26+Francis&rft.issn=1964-8189&rft.eissn=2116-7214&rft.volume=29&rft.issue=5&rft.spage=881&rft.epage=900&rft_id=info:doi/10.1080%2F19648189.2024.2419433&rft.externalDocID=2419433 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1964-8189&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1964-8189&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1964-8189&client=summon |