Evaluating Large-Scale Biomedical Ontology Matching Over Parallel Platforms
Biomedical systems have been using ontology matching as a primary technique for heterogeneity resolution. However, the natural intricacy and vastness of biomedical data have compelled biomedical ontologies to become large-scale and complex; consequently, biomedical ontology matching has become a com...
Uloženo v:
| Vydáno v: | Technical review - IETE Ročník 33; číslo 4; s. 415 - 427 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Taylor & Francis
03.07.2016
|
| Témata: | |
| ISSN: | 0256-4602, 0974-5971 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Biomedical systems have been using ontology matching as a primary technique for heterogeneity resolution. However, the natural intricacy and vastness of biomedical data have compelled biomedical ontologies to become large-scale and complex; consequently, biomedical ontology matching has become a computationally intensive task. Our parallel heterogeneity resolution system, i.e., SPHeRe, is built to cater the performance needs of ontology matching by exploiting the parallelism-enabled multicore nature of today's desktop PC and cloud infrastructure. In this paper, we present the execution and evaluation results of SPHeRe over large-scale biomedical ontologies. We evaluate our system by integrating it with the interoperability engine of a clinical decision support system (CDSS), which generates matching requests for large-scale NCI, FMA, and SNOMED-CT biomedical ontologies. Results demonstrate that our methodology provides an impressive performance speedup of 4.8 and 9.5 times over a quad-core desktop PC and a four virtual machine (VM) cloud platform, respectively. |
|---|---|
| ISSN: | 0256-4602 0974-5971 |
| DOI: | 10.1080/02564602.2015.1117399 |