Constraining CMIP6 simulations for Atlantic Water in the Arctic using an AMOC-SST index
Atlantic Water plays a key role in future changes in the Arctic Ocean. It contributes to Atlantification by transporting salt and heat within the Arctic Ocean basins. Many studies also attribute the amplified warming of the Arctic Ocean to an increase in poleward ocean heat transport by warming curr...
Gespeichert in:
| Veröffentlicht in: | Frontiers in climate Jg. 7 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Frontiers Media S.A
30.04.2025
|
| Schlagworte: | |
| ISSN: | 2624-9553, 2624-9553 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Atlantic Water plays a key role in future changes in the Arctic Ocean. It contributes to Atlantification by transporting salt and heat within the Arctic Ocean basins. Many studies also attribute the amplified warming of the Arctic Ocean to an increase in poleward ocean heat transport by warming currents or the increasing strength of ocean currents. Global models are needed to reliably predict consistent trends in heat transport, as large-scale processes are at play. However, these models are too coarse to resolve key ocean processes and to address the complex interplay between ocean dynamics and the bathymetry of the Arctic region. Here, we propose to construct a sub-ensemble of simulations based on 235 historical simulations from 12 CMIP6 models that best represent the downstream drivers of Atlantic warming. We select the model ensemble members showing the closest agreement with observed surface temperature variability over 1960–1990 in the subpolar gyre (SPG). More specifically, we use a recent index that links surface temperature in the SPG to the Atlantic Meridional Overturning Circulation (AMOC): the AMOC-SST index. The subsampled ensemble shows a better correlation with the observed AMOC-SST index over the last 35 years of the historical period (1980–2014). It also displays a reduced error and better correlation for the Atlantic Water core temperature and depth in the Eurasian Arctic Ocean when compared to reanalysis and observations. Overall, the AMOC-SST index-based selection leads to a systematic improvement in the representation of the Atlantic Water layer in the Eurasian Arctic region, suggesting a clear connection between the Arctic Ocean and surface temperature in the subpolar region, and by extension, possibly the AMOC. |
|---|---|
| AbstractList | Atlantic Water plays a key role in future changes in the Arctic Ocean. It contributes to Atlantification by transporting salt and heat within the Arctic Ocean basins. Many studies also attribute the amplified warming of the Arctic Ocean to an increase in poleward ocean heat transport by warming currents or the increasing strength of ocean currents. Global models are needed to reliably predict consistent trends in heat transport, as large-scale processes are at play. However, these models are too coarse to resolve key ocean processes and to address the complex interplay between ocean dynamics and the bathymetry of the Arctic region. Here, we propose to construct a sub-ensemble of simulations based on 235 historical simulations from 12 CMIP6 models that best represent the downstream drivers of Atlantic warming. We select the model ensemble members showing the closest agreement with observed surface temperature variability over 1960–1990 in the subpolar gyre (SPG). More specifically, we use a recent index that links surface temperature in the SPG to the Atlantic Meridional Overturning Circulation (AMOC): the AMOC-SST index. The subsampled ensemble shows a better correlation with the observed AMOC-SST index over the last 35 years of the historical period (1980–2014). It also displays a reduced error and better correlation for the Atlantic Water core temperature and depth in the Eurasian Arctic Ocean when compared to reanalysis and observations. Overall, the AMOC-SST index-based selection leads to a systematic improvement in the representation of the Atlantic Water layer in the Eurasian Arctic region, suggesting a clear connection between the Arctic Ocean and surface temperature in the subpolar region, and by extension, possibly the AMOC. |
| Author | Olsen, Steffen M. Devilliers, Marion Tian, Tian Yang, Shuting Langehaug, Helene R. Mahmood, Rashed Guo, Chuncheng |
| Author_xml | – sequence: 1 givenname: Marion surname: Devilliers fullname: Devilliers, Marion – sequence: 2 givenname: Steffen M. surname: Olsen fullname: Olsen, Steffen M. – sequence: 3 givenname: Helene R. surname: Langehaug fullname: Langehaug, Helene R. – sequence: 4 givenname: Chuncheng surname: Guo fullname: Guo, Chuncheng – sequence: 5 givenname: Rashed surname: Mahmood fullname: Mahmood, Rashed – sequence: 6 givenname: Tian surname: Tian fullname: Tian, Tian – sequence: 7 givenname: Shuting surname: Yang fullname: Yang, Shuting |
| BookMark | eNpNkN1qAjEQhUOxUGt9gV7lBdbmZ7PJXi5LfwTFghYvQxITG1mzJVmhffvuqpTezAznzByG7x6MQhssAI8YzSgV5ZMzjT_OCCJshhlDnJMbMCYFybOSMTr6N9-BaUoHhPpVjAXCY7Ct25C6qHzwYQ_r5fy9gMkfT43qfO9A10ZYdY0KnTdwqzoboQ-w-7SwimbQTmk4VAFWy1Wdrdeb3t_Z7wdw61ST7PTaJ-Dj5XlTv2WL1eu8rhaZoRh1mS2ZxoxY5BxSihRI6JzmhGm3Q6IkWhjDiKNclblzlDJRFlpTLvpqrC4QnYD5JXfXqoP8iv6o4o9slZdnoY17qWL_Z2Ml44bkrMDWMZ5jp4RwrlBcc0I1FqXos8gly8Q2pWjdXx5GciAtz6TlQFpeSdNfjnJyrQ |
| Cites_doi | 10.5194/gmd-17-347-2024 10.1038/ncomms15875 10.5194/gmd-9-3993-2016 10.1038/s43247-022-00498-3 10.1038/ngeo2071 10.1038/ncomms14375 10.1017/9781009157896.011 10.1038/s43247-021-00214-7 10.1175/JCLI-D-17-0635.1 10.1007/s00382-013-1821-x 10.1038/s41612-023-00469-1 10.1029/2019MS002025 10.1126/sciadv.abc0671 10.1038/s41558-020-0819-8 10.1029/2022MS003156 10.1029/2022GL102077 10.5194/os-15-779-2019 10.1038/s41586-018-0006-5 10.5194/os-17-111-2021 10.1007/s00382-018-4242-z 10.1029/2021JC018358 10.1029/2018MS001400 10.1002/2015JC011346 10.1007/s00382-019-04870-6 10.1029/2000JD900719 10.1007/s00382-022-06534-4 10.1029/2001JC001039 10.1029/2002JD002670 10.1029/2024GL109415 10.1029/2022GL100420 10.1002/2013JC009067 10.1029/2020EF001610 10.1016/j.gloplacha.2011.03.004 10.1002/2016GL068323 10.1002/2016GL071333 10.5194/cp-10-2201-2014 10.1029/2021EF002282 10.1029/2019RG000644 10.5194/gmd-12-2727-2019 10.1038/s41558-020-00941-3 10.1175/JCLI-D-22-0194.1 10.5194/gmd-9-1937-2016 10.5194/npg-31-303-2024 10.1029/2019MS001739 10.1126/sciadv.aaz9549 10.1175/JCLI-D-22-0349.1 10.1029/2021GL096683 10.5194/gmd-14-7073-2021 10.1175/JCLI-D-16-0138.1 10.1007/s00382-024-07105-5 10.1126/science.adh5158 10.1029/2019GL086075 10.1071/ES19035 10.1029/2019MS002010 10.1175/JCLI-D-11-00466.1 10.1175/JCLI-D-18-0605.1 10.1038/s41558-020-0731-2 10.5194/gmd-15-2973-2022 10.1007/s00382-019-04824-y 10.1029/2019MS001995 10.1029/2002GL015002 10.5194/gmd-15-7203-2022 10.1007/s00382-020-05471-4 10.5194/os-19-1225-2023 10.1038/s41467-018-04173-0 10.3389/fmars.2023.1211562 10.1029/2019GL086682 10.5670/oceanog.2022.130 10.1029/2011GL048546 10.1175/JPO-D-18-0003.1 10.1175/JCLI-D-12-00266.1 10.1029/2019MS001683 10.1038/s41467-021-26370-0 10.1029/2018GL078719 10.5194/gmd-12-4823-2019 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3389/fclim.2025.1550772 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 2624-9553 |
| ExternalDocumentID | oai_doaj_org_article_57c24561ef5741fa88ff6a7b723b1898 10_3389_fclim_2025_1550772 |
| GroupedDBID | 9T4 AAFWJ AAYXX AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E OK1 |
| ID | FETCH-LOGICAL-c310t-e95b152e0ff0aa2608b43425bfd0892b8cc52f37a94ff335896bb3786bbceb603 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001489209900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2624-9553 |
| IngestDate | Fri Oct 03 12:51:36 EDT 2025 Sat Nov 29 07:59:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c310t-e95b152e0ff0aa2608b43425bfd0892b8cc52f37a94ff335896bb3786bbceb603 |
| OpenAccessLink | https://doaj.org/article/57c24561ef5741fa88ff6a7b723b1898 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_57c24561ef5741fa88ff6a7b723b1898 crossref_primary_10_3389_fclim_2025_1550772 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-30 |
| PublicationDateYYYYMMDD | 2025-04-30 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | Frontiers in climate |
| PublicationYear | 2025 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Swart (B61) 2019; 12 Garuba (B18) 2016; 29 Langehaug (B35) 2023; 10 Hwang (B28) 2011; 38 Good (B21) 2013; 118 Eyring (B16) 2016; 9 Polyakov (B48) 2023; 381 Serreze (B58) 2011; 77 (B29) 2023 Meccia (B41) 2023; 60 Deser (B12) 2020; 10 Polyakov (B49) 2012; 25 van der Linden (B67) 2019; 53 Ziehn (B76) 2020; 70 Andrews (B1) 2020; 12 Le Bras (B36) 2024; 31 Wang (B69) 2024; 17 Carton (B9) 2019; 32 Gregory (B23) 2016; 9 He (B26) 2022; 49 Kelley (B32) 2020; 12 Weijer (B72) 2020; 47 Tsubouchi (B65) 2021; 11 Wang (B70) 2020; 47 Goosse (B22) 2018; 9 Pithan (B47) 2014; 7 Keil (B31) 2020; 10 Bethke (B5) 2021; 14 Khosravi (B33) 2022; 10 Heuzé (B27) 2023; 36 Sellar (B57) 2019; 11 Zhang (B75) 2019; 57 (B10) 2021 Taylor (B63) 2001; 106 Voldoire (B68) 2019; 11 Golaz (B20) 2022; 14 Bonnet (B6) 2021; 12 Caesar (B8) 2018; 556 Docquier (B13) 2021; 2 Årthun (B2) 2012; 25 Madonna (B37) 2022; 49 Weijer (B73) 2022; 35 Barton (B4) 2018; 48 Gervais (B19) 2018; 31 Rayner (B52) 2003; 108 Richards (B54) 2022; 127 Muilwijk (B42) 2023; 36 Mauritsen (B40) 2019; 11 Mankin (B38) 2020; 8 Sgubin (B59) 2017; 8 Pan (B46) 2023; 50 Tatebe (B62) 2019; 12 Couldrey (B11) 2021; 56 Jungclaus (B30) 2014; 10 Ruiz (B55) 2022; 15 Hattermann (B25) 2016; 43 Rautiainen (B51) 2020 Rantanen (B50) 2022; 3 Nummelin (B43) 2017; 44 Årthun (B3) 2017; 8 Koenigk (B34) 2014; 42 Uotila (B66) 2019; 52 Boucher (B7) 2020; 12 Winkelbauer (B74) 2024; 62 Döscher (B14) 2022; 15 Ribes (B53) 2021; 7 Oldenburg (B44) 2018; 45 Zuo (B77) 2019; 15 Tokarska (B64) 2020; 6 Fan (B17) 2023; 6 Orvik (B45) 2002; 29 Saba (B56) 2016; 121 Shu (B60) 2019; 53 Wefing (B71) 2021; 17 Maslowski (B39) 2004; 109 Drews (B15) 2024; 51 Hansen (B24) 2023; 2023 |
| References_xml | – volume: 17 start-page: 347 year: 2024 ident: B69 article-title: Impact of increased resolution on Arctic Ocean simulations in ocean model intercomparison project phase 2 (OMIP-2) publication-title: Geosci. Model Dev doi: 10.5194/gmd-17-347-2024 – volume: 8 start-page: 15875 year: 2017 ident: B3 article-title: Skillful prediction of northern climate provided by the ocean publication-title: Nat. Commun doi: 10.1038/ncomms15875 – volume: 9 start-page: 3993 year: 2016 ident: B23 article-title: The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) contribution to CMIP6: investigation of sea-level and ocean climate change in response to CO2 forcing publication-title: Geosci. Model Dev doi: 10.5194/gmd-9-3993-2016 – volume: 3 start-page: 168 year: 2022 ident: B50 article-title: The Arctic has warmed nearly four times faster than the globe since 1979 publication-title: Commun. Earth Environ doi: 10.1038/s43247-022-00498-3 – volume: 7 start-page: 181 year: 2014 ident: B47 article-title: Arctic amplification dominated by temperature feedbacks in contemporary climate models publication-title: Nat. Geosci doi: 10.1038/ngeo2071 – volume: 8 start-page: 14375 year: 2017 ident: B59 article-title: Abrupt cooling over the North Atlantic in modern climate models publication-title: Nat. Commun doi: 10.1038/ncomms14375 – start-page: 1211 year: 2023 ident: B29 publication-title: Ocean, Cryosphere and Sea Level Change doi: 10.1017/9781009157896.011 – volume: 2 start-page: 144 year: 2021 ident: B13 article-title: Observation-based selection of climate models projects Arctic ice-free summers around 2035 publication-title: Commun. Earth Environ doi: 10.1038/s43247-021-00214-7 – volume: 31 start-page: 5927 year: 2018 ident: B19 article-title: Mechanisms governing the development of the north Atlantic warming hole in the CESM-LE future climate simulations publication-title: J. Clim doi: 10.1175/JCLI-D-17-0635.1 – volume: 42 start-page: 3101 year: 2014 ident: B34 article-title: Ocean heat transport into the Arctic in the twentieth and twenty-first Century in EC-Earth publication-title: Clim. Dyn doi: 10.1007/s00382-013-1821-x – volume: 6 start-page: 145 year: 2023 ident: B17 article-title: North Atlantic subpolar gyre provides downstream ocean predictability publication-title: NPJ Clim. Atmosph. Sci doi: 10.1038/s41612-023-00469-1 – volume: 12 start-page: e2019M year: 2020 ident: B32 article-title: GISS-E2.1: configurations and climatology publication-title: J. Adv. Model. Earth Syst doi: 10.1029/2019MS002025 – volume: 7 start-page: eabc0671 year: 2021 ident: B53 article-title: Making climate projections conditional on historical observations publication-title: Sci. Adv doi: 10.1126/sciadv.abc0671 – volume: 10 start-page: 667 year: 2020 ident: B31 article-title: Multiple drivers of the north Atlantic warming hole publication-title: Nat. Clim. Chang doi: 10.1038/s41558-020-0819-8 – volume: 14 start-page: e2022M year: 2022 ident: B20 article-title: The DOE E3SM model version 2: overview of the physical model and initial model evaluation publication-title: J. Adv. Model. Earth Syst doi: 10.1029/2022MS003156 – volume: 50 start-page: e2022G year: 2023 ident: B46 article-title: Future Arctic climate change in CMIP6 strikingly intensified by NEMO-family climate models publication-title: Geophys. Res. Lett doi: 10.1029/2022GL102077 – volume: 15 start-page: 779 year: 2019 ident: B77 article-title: The ECMWF operational ensemble reanalysis-analysis system for ocean and sea ice: a description of the system and assessment publication-title: Ocean Sci doi: 10.5194/os-15-779-2019 – volume: 556 start-page: 191 year: 2018 ident: B8 article-title: Observed fingerprint of a weakening Atlantic Ocean overturning circulation publication-title: Nature doi: 10.1038/s41586-018-0006-5 – volume: 17 start-page: 111 year: 2021 ident: B71 article-title: Circulation timescales of Atlantic water in the arctic ocean determined from anthropogenic radionuclides publication-title: Ocean Sci doi: 10.5194/os-17-111-2021 – volume: 52 start-page: 1613 year: 2019 ident: B66 article-title: An assessment of ten ocean reanalyses in the polar regions publication-title: Clim. Dyn doi: 10.1007/s00382-018-4242-z – volume: 127 start-page: e2021J year: 2022 ident: B54 article-title: Spatial and temporal variability of Atlantic water in the arctic from 40 years of observations publication-title: J. Geophys. Res doi: 10.1029/2021JC018358 – volume: 11 start-page: 998 year: 2019 ident: B40 article-title: Developments in the MPI-M earth system model version 1.2 (MPI-ESM1.2) and its response to increasing CO2 publication-title: J. Adv. Modeling Earth Syst doi: 10.1029/2018MS001400 – volume: 121 start-page: 118 year: 2016 ident: B56 article-title: Enhanced warming of the Northwest Atlantic Ocean under climate change publication-title: J J. Geophys. Res doi: 10.1002/2015JC011346 – volume: 53 start-page: 5279 year: 2019 ident: B60 article-title: Assessment of the Atlantic water layer in the Arctic Ocean in CMIP5 climate models publication-title: Clim. Dyn doi: 10.1007/s00382-019-04870-6 – volume: 106 start-page: 7183 year: 2001 ident: B63 article-title: Summarizing multiple aspects of model performance in a single diagram publication-title: J. Geophys. Res doi: 10.1029/2000JD900719 – volume: 60 start-page: 3695 year: 2023 ident: B41 article-title: Internal multi-centennial variability of the Atlantic meridional overturning circulation simulated by EC-Earth3 publication-title: Clim. Dyn doi: 10.1007/s00382-022-06534-4 – volume: 109 start-page: 1039 year: 2004 ident: B39 article-title: On climatological mass, heat, and salt transports through the Barents Sea and Fram Strait from a pan-Arctic coupled ice-ocean publication-title: J. Geophys. Res doi: 10.1029/2001JC001039 – volume: 108 start-page: D14 year: 2003 ident: B52 article-title: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century publication-title: J. Geophys. Res doi: 10.1029/2002JD002670 – volume: 51 start-page: e2024G year: 2024 ident: B15 article-title: The crucial role of the subpolar North Atlantic for skillful decadal climate predictions publication-title: Geophys. Res. Lett doi: 10.1029/2024GL109415 – volume: 49 start-page: e2022G year: 2022 ident: B26 article-title: A north Atlantic warming hole without ocean circulation publication-title: Geophys. Res. Lett doi: 10.1029/2022GL100420 – volume: 118 start-page: 6704 year: 2013 ident: B21 article-title: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates publication-title: J. Geophys. Res doi: 10.1002/2013JC009067 – volume: 8 start-page: e2012E year: 2020 ident: B38 article-title: The value of initial condition large ensembles to robust adaptation decision-making publication-title: Earth's Fut doi: 10.1029/2020EF001610 – volume: 77 start-page: 85 year: 2011 ident: B58 article-title: Processes and impacts of Arctic amplification: a research synthesis publication-title: Glob. Planet. Change doi: 10.1016/j.gloplacha.2011.03.004 – volume: 43 start-page: 3406 year: 2016 ident: B25 article-title: Eddy-driven recirculation of Atlantic water in Fram strait publication-title: Geophys. Res. Lett doi: 10.1002/2016GL068323 – volume: 44 start-page: 1899 year: 2017 ident: B43 article-title: Connecting ocean heat transport changes from the midlatitudes to the Arctic Ocean publication-title: Geophys. Res. Lett doi: 10.1002/2016GL071333 – volume: 10 start-page: 2201 year: 2014 ident: B30 article-title: Enhanced 20th-century heat transfer to the Arctic simulated in the context of climate variations over the last millennium publication-title: Clim. Past doi: 10.5194/cp-10-2201-2014 – volume: 10 start-page: e2021E year: 2022 ident: B33 article-title: The Arctic Ocean in CMIP6 models: biases and projected changes in temperature and salinity publication-title: Earth's Fut doi: 10.1029/2021EF002282 – volume: 57 start-page: 316 year: 2019 ident: B75 article-title: A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts publication-title: Rev. Geophys doi: 10.1029/2019RG000644 – volume: 12 start-page: 2727 year: 2019 ident: B62 article-title: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6 publication-title: Geosci. Model Dev doi: 10.5194/gmd-12-2727-2019 – volume: 11 start-page: 21 year: 2021 ident: B65 article-title: Increased ocean heat transport into the Nordic Seas and Arctic Ocean over the period 1993–2016 publication-title: Nat. Clim. Chang doi: 10.1038/s41558-020-00941-3 – volume: 36 start-page: 2551 year: 2023 ident: B27 article-title: The deep Arctic Ocean and fram strait in CMIP6 models publication-title: J. Clim doi: 10.1175/JCLI-D-22-0194.1 – volume: 9 start-page: 1937 year: 2016 ident: B16 article-title: Overview of the coupled model intercomparison project phase 6 (cmip6) experimental design and organization publication-title: Geosci. Model Dev doi: 10.5194/gmd-9-1937-2016 – volume: 31 start-page: 303 year: 2024 ident: B36 article-title: Selecting and weighting dynamical models using data-driven approaches publication-title: Nonlinear Process. Geophys doi: 10.5194/npg-31-303-2024 – volume: 11 start-page: 4513 year: 2019 ident: B57 article-title: UKESM1: description and evaluation of the U.K. Earth System Model publication-title: J. Adv. Model Earth Syst doi: 10.1029/2019MS001739 – volume: 6 start-page: eaaz9549 year: 2020 ident: B64 article-title: Past warming trend constrains future warming in CMIP6 models publication-title: Sci. Adv doi: 10.1126/sciadv.aaz9549 – volume: 36 start-page: 1727 year: 2023 ident: B42 article-title: Divergence in climate model projections of future arctic atlantification publication-title: J. Clim doi: 10.1175/JCLI-D-22-0349.1 – volume: 49 start-page: e2021G year: 2022 ident: B37 article-title: Understanding differences in north Atlantic poleward ocean heat transport and its variability in global climate models publication-title: Geophys. Res. Lett doi: 10.1029/2021GL096683 – volume: 14 start-page: 7073 year: 2021 ident: B5 article-title: NorCPM1 and its contribution to CMIP6 DCPP publication-title: Geosci. Model Dev doi: 10.5194/gmd-14-7073-2021 – volume: 29 start-page: 7507 year: 2016 ident: B18 article-title: Ocean Heat Uptake and Interbasin Transport of the Passive and Redistributive Components of Surface Heating publication-title: J. Clim doi: 10.1175/JCLI-D-16-0138.1 – volume: 62 start-page: 3891 year: 2024 ident: B74 article-title: Validation of key Arctic energy and water budget components in CMIP6 publication-title: Clim. Dyn doi: 10.1007/s00382-024-07105-5 – volume: 381 start-page: 972 year: 2023 ident: B48 article-title: Fluctuating Atlantic inflows modulate Arctic atlantification publication-title: Science doi: 10.1126/science.adh5158 – volume: 47 start-page: e2019G year: 2020 ident: B72 article-title: CMIP6 models predict significant 21st Century decline of the Atlantic meridional overturning circulation publication-title: Geophys. Res. Lett doi: 10.1029/2019GL086075 – volume-title: Copernicus Climate Change Service (C3S) Climate Data Store (CDS) year: 2021 ident: B10 article-title: “ORAS5 global ocean reanalysis monthly data from 1958 to present,” – volume: 70 start-page: 193 year: 2020 ident: B76 article-title: The Australian earth system model: ACCESS-ESM1.5 publication-title: J. South Hemisph. Earth Syst. Sci doi: 10.1071/ES19035 – volume: 12 start-page: e2019M year: 2020 ident: B7 article-title: Presentation and evaluation of the IPSL-CM6A-LR climate model publication-title: J. Adv. Modeling Earth Syst doi: 10.1029/2019MS002010 – volume: 25 start-page: 4736 year: 2012 ident: B2 article-title: Quantifying the influence of Atlantic heat on Barents sea ice variability and retreat publication-title: J. Clim doi: 10.1175/JCLI-D-11-00466.1 – volume: 32 start-page: 2277 year: 2019 ident: B9 article-title: Temperature and salinity variability in the soda3, ecco4r3, and oras5 ocean reanalyses, 1993–2015 publication-title: J. Clim doi: 10.1175/JCLI-D-18-0605.1 – volume: 10 start-page: 277 year: 2020 ident: B12 article-title: Insights from Earth system model initial-condition large ensembles and future prospects publication-title: Nat. Clim. Chang doi: 10.1038/s41558-020-0731-2 – volume: 15 start-page: 2973 year: 2022 ident: B14 article-title: The EC-earth3 earth system model for the coupled model intercomparison project 6 publication-title: Geosci. Model Dev doi: 10.5194/gmd-15-2973-2022 – volume: 53 start-page: 4763 year: 2019 ident: B67 article-title: Oceanic heat transport into the Arctic under high and low CO2 forcing publication-title: Clim. Dyn doi: 10.1007/s00382-019-04824-y – volume: 12 start-page: e2019M year: 2020 ident: B1 article-title: Historical simulations with HadGEM3-GC3.1 for CMIP6 publication-title: J. Adv. Model. Earth Syst doi: 10.1029/2019MS001995 – volume: 29 start-page: 4 year: 2002 ident: B45 article-title: Major pathways of Atlantic water in the northern North Atlantic and Nordic Seas toward Arctic publication-title: Geophys. Res. Lett doi: 10.1029/2002GL015002 – volume: 15 start-page: 7203 year: 2022 ident: B55 article-title: Analog data assimilation for the selection of suitable general circulation models publication-title: Geosci. Model Dev doi: 10.5194/gmd-15-7203-2022 – volume: 56 start-page: 155 year: 2021 ident: B11 article-title: What causes the spread of model projections of ocean dynamic sea-level change in response to greenhouse gas forcing? publication-title: Clim. Dyn doi: 10.1007/s00382-020-05471-4 – volume: 2023 start-page: 1 year: 2023 ident: B24 article-title: The Iceland-Faroe warm-water flow towards the arctic estimated from satellite altimetry and in situ observations publication-title: EGUsphere doi: 10.5194/os-19-1225-2023 – volume: 9 start-page: 1919 year: 2018 ident: B22 article-title: Quantifying climate feedbacks in polar regions publication-title: Nat. Commun doi: 10.1038/s41467-018-04173-0 – volume: 10 start-page: 1211562 year: 2023 ident: B35 article-title: Constraining cmip6 estimates of arctic ocean temperature and salinity in 2025–2055 publication-title: Front. Mar. Sci doi: 10.3389/fmars.2023.1211562 – volume: 47 start-page: e2019G year: 2020 ident: B70 article-title: Intensification of the Atlantic water supply to the Arctic Ocean through fram strait induced by Arctic Sea Ice Decline publication-title: Geophys. Res. Lett doi: 10.1029/2019GL086682 – volume: 35 start-page: 118 year: 2022 ident: B73 article-title: Interactions between the Arctic Mediterranean and the Atlantic meridional overturning circulation: a review publication-title: Oceanography doi: 10.5670/oceanog.2022.130 – volume: 38 start-page: 4856 year: 2011 ident: B28 article-title: Coupling between Arctic feedbacks and changes in poleward energy transport publication-title: Geophys. Res. Lett doi: 10.1029/2011GL048546 – volume: 48 start-page: 1849 year: 2018 ident: B4 article-title: Observed Atlantification of the Barents sea causes the polar front to limit the expansion of winter sea ice publication-title: J. Phys. Oceanogr doi: 10.1175/JPO-D-18-0003.1 – volume: 25 start-page: 8362 year: 2012 ident: B49 article-title: Warming of the Intermediate Atlantic Water of the Arctic Ocean in the 2000s publication-title: J. Clim doi: 10.1175/JCLI-D-12-00266.1 – volume: 11 start-page: 2177 year: 2019 ident: B68 article-title: Evaluation of CMIP6 DECK experiments with CNRM-CM6–1 publication-title: J. Adv. Model. Earth Syst doi: 10.1029/2019MS001683 – volume: 12 start-page: 6108 year: 2021 ident: B6 article-title: Increased risk of near term global warming due to a recent AMOC weakening publication-title: Nat. Commun doi: 10.1038/s41467-021-26370-0 – volume: 45 start-page: 7692 year: 2018 ident: B44 article-title: Distinct mechanisms of ocean heat transport into the arctic under internal variability and climate change publication-title: Geophys. Res. Lett doi: 10.1029/2018GL078719 – volume: 12 start-page: 4823 year: 2019 ident: B61 article-title: The Canadian Earth System Model version 5 (CanESM5.0.3) publication-title: Geosci. Model Dev doi: 10.5194/gmd-12-4823-2019 – year: 2020 ident: B51 publication-title: Observed changes in the hydrography of the Arctic Ocean |
| SSID | ssj0002511801 |
| Score | 2.2901433 |
| Snippet | Atlantic Water plays a key role in future changes in the Arctic Ocean. It contributes to Atlantification by transporting salt and heat within the Arctic Ocean... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| SubjectTerms | AMOC Arctic Atlantic Water CMIP6 sea water temperature subpolar gyre |
| Title | Constraining CMIP6 simulations for Atlantic Water in the Arctic using an AMOC-SST index |
| URI | https://doaj.org/article/57c24561ef5741fa88ff6a7b723b1898 |
| Volume | 7 |
| WOSCitedRecordID | wos001489209900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2624-9553 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511801 issn: 2624-9553 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2624-9553 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511801 issn: 2624-9553 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxcCC-BTlSx4QCwqkdhLbY4lawZBSqUXtFtmujSKVFLUBiYXfztlJUZlYWDxEkWO9c3Lv4rt7CF0ZIallkQ6MMBCgMCsCHlsbhGzm9KyVJbwWm2CDAZ9OxXBD6svlhNXtgWvgIGDX7myuY2wMzs9Kzq1NJFOMUNXhwpf5AuvZCKbcN9gT57BTV8lAFCburJ4XrvKcxLeOlTNGfnmijYb93rP099BuQwlxt17KPtoy5QFqZ8BmF0v_0xtf4xSmlV5q9vMQTZzK5lrbAafZ4zDBq-K1EeJaYeChuFvNAbNC4wmQySUuSgxMD57hSqKwS3Z_wbLE3ewpDUajMfZNE4_Qc783Th-CRiAh0MDKKsA3VuB_TWhtKCVEJlxFFF5CZWchF0RxrWNiKZMispbSmItEKco4jNqoJKTHqFUuSnOCMGdCA7kiPm0tNomKNKAWRiwxkmjG2-hmDVb-VvfByCF-cNDmHtrcQZs30LbRvcPz507Xw9pfAMvmjWXzvyx7-h-TnKEdt7D6_Occtarlu7lA2_qjKlbLS79pYMy-et_IAsWQ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraining+CMIP6+simulations+for+Atlantic+Water+in+the+Arctic+using+an+AMOC-SST+index&rft.jtitle=Frontiers+in+climate&rft.au=Marion+Devilliers&rft.au=Steffen+M.+Olsen&rft.au=Helene+R.+Langehaug&rft.au=Chuncheng+Guo&rft.date=2025-04-30&rft.pub=Frontiers+Media+S.A&rft.eissn=2624-9553&rft.volume=7&rft_id=info:doi/10.3389%2Ffclim.2025.1550772&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_57c24561ef5741fa88ff6a7b723b1898 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-9553&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-9553&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-9553&client=summon |