Constraining CMIP6 simulations for Atlantic Water in the Arctic using an AMOC-SST index

Atlantic Water plays a key role in future changes in the Arctic Ocean. It contributes to Atlantification by transporting salt and heat within the Arctic Ocean basins. Many studies also attribute the amplified warming of the Arctic Ocean to an increase in poleward ocean heat transport by warming curr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in climate Jg. 7
Hauptverfasser: Devilliers, Marion, Olsen, Steffen M., Langehaug, Helene R., Guo, Chuncheng, Mahmood, Rashed, Tian, Tian, Yang, Shuting
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Frontiers Media S.A 30.04.2025
Schlagworte:
ISSN:2624-9553, 2624-9553
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Atlantic Water plays a key role in future changes in the Arctic Ocean. It contributes to Atlantification by transporting salt and heat within the Arctic Ocean basins. Many studies also attribute the amplified warming of the Arctic Ocean to an increase in poleward ocean heat transport by warming currents or the increasing strength of ocean currents. Global models are needed to reliably predict consistent trends in heat transport, as large-scale processes are at play. However, these models are too coarse to resolve key ocean processes and to address the complex interplay between ocean dynamics and the bathymetry of the Arctic region. Here, we propose to construct a sub-ensemble of simulations based on 235 historical simulations from 12 CMIP6 models that best represent the downstream drivers of Atlantic warming. We select the model ensemble members showing the closest agreement with observed surface temperature variability over 1960–1990 in the subpolar gyre (SPG). More specifically, we use a recent index that links surface temperature in the SPG to the Atlantic Meridional Overturning Circulation (AMOC): the AMOC-SST index. The subsampled ensemble shows a better correlation with the observed AMOC-SST index over the last 35 years of the historical period (1980–2014). It also displays a reduced error and better correlation for the Atlantic Water core temperature and depth in the Eurasian Arctic Ocean when compared to reanalysis and observations. Overall, the AMOC-SST index-based selection leads to a systematic improvement in the representation of the Atlantic Water layer in the Eurasian Arctic region, suggesting a clear connection between the Arctic Ocean and surface temperature in the subpolar region, and by extension, possibly the AMOC.
AbstractList Atlantic Water plays a key role in future changes in the Arctic Ocean. It contributes to Atlantification by transporting salt and heat within the Arctic Ocean basins. Many studies also attribute the amplified warming of the Arctic Ocean to an increase in poleward ocean heat transport by warming currents or the increasing strength of ocean currents. Global models are needed to reliably predict consistent trends in heat transport, as large-scale processes are at play. However, these models are too coarse to resolve key ocean processes and to address the complex interplay between ocean dynamics and the bathymetry of the Arctic region. Here, we propose to construct a sub-ensemble of simulations based on 235 historical simulations from 12 CMIP6 models that best represent the downstream drivers of Atlantic warming. We select the model ensemble members showing the closest agreement with observed surface temperature variability over 1960–1990 in the subpolar gyre (SPG). More specifically, we use a recent index that links surface temperature in the SPG to the Atlantic Meridional Overturning Circulation (AMOC): the AMOC-SST index. The subsampled ensemble shows a better correlation with the observed AMOC-SST index over the last 35 years of the historical period (1980–2014). It also displays a reduced error and better correlation for the Atlantic Water core temperature and depth in the Eurasian Arctic Ocean when compared to reanalysis and observations. Overall, the AMOC-SST index-based selection leads to a systematic improvement in the representation of the Atlantic Water layer in the Eurasian Arctic region, suggesting a clear connection between the Arctic Ocean and surface temperature in the subpolar region, and by extension, possibly the AMOC.
Author Olsen, Steffen M.
Devilliers, Marion
Tian, Tian
Yang, Shuting
Langehaug, Helene R.
Mahmood, Rashed
Guo, Chuncheng
Author_xml – sequence: 1
  givenname: Marion
  surname: Devilliers
  fullname: Devilliers, Marion
– sequence: 2
  givenname: Steffen M.
  surname: Olsen
  fullname: Olsen, Steffen M.
– sequence: 3
  givenname: Helene R.
  surname: Langehaug
  fullname: Langehaug, Helene R.
– sequence: 4
  givenname: Chuncheng
  surname: Guo
  fullname: Guo, Chuncheng
– sequence: 5
  givenname: Rashed
  surname: Mahmood
  fullname: Mahmood, Rashed
– sequence: 6
  givenname: Tian
  surname: Tian
  fullname: Tian, Tian
– sequence: 7
  givenname: Shuting
  surname: Yang
  fullname: Yang, Shuting
BookMark eNpNkN1qAjEQhUOxUGt9gV7lBdbmZ7PJXi5LfwTFghYvQxITG1mzJVmhffvuqpTezAznzByG7x6MQhssAI8YzSgV5ZMzjT_OCCJshhlDnJMbMCYFybOSMTr6N9-BaUoHhPpVjAXCY7Ct25C6qHzwYQ_r5fy9gMkfT43qfO9A10ZYdY0KnTdwqzoboQ-w-7SwimbQTmk4VAFWy1Wdrdeb3t_Z7wdw61ST7PTaJ-Dj5XlTv2WL1eu8rhaZoRh1mS2ZxoxY5BxSihRI6JzmhGm3Q6IkWhjDiKNclblzlDJRFlpTLvpqrC4QnYD5JXfXqoP8iv6o4o9slZdnoY17qWL_Z2Ml44bkrMDWMZ5jp4RwrlBcc0I1FqXos8gly8Q2pWjdXx5GciAtz6TlQFpeSdNfjnJyrQ
Cites_doi 10.5194/gmd-17-347-2024
10.1038/ncomms15875
10.5194/gmd-9-3993-2016
10.1038/s43247-022-00498-3
10.1038/ngeo2071
10.1038/ncomms14375
10.1017/9781009157896.011
10.1038/s43247-021-00214-7
10.1175/JCLI-D-17-0635.1
10.1007/s00382-013-1821-x
10.1038/s41612-023-00469-1
10.1029/2019MS002025
10.1126/sciadv.abc0671
10.1038/s41558-020-0819-8
10.1029/2022MS003156
10.1029/2022GL102077
10.5194/os-15-779-2019
10.1038/s41586-018-0006-5
10.5194/os-17-111-2021
10.1007/s00382-018-4242-z
10.1029/2021JC018358
10.1029/2018MS001400
10.1002/2015JC011346
10.1007/s00382-019-04870-6
10.1029/2000JD900719
10.1007/s00382-022-06534-4
10.1029/2001JC001039
10.1029/2002JD002670
10.1029/2024GL109415
10.1029/2022GL100420
10.1002/2013JC009067
10.1029/2020EF001610
10.1016/j.gloplacha.2011.03.004
10.1002/2016GL068323
10.1002/2016GL071333
10.5194/cp-10-2201-2014
10.1029/2021EF002282
10.1029/2019RG000644
10.5194/gmd-12-2727-2019
10.1038/s41558-020-00941-3
10.1175/JCLI-D-22-0194.1
10.5194/gmd-9-1937-2016
10.5194/npg-31-303-2024
10.1029/2019MS001739
10.1126/sciadv.aaz9549
10.1175/JCLI-D-22-0349.1
10.1029/2021GL096683
10.5194/gmd-14-7073-2021
10.1175/JCLI-D-16-0138.1
10.1007/s00382-024-07105-5
10.1126/science.adh5158
10.1029/2019GL086075
10.1071/ES19035
10.1029/2019MS002010
10.1175/JCLI-D-11-00466.1
10.1175/JCLI-D-18-0605.1
10.1038/s41558-020-0731-2
10.5194/gmd-15-2973-2022
10.1007/s00382-019-04824-y
10.1029/2019MS001995
10.1029/2002GL015002
10.5194/gmd-15-7203-2022
10.1007/s00382-020-05471-4
10.5194/os-19-1225-2023
10.1038/s41467-018-04173-0
10.3389/fmars.2023.1211562
10.1029/2019GL086682
10.5670/oceanog.2022.130
10.1029/2011GL048546
10.1175/JPO-D-18-0003.1
10.1175/JCLI-D-12-00266.1
10.1029/2019MS001683
10.1038/s41467-021-26370-0
10.1029/2018GL078719
10.5194/gmd-12-4823-2019
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fclim.2025.1550772
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 2624-9553
ExternalDocumentID oai_doaj_org_article_57c24561ef5741fa88ff6a7b723b1898
10_3389_fclim_2025_1550772
GroupedDBID 9T4
AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
OK1
ID FETCH-LOGICAL-c310t-e95b152e0ff0aa2608b43425bfd0892b8cc52f37a94ff335896bb3786bbceb603
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001489209900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2624-9553
IngestDate Fri Oct 03 12:51:36 EDT 2025
Sat Nov 29 07:59:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c310t-e95b152e0ff0aa2608b43425bfd0892b8cc52f37a94ff335896bb3786bbceb603
OpenAccessLink https://doaj.org/article/57c24561ef5741fa88ff6a7b723b1898
ParticipantIDs doaj_primary_oai_doaj_org_article_57c24561ef5741fa88ff6a7b723b1898
crossref_primary_10_3389_fclim_2025_1550772
PublicationCentury 2000
PublicationDate 2025-04-30
PublicationDateYYYYMMDD 2025-04-30
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-30
  day: 30
PublicationDecade 2020
PublicationTitle Frontiers in climate
PublicationYear 2025
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Swart (B61) 2019; 12
Garuba (B18) 2016; 29
Langehaug (B35) 2023; 10
Hwang (B28) 2011; 38
Good (B21) 2013; 118
Eyring (B16) 2016; 9
Polyakov (B48) 2023; 381
Serreze (B58) 2011; 77
(B29) 2023
Meccia (B41) 2023; 60
Deser (B12) 2020; 10
Polyakov (B49) 2012; 25
van der Linden (B67) 2019; 53
Ziehn (B76) 2020; 70
Andrews (B1) 2020; 12
Le Bras (B36) 2024; 31
Wang (B69) 2024; 17
Carton (B9) 2019; 32
Gregory (B23) 2016; 9
He (B26) 2022; 49
Kelley (B32) 2020; 12
Weijer (B72) 2020; 47
Tsubouchi (B65) 2021; 11
Wang (B70) 2020; 47
Goosse (B22) 2018; 9
Pithan (B47) 2014; 7
Keil (B31) 2020; 10
Bethke (B5) 2021; 14
Khosravi (B33) 2022; 10
Heuzé (B27) 2023; 36
Sellar (B57) 2019; 11
Zhang (B75) 2019; 57
(B10) 2021
Taylor (B63) 2001; 106
Voldoire (B68) 2019; 11
Golaz (B20) 2022; 14
Bonnet (B6) 2021; 12
Caesar (B8) 2018; 556
Docquier (B13) 2021; 2
Årthun (B2) 2012; 25
Madonna (B37) 2022; 49
Weijer (B73) 2022; 35
Barton (B4) 2018; 48
Gervais (B19) 2018; 31
Rayner (B52) 2003; 108
Richards (B54) 2022; 127
Muilwijk (B42) 2023; 36
Mauritsen (B40) 2019; 11
Mankin (B38) 2020; 8
Sgubin (B59) 2017; 8
Pan (B46) 2023; 50
Tatebe (B62) 2019; 12
Couldrey (B11) 2021; 56
Jungclaus (B30) 2014; 10
Ruiz (B55) 2022; 15
Hattermann (B25) 2016; 43
Rautiainen (B51) 2020
Rantanen (B50) 2022; 3
Nummelin (B43) 2017; 44
Årthun (B3) 2017; 8
Koenigk (B34) 2014; 42
Uotila (B66) 2019; 52
Boucher (B7) 2020; 12
Winkelbauer (B74) 2024; 62
Döscher (B14) 2022; 15
Ribes (B53) 2021; 7
Oldenburg (B44) 2018; 45
Zuo (B77) 2019; 15
Tokarska (B64) 2020; 6
Fan (B17) 2023; 6
Orvik (B45) 2002; 29
Saba (B56) 2016; 121
Shu (B60) 2019; 53
Wefing (B71) 2021; 17
Maslowski (B39) 2004; 109
Drews (B15) 2024; 51
Hansen (B24) 2023; 2023
References_xml – volume: 17
  start-page: 347
  year: 2024
  ident: B69
  article-title: Impact of increased resolution on Arctic Ocean simulations in ocean model intercomparison project phase 2 (OMIP-2)
  publication-title: Geosci. Model Dev
  doi: 10.5194/gmd-17-347-2024
– volume: 8
  start-page: 15875
  year: 2017
  ident: B3
  article-title: Skillful prediction of northern climate provided by the ocean
  publication-title: Nat. Commun
  doi: 10.1038/ncomms15875
– volume: 9
  start-page: 3993
  year: 2016
  ident: B23
  article-title: The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) contribution to CMIP6: investigation of sea-level and ocean climate change in response to CO2 forcing
  publication-title: Geosci. Model Dev
  doi: 10.5194/gmd-9-3993-2016
– volume: 3
  start-page: 168
  year: 2022
  ident: B50
  article-title: The Arctic has warmed nearly four times faster than the globe since 1979
  publication-title: Commun. Earth Environ
  doi: 10.1038/s43247-022-00498-3
– volume: 7
  start-page: 181
  year: 2014
  ident: B47
  article-title: Arctic amplification dominated by temperature feedbacks in contemporary climate models
  publication-title: Nat. Geosci
  doi: 10.1038/ngeo2071
– volume: 8
  start-page: 14375
  year: 2017
  ident: B59
  article-title: Abrupt cooling over the North Atlantic in modern climate models
  publication-title: Nat. Commun
  doi: 10.1038/ncomms14375
– start-page: 1211
  year: 2023
  ident: B29
  publication-title: Ocean, Cryosphere and Sea Level Change
  doi: 10.1017/9781009157896.011
– volume: 2
  start-page: 144
  year: 2021
  ident: B13
  article-title: Observation-based selection of climate models projects Arctic ice-free summers around 2035
  publication-title: Commun. Earth Environ
  doi: 10.1038/s43247-021-00214-7
– volume: 31
  start-page: 5927
  year: 2018
  ident: B19
  article-title: Mechanisms governing the development of the north Atlantic warming hole in the CESM-LE future climate simulations
  publication-title: J. Clim
  doi: 10.1175/JCLI-D-17-0635.1
– volume: 42
  start-page: 3101
  year: 2014
  ident: B34
  article-title: Ocean heat transport into the Arctic in the twentieth and twenty-first Century in EC-Earth
  publication-title: Clim. Dyn
  doi: 10.1007/s00382-013-1821-x
– volume: 6
  start-page: 145
  year: 2023
  ident: B17
  article-title: North Atlantic subpolar gyre provides downstream ocean predictability
  publication-title: NPJ Clim. Atmosph. Sci
  doi: 10.1038/s41612-023-00469-1
– volume: 12
  start-page: e2019M
  year: 2020
  ident: B32
  article-title: GISS-E2.1: configurations and climatology
  publication-title: J. Adv. Model. Earth Syst
  doi: 10.1029/2019MS002025
– volume: 7
  start-page: eabc0671
  year: 2021
  ident: B53
  article-title: Making climate projections conditional on historical observations
  publication-title: Sci. Adv
  doi: 10.1126/sciadv.abc0671
– volume: 10
  start-page: 667
  year: 2020
  ident: B31
  article-title: Multiple drivers of the north Atlantic warming hole
  publication-title: Nat. Clim. Chang
  doi: 10.1038/s41558-020-0819-8
– volume: 14
  start-page: e2022M
  year: 2022
  ident: B20
  article-title: The DOE E3SM model version 2: overview of the physical model and initial model evaluation
  publication-title: J. Adv. Model. Earth Syst
  doi: 10.1029/2022MS003156
– volume: 50
  start-page: e2022G
  year: 2023
  ident: B46
  article-title: Future Arctic climate change in CMIP6 strikingly intensified by NEMO-family climate models
  publication-title: Geophys. Res. Lett
  doi: 10.1029/2022GL102077
– volume: 15
  start-page: 779
  year: 2019
  ident: B77
  article-title: The ECMWF operational ensemble reanalysis-analysis system for ocean and sea ice: a description of the system and assessment
  publication-title: Ocean Sci
  doi: 10.5194/os-15-779-2019
– volume: 556
  start-page: 191
  year: 2018
  ident: B8
  article-title: Observed fingerprint of a weakening Atlantic Ocean overturning circulation
  publication-title: Nature
  doi: 10.1038/s41586-018-0006-5
– volume: 17
  start-page: 111
  year: 2021
  ident: B71
  article-title: Circulation timescales of Atlantic water in the arctic ocean determined from anthropogenic radionuclides
  publication-title: Ocean Sci
  doi: 10.5194/os-17-111-2021
– volume: 52
  start-page: 1613
  year: 2019
  ident: B66
  article-title: An assessment of ten ocean reanalyses in the polar regions
  publication-title: Clim. Dyn
  doi: 10.1007/s00382-018-4242-z
– volume: 127
  start-page: e2021J
  year: 2022
  ident: B54
  article-title: Spatial and temporal variability of Atlantic water in the arctic from 40 years of observations
  publication-title: J. Geophys. Res
  doi: 10.1029/2021JC018358
– volume: 11
  start-page: 998
  year: 2019
  ident: B40
  article-title: Developments in the MPI-M earth system model version 1.2 (MPI-ESM1.2) and its response to increasing CO2
  publication-title: J. Adv. Modeling Earth Syst
  doi: 10.1029/2018MS001400
– volume: 121
  start-page: 118
  year: 2016
  ident: B56
  article-title: Enhanced warming of the Northwest Atlantic Ocean under climate change
  publication-title: J J. Geophys. Res
  doi: 10.1002/2015JC011346
– volume: 53
  start-page: 5279
  year: 2019
  ident: B60
  article-title: Assessment of the Atlantic water layer in the Arctic Ocean in CMIP5 climate models
  publication-title: Clim. Dyn
  doi: 10.1007/s00382-019-04870-6
– volume: 106
  start-page: 7183
  year: 2001
  ident: B63
  article-title: Summarizing multiple aspects of model performance in a single diagram
  publication-title: J. Geophys. Res
  doi: 10.1029/2000JD900719
– volume: 60
  start-page: 3695
  year: 2023
  ident: B41
  article-title: Internal multi-centennial variability of the Atlantic meridional overturning circulation simulated by EC-Earth3
  publication-title: Clim. Dyn
  doi: 10.1007/s00382-022-06534-4
– volume: 109
  start-page: 1039
  year: 2004
  ident: B39
  article-title: On climatological mass, heat, and salt transports through the Barents Sea and Fram Strait from a pan-Arctic coupled ice-ocean
  publication-title: J. Geophys. Res
  doi: 10.1029/2001JC001039
– volume: 108
  start-page: D14
  year: 2003
  ident: B52
  article-title: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century
  publication-title: J. Geophys. Res
  doi: 10.1029/2002JD002670
– volume: 51
  start-page: e2024G
  year: 2024
  ident: B15
  article-title: The crucial role of the subpolar North Atlantic for skillful decadal climate predictions
  publication-title: Geophys. Res. Lett
  doi: 10.1029/2024GL109415
– volume: 49
  start-page: e2022G
  year: 2022
  ident: B26
  article-title: A north Atlantic warming hole without ocean circulation
  publication-title: Geophys. Res. Lett
  doi: 10.1029/2022GL100420
– volume: 118
  start-page: 6704
  year: 2013
  ident: B21
  article-title: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates
  publication-title: J. Geophys. Res
  doi: 10.1002/2013JC009067
– volume: 8
  start-page: e2012E
  year: 2020
  ident: B38
  article-title: The value of initial condition large ensembles to robust adaptation decision-making
  publication-title: Earth's Fut
  doi: 10.1029/2020EF001610
– volume: 77
  start-page: 85
  year: 2011
  ident: B58
  article-title: Processes and impacts of Arctic amplification: a research synthesis
  publication-title: Glob. Planet. Change
  doi: 10.1016/j.gloplacha.2011.03.004
– volume: 43
  start-page: 3406
  year: 2016
  ident: B25
  article-title: Eddy-driven recirculation of Atlantic water in Fram strait
  publication-title: Geophys. Res. Lett
  doi: 10.1002/2016GL068323
– volume: 44
  start-page: 1899
  year: 2017
  ident: B43
  article-title: Connecting ocean heat transport changes from the midlatitudes to the Arctic Ocean
  publication-title: Geophys. Res. Lett
  doi: 10.1002/2016GL071333
– volume: 10
  start-page: 2201
  year: 2014
  ident: B30
  article-title: Enhanced 20th-century heat transfer to the Arctic simulated in the context of climate variations over the last millennium
  publication-title: Clim. Past
  doi: 10.5194/cp-10-2201-2014
– volume: 10
  start-page: e2021E
  year: 2022
  ident: B33
  article-title: The Arctic Ocean in CMIP6 models: biases and projected changes in temperature and salinity
  publication-title: Earth's Fut
  doi: 10.1029/2021EF002282
– volume: 57
  start-page: 316
  year: 2019
  ident: B75
  article-title: A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts
  publication-title: Rev. Geophys
  doi: 10.1029/2019RG000644
– volume: 12
  start-page: 2727
  year: 2019
  ident: B62
  article-title: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6
  publication-title: Geosci. Model Dev
  doi: 10.5194/gmd-12-2727-2019
– volume: 11
  start-page: 21
  year: 2021
  ident: B65
  article-title: Increased ocean heat transport into the Nordic Seas and Arctic Ocean over the period 1993–2016
  publication-title: Nat. Clim. Chang
  doi: 10.1038/s41558-020-00941-3
– volume: 36
  start-page: 2551
  year: 2023
  ident: B27
  article-title: The deep Arctic Ocean and fram strait in CMIP6 models
  publication-title: J. Clim
  doi: 10.1175/JCLI-D-22-0194.1
– volume: 9
  start-page: 1937
  year: 2016
  ident: B16
  article-title: Overview of the coupled model intercomparison project phase 6 (cmip6) experimental design and organization
  publication-title: Geosci. Model Dev
  doi: 10.5194/gmd-9-1937-2016
– volume: 31
  start-page: 303
  year: 2024
  ident: B36
  article-title: Selecting and weighting dynamical models using data-driven approaches
  publication-title: Nonlinear Process. Geophys
  doi: 10.5194/npg-31-303-2024
– volume: 11
  start-page: 4513
  year: 2019
  ident: B57
  article-title: UKESM1: description and evaluation of the U.K. Earth System Model
  publication-title: J. Adv. Model Earth Syst
  doi: 10.1029/2019MS001739
– volume: 6
  start-page: eaaz9549
  year: 2020
  ident: B64
  article-title: Past warming trend constrains future warming in CMIP6 models
  publication-title: Sci. Adv
  doi: 10.1126/sciadv.aaz9549
– volume: 36
  start-page: 1727
  year: 2023
  ident: B42
  article-title: Divergence in climate model projections of future arctic atlantification
  publication-title: J. Clim
  doi: 10.1175/JCLI-D-22-0349.1
– volume: 49
  start-page: e2021G
  year: 2022
  ident: B37
  article-title: Understanding differences in north Atlantic poleward ocean heat transport and its variability in global climate models
  publication-title: Geophys. Res. Lett
  doi: 10.1029/2021GL096683
– volume: 14
  start-page: 7073
  year: 2021
  ident: B5
  article-title: NorCPM1 and its contribution to CMIP6 DCPP
  publication-title: Geosci. Model Dev
  doi: 10.5194/gmd-14-7073-2021
– volume: 29
  start-page: 7507
  year: 2016
  ident: B18
  article-title: Ocean Heat Uptake and Interbasin Transport of the Passive and Redistributive Components of Surface Heating
  publication-title: J. Clim
  doi: 10.1175/JCLI-D-16-0138.1
– volume: 62
  start-page: 3891
  year: 2024
  ident: B74
  article-title: Validation of key Arctic energy and water budget components in CMIP6
  publication-title: Clim. Dyn
  doi: 10.1007/s00382-024-07105-5
– volume: 381
  start-page: 972
  year: 2023
  ident: B48
  article-title: Fluctuating Atlantic inflows modulate Arctic atlantification
  publication-title: Science
  doi: 10.1126/science.adh5158
– volume: 47
  start-page: e2019G
  year: 2020
  ident: B72
  article-title: CMIP6 models predict significant 21st Century decline of the Atlantic meridional overturning circulation
  publication-title: Geophys. Res. Lett
  doi: 10.1029/2019GL086075
– volume-title: Copernicus Climate Change Service (C3S) Climate Data Store (CDS)
  year: 2021
  ident: B10
  article-title: “ORAS5 global ocean reanalysis monthly data from 1958 to present,”
– volume: 70
  start-page: 193
  year: 2020
  ident: B76
  article-title: The Australian earth system model: ACCESS-ESM1.5
  publication-title: J. South Hemisph. Earth Syst. Sci
  doi: 10.1071/ES19035
– volume: 12
  start-page: e2019M
  year: 2020
  ident: B7
  article-title: Presentation and evaluation of the IPSL-CM6A-LR climate model
  publication-title: J. Adv. Modeling Earth Syst
  doi: 10.1029/2019MS002010
– volume: 25
  start-page: 4736
  year: 2012
  ident: B2
  article-title: Quantifying the influence of Atlantic heat on Barents sea ice variability and retreat
  publication-title: J. Clim
  doi: 10.1175/JCLI-D-11-00466.1
– volume: 32
  start-page: 2277
  year: 2019
  ident: B9
  article-title: Temperature and salinity variability in the soda3, ecco4r3, and oras5 ocean reanalyses, 1993–2015
  publication-title: J. Clim
  doi: 10.1175/JCLI-D-18-0605.1
– volume: 10
  start-page: 277
  year: 2020
  ident: B12
  article-title: Insights from Earth system model initial-condition large ensembles and future prospects
  publication-title: Nat. Clim. Chang
  doi: 10.1038/s41558-020-0731-2
– volume: 15
  start-page: 2973
  year: 2022
  ident: B14
  article-title: The EC-earth3 earth system model for the coupled model intercomparison project 6
  publication-title: Geosci. Model Dev
  doi: 10.5194/gmd-15-2973-2022
– volume: 53
  start-page: 4763
  year: 2019
  ident: B67
  article-title: Oceanic heat transport into the Arctic under high and low CO2 forcing
  publication-title: Clim. Dyn
  doi: 10.1007/s00382-019-04824-y
– volume: 12
  start-page: e2019M
  year: 2020
  ident: B1
  article-title: Historical simulations with HadGEM3-GC3.1 for CMIP6
  publication-title: J. Adv. Model. Earth Syst
  doi: 10.1029/2019MS001995
– volume: 29
  start-page: 4
  year: 2002
  ident: B45
  article-title: Major pathways of Atlantic water in the northern North Atlantic and Nordic Seas toward Arctic
  publication-title: Geophys. Res. Lett
  doi: 10.1029/2002GL015002
– volume: 15
  start-page: 7203
  year: 2022
  ident: B55
  article-title: Analog data assimilation for the selection of suitable general circulation models
  publication-title: Geosci. Model Dev
  doi: 10.5194/gmd-15-7203-2022
– volume: 56
  start-page: 155
  year: 2021
  ident: B11
  article-title: What causes the spread of model projections of ocean dynamic sea-level change in response to greenhouse gas forcing?
  publication-title: Clim. Dyn
  doi: 10.1007/s00382-020-05471-4
– volume: 2023
  start-page: 1
  year: 2023
  ident: B24
  article-title: The Iceland-Faroe warm-water flow towards the arctic estimated from satellite altimetry and in situ observations
  publication-title: EGUsphere
  doi: 10.5194/os-19-1225-2023
– volume: 9
  start-page: 1919
  year: 2018
  ident: B22
  article-title: Quantifying climate feedbacks in polar regions
  publication-title: Nat. Commun
  doi: 10.1038/s41467-018-04173-0
– volume: 10
  start-page: 1211562
  year: 2023
  ident: B35
  article-title: Constraining cmip6 estimates of arctic ocean temperature and salinity in 2025–2055
  publication-title: Front. Mar. Sci
  doi: 10.3389/fmars.2023.1211562
– volume: 47
  start-page: e2019G
  year: 2020
  ident: B70
  article-title: Intensification of the Atlantic water supply to the Arctic Ocean through fram strait induced by Arctic Sea Ice Decline
  publication-title: Geophys. Res. Lett
  doi: 10.1029/2019GL086682
– volume: 35
  start-page: 118
  year: 2022
  ident: B73
  article-title: Interactions between the Arctic Mediterranean and the Atlantic meridional overturning circulation: a review
  publication-title: Oceanography
  doi: 10.5670/oceanog.2022.130
– volume: 38
  start-page: 4856
  year: 2011
  ident: B28
  article-title: Coupling between Arctic feedbacks and changes in poleward energy transport
  publication-title: Geophys. Res. Lett
  doi: 10.1029/2011GL048546
– volume: 48
  start-page: 1849
  year: 2018
  ident: B4
  article-title: Observed Atlantification of the Barents sea causes the polar front to limit the expansion of winter sea ice
  publication-title: J. Phys. Oceanogr
  doi: 10.1175/JPO-D-18-0003.1
– volume: 25
  start-page: 8362
  year: 2012
  ident: B49
  article-title: Warming of the Intermediate Atlantic Water of the Arctic Ocean in the 2000s
  publication-title: J. Clim
  doi: 10.1175/JCLI-D-12-00266.1
– volume: 11
  start-page: 2177
  year: 2019
  ident: B68
  article-title: Evaluation of CMIP6 DECK experiments with CNRM-CM6–1
  publication-title: J. Adv. Model. Earth Syst
  doi: 10.1029/2019MS001683
– volume: 12
  start-page: 6108
  year: 2021
  ident: B6
  article-title: Increased risk of near term global warming due to a recent AMOC weakening
  publication-title: Nat. Commun
  doi: 10.1038/s41467-021-26370-0
– volume: 45
  start-page: 7692
  year: 2018
  ident: B44
  article-title: Distinct mechanisms of ocean heat transport into the arctic under internal variability and climate change
  publication-title: Geophys. Res. Lett
  doi: 10.1029/2018GL078719
– volume: 12
  start-page: 4823
  year: 2019
  ident: B61
  article-title: The Canadian Earth System Model version 5 (CanESM5.0.3)
  publication-title: Geosci. Model Dev
  doi: 10.5194/gmd-12-4823-2019
– year: 2020
  ident: B51
  publication-title: Observed changes in the hydrography of the Arctic Ocean
SSID ssj0002511801
Score 2.2901433
Snippet Atlantic Water plays a key role in future changes in the Arctic Ocean. It contributes to Atlantification by transporting salt and heat within the Arctic Ocean...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms AMOC
Arctic
Atlantic Water
CMIP6
sea water temperature
subpolar gyre
Title Constraining CMIP6 simulations for Atlantic Water in the Arctic using an AMOC-SST index
URI https://doaj.org/article/57c24561ef5741fa88ff6a7b723b1898
Volume 7
WOSCitedRecordID wos001489209900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2624-9553
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511801
  issn: 2624-9553
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2624-9553
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511801
  issn: 2624-9553
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxcCC-BTlSx4QCwqkdhLbY4lawZBSqUXtFtmujSKVFLUBiYXfztlJUZlYWDxEkWO9c3Lv4rt7CF0ZIallkQ6MMBCgMCsCHlsbhGzm9KyVJbwWm2CDAZ9OxXBD6svlhNXtgWvgIGDX7myuY2wMzs9Kzq1NJFOMUNXhwpf5AuvZCKbcN9gT57BTV8lAFCburJ4XrvKcxLeOlTNGfnmijYb93rP099BuQwlxt17KPtoy5QFqZ8BmF0v_0xtf4xSmlV5q9vMQTZzK5lrbAafZ4zDBq-K1EeJaYeChuFvNAbNC4wmQySUuSgxMD57hSqKwS3Z_wbLE3ewpDUajMfZNE4_Qc783Th-CRiAh0MDKKsA3VuB_TWhtKCVEJlxFFF5CZWchF0RxrWNiKZMispbSmItEKco4jNqoJKTHqFUuSnOCMGdCA7kiPm0tNomKNKAWRiwxkmjG2-hmDVb-VvfByCF-cNDmHtrcQZs30LbRvcPz507Xw9pfAMvmjWXzvyx7-h-TnKEdt7D6_Occtarlu7lA2_qjKlbLS79pYMy-et_IAsWQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraining+CMIP6+simulations+for+Atlantic+Water+in+the+Arctic+using+an+AMOC-SST+index&rft.jtitle=Frontiers+in+climate&rft.au=Marion+Devilliers&rft.au=Steffen+M.+Olsen&rft.au=Helene+R.+Langehaug&rft.au=Chuncheng+Guo&rft.date=2025-04-30&rft.pub=Frontiers+Media+S.A&rft.eissn=2624-9553&rft.volume=7&rft_id=info:doi/10.3389%2Ffclim.2025.1550772&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_57c24561ef5741fa88ff6a7b723b1898
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-9553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-9553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-9553&client=summon