A dynamic self-improving ramp metering algorithm based on multi-agent deep reinforcement learning

We present a novel ramp metering algorithm that incorporates multi-agent deep reinforcement learning (DRL) techniques, which utilizes monitoring data from loop detectors. Our proposed approach employed a multi-agent DRL framework to generate optimized ramp metering schedules for each ramp meter in r...

Full description

Saved in:
Bibliographic Details
Published in:Transportation letters Vol. ahead-of-print; no. ahead-of-print; pp. 1 - 9
Main Authors: Deng, Fuwen, Jin, Jiandong, Shen, Yu, Du, Yuchuan
Format: Journal Article
Language:English
Published: Taylor & Francis 08.08.2024
Subjects:
ISSN:1942-7867, 1942-7875
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present a novel ramp metering algorithm that incorporates multi-agent deep reinforcement learning (DRL) techniques, which utilizes monitoring data from loop detectors. Our proposed approach employed a multi-agent DRL framework to generate optimized ramp metering schedules for each ramp meter in real-time, enhancing the operational efficiency of urban freeways with less investment. To simplify the implementation and training of the algorithm, we developed a simulation platform based on SUMO microscopic traffic simulator. We conducted a series of simulation experiments, including local and coordinated ramp metering scenarios with various traffic demands profiles. The simulation results indicate that the proposed DRL-based algorithm outperforms the state-of-the-practice ramp metering methods, considering a comprehensive evaluation index encompassing mainstream speed at the bottleneck and queue length on ramp. Additionally, the method exhibits robustness, scalability, and the potential for further improvement through online learning during implementation.
AbstractList We present a novel ramp metering algorithm that incorporates multi-agent deep reinforcement learning (DRL) techniques, which utilizes monitoring data from loop detectors. Our proposed approach employed a multi-agent DRL framework to generate optimized ramp metering schedules for each ramp meter in real-time, enhancing the operational efficiency of urban freeways with less investment. To simplify the implementation and training of the algorithm, we developed a simulation platform based on SUMO microscopic traffic simulator. We conducted a series of simulation experiments, including local and coordinated ramp metering scenarios with various traffic demands profiles. The simulation results indicate that the proposed DRL-based algorithm outperforms the state-of-the-practice ramp metering methods, considering a comprehensive evaluation index encompassing mainstream speed at the bottleneck and queue length on ramp. Additionally, the method exhibits robustness, scalability, and the potential for further improvement through online learning during implementation.
Author Du, Yuchuan
Deng, Fuwen
Shen, Yu
Jin, Jiandong
Author_xml – sequence: 1
  givenname: Fuwen
  orcidid: 0000-0002-1150-682X
  surname: Deng
  fullname: Deng, Fuwen
  email: dengfw@sdtbu.edu.cn
  organization: Shandong Technology and Business University
– sequence: 2
  givenname: Jiandong
  surname: Jin
  fullname: Jin, Jiandong
  organization: Peking University
– sequence: 3
  givenname: Yu
  surname: Shen
  fullname: Shen, Yu
  organization: Tongji University
– sequence: 4
  givenname: Yuchuan
  surname: Du
  fullname: Du, Yuchuan
  organization: Tongji University
BookMark eNqFkM1KAzEUhYNUsK0-gpAXmJpMZiZT3FiKfyC40fWQSW5qJD8liUrf3hlbXbjQ1b33cL8D58zQxAcPCJ1TsqCkJRd0WZW8bfiiJCVblCWjDWuP0HTUC97yevKzN_wEzVJ6JaRpWkKnSKyw2nnhjMQJrC6M28bwbvwGR-G22EGGOF7CbkI0-cXhXiRQOHjs3mw2hdiAz1gBbHEE43WIEtwoWRDRD-gpOtbCJjg7zDl6vrl-Wt8VD4-39-vVQyEZJbmAvly2qpGgtOKE6JZCw1gLXJRKVLVkZUWBDKeCJR-eK6blkKmndS1V3fRsji73vjKGlCLoTpossgk-R2FsR0k3ttV9t9WNbXWHtga6_kVvo3Ei7v7lrvbcV3QnPkK0qstiZ0PUUXhpUsf-tvgE4LSFqw
CitedBy_id crossref_primary_10_1177_00375497251331487
crossref_primary_10_3390_su162210055
crossref_primary_10_1016_j_trc_2025_105077
crossref_primary_10_1109_TITS_2024_3521460
crossref_primary_10_3390_electronics13234794
crossref_primary_10_1155_atr_2838943
Cites_doi 10.1016/0191-2615(80)90015-6
10.1109/AHPCAI57455.2022.10087798
10.3141/1634-02
10.1007/978-1-4471-3008-6
10.1016/j.trc.2015.08.016
10.1109/ITSC.2019.8916903
10.1080/19427867.2022.2146302
10.1145/3072959.3073602
10.1016/j.trc.2004.08.001
10.1109/JAS.2016.7508798
10.1038/nature14236
10.1016/j.engappai.2014.01.007
10.1016/j.trc.2019.09.023
10.1016/0191-2607(90)90048-B
10.1287/trsc.6.2.114
10.1109/ICCA.2014.6871097
10.1080/19427867.2018.1477491
10.1109/TITS.2007.908724
10.1002/rnc.5237
10.1016/S0191-2615(03)00012-2
10.1080/19427867.2019.1700005
10.3141/1856-08
10.1049/cp:19940452
10.1109/TITS.2022.3141730
10.1038/nature16961
10.1016/j.trc.2022.103584
10.1109/ITSC.2018.8569938
10.1016/j.trpro.2015.09.070
10.1109/TITS.2018.2790167
10.1016/0041-1647(74)90026-4
10.1155/2021/6669028
10.3141/1603-12
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
DBID AAYXX
CITATION
DOI 10.1080/19427867.2023.2231638
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 1942-7875
EndPage 9
ExternalDocumentID 10_1080_19427867_2023_2231638
2231638
Genre Research Article
GroupedDBID 002
0BK
0R~
30N
4.4
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABLIJ
ABPAQ
ABPEM
ABXUL
ABXYU
ACGFS
ACTIO
ADCVX
ADGTB
ADMLS
AEISY
AFRVT
AGDLA
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AWYRJ
BLEHA
CCCUG
DGEBU
DKSSO
E01
EBS
H13
HCLVR
HZ~
IPNFZ
KYCEM
LJTGL
M4Z
P75
P7B
RIG
RNANH
ROSJB
RTWRZ
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TTHFI
TUROJ
ZGOLN
AAYXX
CITATION
ID FETCH-LOGICAL-c310t-eb298d6cedfd700f81e6338e7a2da45c3241e0e7ade97eb243fc942b155cd56b3
IEDL.DBID TFW
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001018772700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1942-7867
IngestDate Sat Nov 29 02:09:03 EST 2025
Tue Nov 18 22:04:11 EST 2025
Mon Oct 20 23:45:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue ahead-of-print
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c310t-eb298d6cedfd700f81e6338e7a2da45c3241e0e7ade97eb243fc942b155cd56b3
ORCID 0000-0002-1150-682X
PageCount 9
ParticipantIDs informaworld_taylorfrancis_310_1080_19427867_2023_2231638
crossref_citationtrail_10_1080_19427867_2023_2231638
crossref_primary_10_1080_19427867_2023_2231638
PublicationCentury 2000
PublicationDate 2024-08-08
PublicationDateYYYYMMDD 2024-08-08
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-08
  day: 08
PublicationDecade 2020
PublicationTitle Transportation letters
PublicationYear 2024
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References e_1_3_3_30_1
Mnih V. (e_1_3_3_21_1) 2016
Wattleworth J. A. (e_1_3_3_43_1) 1967; 157
Wu C. (e_1_3_3_44_1) 2018
Schulman J. (e_1_3_3_28_1) 2017
e_1_3_3_18_1
Shalev-Shwartz S. (e_1_3_3_29_1) 2016
e_1_3_3_39_1
e_1_3_3_19_1
e_1_3_3_14_1
Markos Papageorgiou J.-M. B. (e_1_3_3_20_1) 1990; 1320
e_1_3_3_37_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_36_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_34_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_32_1
Wang J. J. (e_1_3_3_41_1) 1973; 469
Lipp L. (e_1_3_3_17_1) 1991; 1320
Wang Z. (e_1_3_3_40_1) 2016
Brockman G. (e_1_3_3_2_1) 2016
Heess N. (e_1_3_3_9_1) 2017
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_8_1
Jacobson L. (e_1_3_3_11_1) 1989; 1732
e_1_3_3_25_1
e_1_3_3_24_1
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_26_1
e_1_3_3_3_1
e_1_3_3_45_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_4_1
Kingma D. (e_1_3_3_15_1) 2014; 1412
e_1_3_3_22_1
References_xml – ident: e_1_3_3_24_1
  doi: 10.1016/0191-2615(80)90015-6
– ident: e_1_3_3_45_1
  doi: 10.1109/AHPCAI57455.2022.10087798
– volume: 1412
  start-page: 6980
  year: 2014
  ident: e_1_3_3_15_1
  article-title: Adam: A Method for Stochastic Optimization
  publication-title: ArXiv Preprint
– ident: e_1_3_3_36_1
  doi: 10.3141/1634-02
– ident: e_1_3_3_3_1
  doi: 10.1007/978-1-4471-3008-6
– ident: e_1_3_3_13_1
  doi: 10.1016/j.trc.2015.08.016
– volume: 157
  start-page: 1
  year: 1967
  ident: e_1_3_3_43_1
  article-title: Peak Period Analysis and Control of a Freeway System with Discussion
  publication-title: Highway Research Record
– ident: e_1_3_3_5_1
  doi: 10.1109/ITSC.2019.8916903
– ident: e_1_3_3_23_1
  doi: 10.1080/19427867.2022.2146302
– ident: e_1_3_3_37_1
  doi: 10.1145/3072959.3073602
– ident: e_1_3_3_10_1
  doi: 10.1016/j.trc.2004.08.001
– volume: 469
  start-page: 16
  year: 1973
  ident: e_1_3_3_41_1
  article-title: Computer Model for Optimal Freeway On-Ramp Control
  publication-title: Highway Research Record
– ident: e_1_3_3_16_1
  doi: 10.1109/JAS.2016.7508798
– volume: 1320
  start-page: 3
  year: 1991
  ident: e_1_3_3_17_1
  article-title: Benefits of Central Computer Control for Denver Ramp-Metering System
  publication-title: Transportation Research Record
– ident: e_1_3_3_22_1
  doi: 10.1038/nature14236
– year: 2016
  ident: e_1_3_3_29_1
  article-title: Safe, Multi-Agent, Reinforcement Learning for Autonomous Driving
  publication-title: ArXiv Preprint
– volume-title: IEEE Conference on Intelligent Transportation Systems (ITSC)
  year: 2018
  ident: e_1_3_3_44_1
– volume: 1732
  start-page: 20
  year: 1989
  ident: e_1_3_3_11_1
  article-title: Real-Time Metering Algorithm for Centralized Control
  publication-title: Transportation Research Record
– ident: e_1_3_3_14_1
  doi: 10.1016/j.engappai.2014.01.007
– ident: e_1_3_3_7_1
  doi: 10.1016/j.trc.2019.09.023
– ident: e_1_3_3_25_1
  doi: 10.1016/0191-2607(90)90048-B
– ident: e_1_3_3_39_1
  doi: 10.1287/trsc.6.2.114
– year: 2016
  ident: e_1_3_3_2_1
  article-title: Openai Gym
  publication-title: ArXiv Preprint
– ident: e_1_3_3_6_1
  doi: 10.1109/ICCA.2014.6871097
– ident: e_1_3_3_46_1
  doi: 10.1080/19427867.2018.1477491
– ident: e_1_3_3_27_1
  doi: 10.1109/TITS.2007.908724
– ident: e_1_3_3_35_1
  doi: 10.1002/rnc.5237
– ident: e_1_3_3_32_1
  doi: 10.1016/S0191-2615(03)00012-2
– ident: e_1_3_3_34_1
  doi: 10.1080/19427867.2019.1700005
– ident: e_1_3_3_31_1
  doi: 10.3141/1856-08
– ident: e_1_3_3_33_1
  doi: 10.1049/cp:19940452
– ident: e_1_3_3_42_1
  doi: 10.1109/TITS.2022.3141730
– ident: e_1_3_3_30_1
  doi: 10.1038/nature16961
– ident: e_1_3_3_8_1
  doi: 10.1016/j.trc.2022.103584
– volume: 1320
  start-page: 58
  year: 1990
  ident: e_1_3_3_20_1
  article-title: ALINEA a Local Feedback Control Law for on Ramp Metering
  publication-title: Transportation Research Reccord
– volume-title: International Conference on Machine Learning
  year: 2016
  ident: e_1_3_3_40_1
– ident: e_1_3_3_19_1
  doi: 10.1109/ITSC.2018.8569938
– year: 2017
  ident: e_1_3_3_28_1
  article-title: Proximal Policy Optimization Algorithms
  publication-title: ArXiv Preprint
– ident: e_1_3_3_12_1
  doi: 10.1016/j.trpro.2015.09.070
– ident: e_1_3_3_38_1
  doi: 10.1109/TITS.2018.2790167
– ident: e_1_3_3_4_1
  doi: 10.1016/0041-1647(74)90026-4
– volume-title: International Conference on Machine Learning
  year: 2016
  ident: e_1_3_3_21_1
– year: 2017
  ident: e_1_3_3_9_1
  article-title: Emergence of Locomotion Behaviours in Rich Environments
  publication-title: ArXiv Preprint
– ident: e_1_3_3_18_1
  doi: 10.1155/2021/6669028
– ident: e_1_3_3_26_1
  doi: 10.3141/1603-12
SSID ssj0066801
Score 2.3508277
Snippet We present a novel ramp metering algorithm that incorporates multi-agent deep reinforcement learning (DRL) techniques, which utilizes monitoring data from loop...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms adaptive control
deep reinforcement learning
ramp metering
Title A dynamic self-improving ramp metering algorithm based on multi-agent deep reinforcement learning
URI https://www.tandfonline.com/doi/abs/10.1080/19427867.2023.2231638
Volume ahead-of-print
WOSCitedRecordID wos001018772700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1942-7875
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066801
  issn: 1942-7867
  databaseCode: TFW
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQhQQLb0R5yQOrS5yXnbFCVEwVQxHdIsePUqlNqyTw-zk7DmoHYIDxpFwUX-y776y7-xC6i1hhGFUJ4RE1BPCtIRmERUKV0JCOKZlR48gm2HjMp9Ps2VcT1r6s0ubQph0U4Xy1PdyiqLuKuHvIu0PGUzaw1N8DiG8WU4AXhtBvj-Zk9Nr54jTljgDZahCr0vXwfPeWrei0Nbt0I-qMDv_he4_QgYeceNjukWO0o8sTtNd1JNenSAyxaonpca0Xhsy7iwZcieUaL23FjJXEYraq5s3bEtvYp_CqxK4ekQjbn4WV1mtcabcc6W4dseekmJ2hl9Hj5OGJeOoFIgHvNQTy7YyrVGplFAsCw6lOIZnVTIRKxIkEGEZ1AKLSGYOH48hIWGUB6ESqJC2ic9QrV6W-QJgDphNCBRKSy1hqXvDUcBMymhVRYXTYR3Fn8lz6ueSWHmORUz--tLNfbu2Xe_v10eBLbd0O5vhNIdv8n3njbkRMS1-SRz_qXv5B9wrtgxi7okF-jXpN9a5v0K78aOZ1deu26ydZy-aw
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagIJWFN6I8PbC61HnZGRGiKqJ0KqJb5PhRKrVplQZ-P2cnQe0ADDBazlnxxfF9d7q7D6Ebn6WGURUS7lNDAN8aEoNZJFQJDe6YkjE1jmyCDQZ8NIpXa2FsWqX1oU3ZKMLd1fbntsHoOiXuFhxvj_GItS33dxsMnAUVm2grBFtr--cPu6_1bRxF3FEgWxFiZeoqnu-WWbNPa91LV-xOd-8_3ngf7VaoE9-Vx-QAbejsEDXrouTlERJ3WJXc9Hipp4ZM6lgDzsVsgWc2acaOxHQ8zyfF2wxb86fwPMMuJZEIW6KFldYLnGu3H-kCj7iipRgfo5fuw_C-Ryr2BSIB8hUEXO6Yq0hqZRTrdAynOgJ_VjPhKRGEEpAY1R0YKh0zeDjwjYRdpgBQpAqj1D9BjWye6VOEOcA6IVRHgn8ZSM1THhluPEbj1E-N9looqHWeyKo1uWXImCa06mBa6y-x-ksq_bVQ-0tsUfbm-E0gXv2gSeGCIqZkMEn8H2XP_iB7jZq94XM_6T8Ons7RDkwFLoeQX6BGkb_rS7QtP4rJMr9yZ_cTAyTq2g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gIODCGzGeOXDN6GtNepyACQSadhhityrNAyZtXdUWfj9O2qLtABzgGLWuGteNP1u2P4SufJpo6souYb6rCeBbTSJwi8SVXEE4JkXkaks2QQcDNh5Hw7qasKjLKk0MratBEfasNj93JnVTEXcNcbdHWUg7hvq7A_7NYIpVtAbQOTRGPuq_NIdxGDLLgGxEiJFpmni-e8ySe1oaXrrgdvo7__DCu2i7xpy4VxnJHlpR6T7abFqSiwPEe1hWzPS4UFNNJk2mAed8luGZKZkxKz59neeT8m2GjfOTeJ5iW5BIuGnQwlKpDOfKbkfYtCOuSSleD9Fz_250c09q7gUiAPCVBALuiMlQKKkldRzNXBVCNKso9yQPugJwmKscWEoVUbg58LWAXSYAT4Tshol_hFrpPFXHCDMAdZxLR0B0GQjFEhZqpj3qRomfaOW1UdCoPBb1YHLDjzGN3Xp-aaO_2OgvrvXXRp0vsayazPGbQLT4PePSpkR0xV8S-z_KnvxB9hJtDG_78dPD4PEUbcGVwBYQsjPUKvN3dY7WxUc5KfILa7mfSoTpjA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+self-improving+ramp+metering+algorithm+based+on+multi-agent+deep+reinforcement+learning&rft.jtitle=Transportation+letters&rft.au=Deng%2C+Fuwen&rft.au=Jin%2C+Jiandong&rft.au=Shen%2C+Yu&rft.au=Du%2C+Yuchuan&rft.date=2024-08-08&rft.pub=Taylor+%26+Francis&rft.issn=1942-7867&rft.eissn=1942-7875&rft.volume=ahead-of-print&rft.issue=ahead-of-print&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1080%2F19427867.2023.2231638&rft.externalDocID=2231638
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1942-7867&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1942-7867&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1942-7867&client=summon