Self-restrained energy grid with data analysis and blockchain techniques
Efficient energy distribution and utilization play a significant role in the energy grid, especially with renewable sources. The existing grid system has problems in resource utilization, data privacy, wireless communication, and dynamic demand handling. An energy grid is proposed based on IoT, bloc...
Saved in:
| Published in: | Energy sources. Part A, Recovery, utilization, and environmental effects Vol. 47; no. 1; pp. 3441 - 3459 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Taylor & Francis
31.12.2025
|
| Subjects: | |
| ISSN: | 1556-7036, 1556-7230 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Efficient energy distribution and utilization play a significant role in the energy grid, especially with renewable sources. The existing grid system has problems in resource utilization, data privacy, wireless communication, and dynamic demand handling. An energy grid is proposed based on IoT, blockchain, and machine learning techniques to solve the problems. The proposed energy grid architecture controls energy flow according to the demand, predicts expected load, analyzes consumer behavior, and enables the users in the grid trade energy in peer to peer manner. Energy flow in storage modules controlled with high voltage relays, and it automates the charging and discharging of respective battery pools in the grid. Energy consumption and battery status in the grid uploaded to the distributed file system. The data clustering model deployed in the server analyses those data and divides the consumers into three groups according to the consumer's consumption behavior: high, moderate, and low consumption. The Time series analysis model deployed to forecast the load and predict peak hours. The codes deployed as a smart contract in an Ethereum blockchain platform. Machine learning algorithms are deployed for forecasting and clustering. In forecasting, the average error rate is 37% less than other generally used algorithms, and in the clustering algorithm, the accuracy increases as the dataset increases, which is 30% more than other cluster models. The controlled energy storage model in this grid provides up to 500-600 extra charge cycles for batteries than other traditional methods. The distributed IPFS storage provides data security, and smart contracts support grid operational security and data privacy. The data analyzation module of the grid helps effective resource utilization. |
|---|---|
| AbstractList | Efficient energy distribution and utilization play a significant role in the energy grid, especially with renewable sources. The existing grid system has problems in resource utilization, data privacy, wireless communication, and dynamic demand handling. An energy grid is proposed based on IoT, blockchain, and machine learning techniques to solve the problems. The proposed energy grid architecture controls energy flow according to the demand, predicts expected load, analyzes consumer behavior, and enables the users in the grid trade energy in peer to peer manner. Energy flow in storage modules controlled with high voltage relays, and it automates the charging and discharging of respective battery pools in the grid. Energy consumption and battery status in the grid uploaded to the distributed file system. The data clustering model deployed in the server analyses those data and divides the consumers into three groups according to the consumer's consumption behavior: high, moderate, and low consumption. The Time series analysis model deployed to forecast the load and predict peak hours. The codes deployed as a smart contract in an Ethereum blockchain platform. Machine learning algorithms are deployed for forecasting and clustering. In forecasting, the average error rate is 37% less than other generally used algorithms, and in the clustering algorithm, the accuracy increases as the dataset increases, which is 30% more than other cluster models. The controlled energy storage model in this grid provides up to 500-600 extra charge cycles for batteries than other traditional methods. The distributed IPFS storage provides data security, and smart contracts support grid operational security and data privacy. The data analyzation module of the grid helps effective resource utilization. |
| Author | S, Praveen Kumar R, Raja Guru |
| Author_xml | – sequence: 1 givenname: Raja Guru orcidid: 0000-0003-1739-1311 surname: R fullname: R, Raja Guru email: Rajaguru.rama@gmail.com organization: Sethu Institute of Technology – sequence: 2 givenname: Praveen Kumar surname: S fullname: S, Praveen Kumar organization: Sethu Institute of Technology |
| BookMark | eNqFkM1KAzEUhYNUsK0-gjAvMDU_zfzgRilqhYILdR3uJDdtdJrRJFLm7Z1iu3Ghq3s4nHPgfhMy8p1HQi4ZnTFa0SsmZVFSUcw45YNVSS7m7ISM935eckFHRz2EzsgkxjdK51LSekyWz9jaPGBMAZxHk6HHsO6zdXAm27m0yQwkyMBD20cXB2Gypu30u94M-Syh3nj3-YXxnJxaaCNeHO6UvN7fvSyW-erp4XFxu8q1YDTlRkuoGmBQGs5Lrk1tDdW8KK1AwwSbQ6NFXdRoCysbgU1dgQZaCY6VrhoUUyJ_dnXoYgxo1UdwWwi9YlTtcagjDrXHoQ44ht71r552CZLr_P7z9t_2zU_beduFLey60BqVoG-7YAN47aISf098A6DOfGw |
| CitedBy_id | crossref_primary_10_1016_j_seta_2022_102108 crossref_primary_10_3390_en15217830 |
| Cites_doi | 10.1016/j.future.2019.09.002 10.1016/j.apenergy.2019.113604 10.1016/j.jnca.2019.06.018 10.1016/j.comcom.2016.12.020 10.1016/j.jisa.2020.102500 10.1016/j.future.2019.02.012 10.18517/ijaseit.8.1.4954 10.1109/MIE.2019.2940335 10.1016/j.procs.2019.08.057 10.1016/j.jpdc.2019.08.005 10.23919/DUE.2017.7931855 10.1109/TSG.2020.2969657 10.1016/j.future.2019.01.027 10.1145/3170521.3170524 10.1109/MSP.2018.2818327 10.1016/j.apenergy.2018.07.012 10.1016/j.cosrev.2018.08.001 10.1016/j.apenergy.2019.03.111 10.1109/MSP.2018.2842096 10.1016/j.apenergy.2019.113972 10.1016/j.jnca.2019.06.019 10.1016/j.cose.2019.05.006 10.1016/j.jpdc.2019.04.012 10.1109/MWC.2016.1400377RP 10.1016/j.apenergy.2019.04.132 10.1016/j.comnet.2019.02.002 10.1016/j.jksuci.2020.01.002 10.1016/j.ifacol.2019.06.022 10.1016/j.aej.2019.11.001 10.1016/j.egypro.2019.02.028 10.1016/j.future.2019.07.030 |
| ContentType | Journal Article |
| Copyright | 2020 Taylor & Francis Group, LLC 2020 |
| Copyright_xml | – notice: 2020 Taylor & Francis Group, LLC 2020 |
| DBID | AAYXX CITATION |
| DOI | 10.1080/15567036.2020.1852341 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1556-7230 |
| EndPage | 3459 |
| ExternalDocumentID | 10_1080_15567036_2020_1852341 1852341 |
| Genre | Research Article |
| GroupedDBID | .7F .DC .QJ 0BK 29G 2DF 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACTIO ADCVX ADGTB AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B GTTXZ H13 HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NX~ O9- P2P RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION |
| ID | FETCH-LOGICAL-c310t-dc5a8ba1a7d2272cd9fd0c267f3ed1314abc3969ef6f5b3eb98aca0832e8c8be3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000601017000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1556-7036 |
| IngestDate | Tue Nov 18 21:40:43 EST 2025 Sat Nov 29 07:05:19 EST 2025 Mon Nov 03 04:32:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c310t-dc5a8ba1a7d2272cd9fd0c267f3ed1314abc3969ef6f5b3eb98aca0832e8c8be3 |
| ORCID | 0000-0003-1739-1311 |
| PageCount | 19 |
| ParticipantIDs | informaworld_taylorfrancis_310_1080_15567036_2020_1852341 crossref_primary_10_1080_15567036_2020_1852341 crossref_citationtrail_10_1080_15567036_2020_1852341 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-31 |
| PublicationDateYYYYMMDD | 2025-12-31 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy sources. Part A, Recovery, utilization, and environmental effects |
| PublicationYear | 2025 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | e_1_3_1_22_1 e_1_3_1_23_1 e_1_3_1_24_1 e_1_3_1_25_1 e_1_3_1_9_1 e_1_3_1_8_1 e_1_3_1_20_1 e_1_3_1_21_1 e_1_3_1_5_1 e_1_3_1_4_1 e_1_3_1_7_1 e_1_3_1_6_1 e_1_3_1_26_1 e_1_3_1_27_1 e_1_3_1_3_1 e_1_3_1_28_1 e_1_3_1_2_1 e_1_3_1_29_1 e_1_3_1_10_1 e_1_3_1_33_1 e_1_3_1_34_1 e_1_3_1_35_1 e_1_3_1_36_1 e_1_3_1_14_1 e_1_3_1_13_1 e_1_3_1_30_1 e_1_3_1_12_1 e_1_3_1_31_1 e_1_3_1_11_1 e_1_3_1_32_1 e_1_3_1_18_1 e_1_3_1_17_1 e_1_3_1_16_1 e_1_3_1_15_1 e_1_3_1_37_1 e_1_3_1_38_1 e_1_3_1_39_1 e_1_3_1_19_1 |
| References_xml | – ident: e_1_3_1_33_1 doi: 10.1016/j.future.2019.09.002 – ident: e_1_3_1_17_1 doi: 10.1016/j.apenergy.2019.113604 – ident: e_1_3_1_2_1 doi: 10.1016/j.jnca.2019.06.018 – ident: e_1_3_1_14_1 doi: 10.1016/j.comcom.2016.12.020 – ident: e_1_3_1_25_1 – ident: e_1_3_1_16_1 doi: 10.1016/j.jisa.2020.102500 – ident: e_1_3_1_5_1 doi: 10.1016/j.future.2019.02.012 – ident: e_1_3_1_30_1 doi: 10.18517/ijaseit.8.1.4954 – ident: e_1_3_1_19_1 doi: 10.1109/MIE.2019.2940335 – ident: e_1_3_1_26_1 doi: 10.1016/j.procs.2019.08.057 – ident: e_1_3_1_12_1 doi: 10.1016/j.jpdc.2019.08.005 – ident: e_1_3_1_22_1 – ident: e_1_3_1_32_1 doi: 10.23919/DUE.2017.7931855 – ident: e_1_3_1_35_1 doi: 10.1109/TSG.2020.2969657 – ident: e_1_3_1_21_1 – ident: e_1_3_1_4_1 doi: 10.1016/j.future.2019.01.027 – ident: e_1_3_1_6_1 doi: 10.1145/3170521.3170524 – ident: e_1_3_1_38_1 doi: 10.1109/MSP.2018.2818327 – ident: e_1_3_1_10_1 – ident: e_1_3_1_29_1 doi: 10.1016/j.apenergy.2018.07.012 – ident: e_1_3_1_15_1 doi: 10.1016/j.cosrev.2018.08.001 – ident: e_1_3_1_34_1 doi: 10.1016/j.apenergy.2019.03.111 – ident: e_1_3_1_36_1 doi: 10.1109/MSP.2018.2842096 – ident: e_1_3_1_20_1 doi: 10.1016/j.apenergy.2019.113972 – ident: e_1_3_1_31_1 doi: 10.1016/j.jnca.2019.06.019 – ident: e_1_3_1_8_1 doi: 10.1016/j.cose.2019.05.006 – ident: e_1_3_1_11_1 doi: 10.1016/j.cose.2019.05.006 – ident: e_1_3_1_9_1 doi: 10.1016/j.cose.2019.05.006 – ident: e_1_3_1_18_1 doi: 10.1016/j.jpdc.2019.04.012 – ident: e_1_3_1_37_1 doi: 10.1109/MWC.2016.1400377RP – ident: e_1_3_1_27_1 doi: 10.1016/j.apenergy.2019.04.132 – ident: e_1_3_1_23_1 doi: 10.1016/j.comnet.2019.02.002 – ident: e_1_3_1_3_1 doi: 10.1016/j.jksuci.2020.01.002 – ident: e_1_3_1_7_1 – ident: e_1_3_1_13_1 doi: 10.1016/j.ifacol.2019.06.022 – ident: e_1_3_1_28_1 doi: 10.1016/j.aej.2019.11.001 – ident: e_1_3_1_39_1 doi: 10.1016/j.egypro.2019.02.028 – ident: e_1_3_1_24_1 doi: 10.1016/j.future.2019.07.030 |
| SSID | ssj0045509 |
| Score | 2.409162 |
| Snippet | Efficient energy distribution and utilization play a significant role in the energy grid, especially with renewable sources. The existing grid system has... |
| SourceID | crossref informaworld |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 3441 |
| SubjectTerms | Battery pool consumer cluster demand forecast distributed file system IoT network private Ethereum blockchain prosumers smart contract time-series analysis |
| Title | Self-restrained energy grid with data analysis and blockchain techniques |
| URI | https://www.tandfonline.com/doi/abs/10.1080/15567036.2020.1852341 |
| Volume | 47 |
| WOSCitedRecordID | wos000601017000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1556-7230 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045509 issn: 1556-7036 databaseCode: TFW dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxQAD34jyJQ-shiaOE3tEiKoDqpAo0C2yfTZUVAU1gd-P7TioHYABtijKi5Kzz89n3b1D6MwCUMcSQKSmlmTACiKVc3fIoICeYpKFXocPN8VwyMdjcRuzCauYVuljaNsIRYS12ju3VFWbEXfhKDD3ulEuukvdLe5iqVC67qjfu-ao_9iuxb5kVwTFVJYTD2lreL57yxI7LWmXLrBOf_MfvncLbcQtJ75s5sg2WjGzHbS-IES4iwZ3ZmqJb9PhO0YYwCaUBOKn-QSwP6rFPpMUy6hg4i4AK0eDL_rZPY-_hGCrPXTfvx5dDUjssUC029jVBDSTXMlEFpCmRapBWOjpNC8sNZDQJJNKU5ELY3PLFDVKcKml27elhmuuDN1HndnrzBwgnGtIQNLMwZkbdMG5VYkolMqZdkGN7KKstW2powC5_6tpmUSd0tZQpTdUGQ3VRedfsLdGgeM3gFgcuLIORx-26VNS0h-xh3_AHqG11DcHDiqQx6hTz9_NCVrVH_Wkmp-GefkJjU7ejQ |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQIAEDb0R5emANNHGc2CNCVEWULhToFtk-GyqqgtrA78eXR9UOwABbFOWLkvPj853uviPkzAEwzxIQKMNcEANPA6X9cocYUmhqrnjR6_Cxk3a7ot-Xs7UwmFaJPrQrhSKKvRoXNwaj65S4C8-BCQpHefcu8reEd6awdn2Je65F_fxe66nejbFoVxaaqTwJEFNX8Xz3mjl-mlMvneGd1sZ_fPEmWa9OnfSynCZbZMGOtsnajBbhDmnf26ELsFMHNo2wQG1RFUifxwOgGK2lmExKVSVi4i-Aas-Er-bFP0-nWrCTXfLQuu5dtYOqzUJg_NkuD8BwJbQKVQpRlEYGpIOmiZLUMQshC2OlDZOJtC5xXDOrpVBG-aNbZIUR2rI9sjh6G9l9QhMDISgWezj34y6FcDqUqdYJN96vUQ0S18bNTKVBjn81zMJKqrQ2VIaGyipDNcj5FPZeinD8BpCzI5flRfTDla1KMvYj9uAP2FOy0u7ddbLOTff2kKxG2Cu4EIU8Iov5-MMek2XzmQ8m45Nikn4BujLitw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQQQgG3ojy9MBqaOLEiUcEVEVUVSUKdItsnw0VVanawO_HTpyqHYABtijKFyXnx91Zd9-H0LkBoNZLABGKGhJBnBAh7XKHCBJoyFjEhdbhUzvpdNJ-n3d9NeHUl1W6HNqURBHFXu0W9xhMVRF3aV0gc7xRNrsL7a3U5lKudX3Zhs7MTfJe87najF3PLi8oU2NGHKZq4vnuNQvuaYG8dM7tNDf_4YO30IaPOfFVOUm20ZIe7aD1OSbCXdR60ENDnE6Hk4zQgHXRE4hfJgPA7qwWu1JSLDyFib0ALK0ffFOv9nk8Y4Kd7qHH5m3vukW8yAJRNrLLCahYpFIEIoEwTEIF3EBDhSwxVENAg0hIRTnj2jATS6olT4USNnALdapSqek-qo3eR_oAYaYgAEEjC4_tqPM0NTLgiZQsVjarEXUUVbbNlGcgd381zAJPVFoZKnOGyryh6uhiBhuXFBy_Afj8wGV5cfZhSqGSjP6IPfwD9gytdm-aWfuuc3-E1kInFFwwQh6jWj750CdoRX3mg-nktJiiXx5p4Wk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-restrained+energy+grid+with+data+analysis+and+blockchain+techniques&rft.jtitle=Energy+sources.+Part+A%2C+Recovery%2C+utilization%2C+and+environmental+effects&rft.au=R%2C+Raja+Guru&rft.au=S%2C+Praveen+Kumar&rft.date=2025-12-31&rft.issn=1556-7036&rft.eissn=1556-7230&rft.volume=47&rft.issue=1&rft.spage=3441&rft.epage=3459&rft_id=info:doi/10.1080%2F15567036.2020.1852341&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_15567036_2020_1852341 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-7036&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-7036&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-7036&client=summon |