Self-restrained energy grid with data analysis and blockchain techniques

Efficient energy distribution and utilization play a significant role in the energy grid, especially with renewable sources. The existing grid system has problems in resource utilization, data privacy, wireless communication, and dynamic demand handling. An energy grid is proposed based on IoT, bloc...

Full description

Saved in:
Bibliographic Details
Published in:Energy sources. Part A, Recovery, utilization, and environmental effects Vol. 47; no. 1; pp. 3441 - 3459
Main Authors: R, Raja Guru, S, Praveen Kumar
Format: Journal Article
Language:English
Published: Taylor & Francis 31.12.2025
Subjects:
ISSN:1556-7036, 1556-7230
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Efficient energy distribution and utilization play a significant role in the energy grid, especially with renewable sources. The existing grid system has problems in resource utilization, data privacy, wireless communication, and dynamic demand handling. An energy grid is proposed based on IoT, blockchain, and machine learning techniques to solve the problems. The proposed energy grid architecture controls energy flow according to the demand, predicts expected load, analyzes consumer behavior, and enables the users in the grid trade energy in peer to peer manner. Energy flow in storage modules controlled with high voltage relays, and it automates the charging and discharging of respective battery pools in the grid. Energy consumption and battery status in the grid uploaded to the distributed file system. The data clustering model deployed in the server analyses those data and divides the consumers into three groups according to the consumer's consumption behavior: high, moderate, and low consumption. The Time series analysis model deployed to forecast the load and predict peak hours. The codes deployed as a smart contract in an Ethereum blockchain platform. Machine learning algorithms are deployed for forecasting and clustering. In forecasting, the average error rate is 37% less than other generally used algorithms, and in the clustering algorithm, the accuracy increases as the dataset increases, which is 30% more than other cluster models. The controlled energy storage model in this grid provides up to 500-600 extra charge cycles for batteries than other traditional methods. The distributed IPFS storage provides data security, and smart contracts support grid operational security and data privacy. The data analyzation module of the grid helps effective resource utilization.
AbstractList Efficient energy distribution and utilization play a significant role in the energy grid, especially with renewable sources. The existing grid system has problems in resource utilization, data privacy, wireless communication, and dynamic demand handling. An energy grid is proposed based on IoT, blockchain, and machine learning techniques to solve the problems. The proposed energy grid architecture controls energy flow according to the demand, predicts expected load, analyzes consumer behavior, and enables the users in the grid trade energy in peer to peer manner. Energy flow in storage modules controlled with high voltage relays, and it automates the charging and discharging of respective battery pools in the grid. Energy consumption and battery status in the grid uploaded to the distributed file system. The data clustering model deployed in the server analyses those data and divides the consumers into three groups according to the consumer's consumption behavior: high, moderate, and low consumption. The Time series analysis model deployed to forecast the load and predict peak hours. The codes deployed as a smart contract in an Ethereum blockchain platform. Machine learning algorithms are deployed for forecasting and clustering. In forecasting, the average error rate is 37% less than other generally used algorithms, and in the clustering algorithm, the accuracy increases as the dataset increases, which is 30% more than other cluster models. The controlled energy storage model in this grid provides up to 500-600 extra charge cycles for batteries than other traditional methods. The distributed IPFS storage provides data security, and smart contracts support grid operational security and data privacy. The data analyzation module of the grid helps effective resource utilization.
Author S, Praveen Kumar
R, Raja Guru
Author_xml – sequence: 1
  givenname: Raja Guru
  orcidid: 0000-0003-1739-1311
  surname: R
  fullname: R, Raja Guru
  email: Rajaguru.rama@gmail.com
  organization: Sethu Institute of Technology
– sequence: 2
  givenname: Praveen Kumar
  surname: S
  fullname: S, Praveen Kumar
  organization: Sethu Institute of Technology
BookMark eNqFkM1KAzEUhYNUsK0-gjAvMDU_zfzgRilqhYILdR3uJDdtdJrRJFLm7Z1iu3Ghq3s4nHPgfhMy8p1HQi4ZnTFa0SsmZVFSUcw45YNVSS7m7ISM935eckFHRz2EzsgkxjdK51LSekyWz9jaPGBMAZxHk6HHsO6zdXAm27m0yQwkyMBD20cXB2Gypu30u94M-Syh3nj3-YXxnJxaaCNeHO6UvN7fvSyW-erp4XFxu8q1YDTlRkuoGmBQGs5Lrk1tDdW8KK1AwwSbQ6NFXdRoCysbgU1dgQZaCY6VrhoUUyJ_dnXoYgxo1UdwWwi9YlTtcagjDrXHoQ44ht71r552CZLr_P7z9t_2zU_beduFLey60BqVoG-7YAN47aISf098A6DOfGw
CitedBy_id crossref_primary_10_1016_j_seta_2022_102108
crossref_primary_10_3390_en15217830
Cites_doi 10.1016/j.future.2019.09.002
10.1016/j.apenergy.2019.113604
10.1016/j.jnca.2019.06.018
10.1016/j.comcom.2016.12.020
10.1016/j.jisa.2020.102500
10.1016/j.future.2019.02.012
10.18517/ijaseit.8.1.4954
10.1109/MIE.2019.2940335
10.1016/j.procs.2019.08.057
10.1016/j.jpdc.2019.08.005
10.23919/DUE.2017.7931855
10.1109/TSG.2020.2969657
10.1016/j.future.2019.01.027
10.1145/3170521.3170524
10.1109/MSP.2018.2818327
10.1016/j.apenergy.2018.07.012
10.1016/j.cosrev.2018.08.001
10.1016/j.apenergy.2019.03.111
10.1109/MSP.2018.2842096
10.1016/j.apenergy.2019.113972
10.1016/j.jnca.2019.06.019
10.1016/j.cose.2019.05.006
10.1016/j.jpdc.2019.04.012
10.1109/MWC.2016.1400377RP
10.1016/j.apenergy.2019.04.132
10.1016/j.comnet.2019.02.002
10.1016/j.jksuci.2020.01.002
10.1016/j.ifacol.2019.06.022
10.1016/j.aej.2019.11.001
10.1016/j.egypro.2019.02.028
10.1016/j.future.2019.07.030
ContentType Journal Article
Copyright 2020 Taylor & Francis Group, LLC 2020
Copyright_xml – notice: 2020 Taylor & Francis Group, LLC 2020
DBID AAYXX
CITATION
DOI 10.1080/15567036.2020.1852341
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1556-7230
EndPage 3459
ExternalDocumentID 10_1080_15567036_2020_1852341
1852341
Genre Research Article
GroupedDBID .7F
.DC
.QJ
0BK
29G
2DF
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ADCVX
ADGTB
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NX~
O9-
P2P
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c310t-dc5a8ba1a7d2272cd9fd0c267f3ed1314abc3969ef6f5b3eb98aca0832e8c8be3
IEDL.DBID TFW
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000601017000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1556-7036
IngestDate Tue Nov 18 21:40:43 EST 2025
Sat Nov 29 07:05:19 EST 2025
Mon Nov 03 04:32:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c310t-dc5a8ba1a7d2272cd9fd0c267f3ed1314abc3969ef6f5b3eb98aca0832e8c8be3
ORCID 0000-0003-1739-1311
PageCount 19
ParticipantIDs informaworld_taylorfrancis_310_1080_15567036_2020_1852341
crossref_primary_10_1080_15567036_2020_1852341
crossref_citationtrail_10_1080_15567036_2020_1852341
PublicationCentury 2000
PublicationDate 2025-12-31
PublicationDateYYYYMMDD 2025-12-31
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-31
  day: 31
PublicationDecade 2020
PublicationTitle Energy sources. Part A, Recovery, utilization, and environmental effects
PublicationYear 2025
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References e_1_3_1_22_1
e_1_3_1_23_1
e_1_3_1_24_1
e_1_3_1_25_1
e_1_3_1_9_1
e_1_3_1_8_1
e_1_3_1_20_1
e_1_3_1_21_1
e_1_3_1_5_1
e_1_3_1_4_1
e_1_3_1_7_1
e_1_3_1_6_1
e_1_3_1_26_1
e_1_3_1_27_1
e_1_3_1_3_1
e_1_3_1_28_1
e_1_3_1_2_1
e_1_3_1_29_1
e_1_3_1_10_1
e_1_3_1_33_1
e_1_3_1_34_1
e_1_3_1_35_1
e_1_3_1_36_1
e_1_3_1_14_1
e_1_3_1_13_1
e_1_3_1_30_1
e_1_3_1_12_1
e_1_3_1_31_1
e_1_3_1_11_1
e_1_3_1_32_1
e_1_3_1_18_1
e_1_3_1_17_1
e_1_3_1_16_1
e_1_3_1_15_1
e_1_3_1_37_1
e_1_3_1_38_1
e_1_3_1_39_1
e_1_3_1_19_1
References_xml – ident: e_1_3_1_33_1
  doi: 10.1016/j.future.2019.09.002
– ident: e_1_3_1_17_1
  doi: 10.1016/j.apenergy.2019.113604
– ident: e_1_3_1_2_1
  doi: 10.1016/j.jnca.2019.06.018
– ident: e_1_3_1_14_1
  doi: 10.1016/j.comcom.2016.12.020
– ident: e_1_3_1_25_1
– ident: e_1_3_1_16_1
  doi: 10.1016/j.jisa.2020.102500
– ident: e_1_3_1_5_1
  doi: 10.1016/j.future.2019.02.012
– ident: e_1_3_1_30_1
  doi: 10.18517/ijaseit.8.1.4954
– ident: e_1_3_1_19_1
  doi: 10.1109/MIE.2019.2940335
– ident: e_1_3_1_26_1
  doi: 10.1016/j.procs.2019.08.057
– ident: e_1_3_1_12_1
  doi: 10.1016/j.jpdc.2019.08.005
– ident: e_1_3_1_22_1
– ident: e_1_3_1_32_1
  doi: 10.23919/DUE.2017.7931855
– ident: e_1_3_1_35_1
  doi: 10.1109/TSG.2020.2969657
– ident: e_1_3_1_21_1
– ident: e_1_3_1_4_1
  doi: 10.1016/j.future.2019.01.027
– ident: e_1_3_1_6_1
  doi: 10.1145/3170521.3170524
– ident: e_1_3_1_38_1
  doi: 10.1109/MSP.2018.2818327
– ident: e_1_3_1_10_1
– ident: e_1_3_1_29_1
  doi: 10.1016/j.apenergy.2018.07.012
– ident: e_1_3_1_15_1
  doi: 10.1016/j.cosrev.2018.08.001
– ident: e_1_3_1_34_1
  doi: 10.1016/j.apenergy.2019.03.111
– ident: e_1_3_1_36_1
  doi: 10.1109/MSP.2018.2842096
– ident: e_1_3_1_20_1
  doi: 10.1016/j.apenergy.2019.113972
– ident: e_1_3_1_31_1
  doi: 10.1016/j.jnca.2019.06.019
– ident: e_1_3_1_8_1
  doi: 10.1016/j.cose.2019.05.006
– ident: e_1_3_1_11_1
  doi: 10.1016/j.cose.2019.05.006
– ident: e_1_3_1_9_1
  doi: 10.1016/j.cose.2019.05.006
– ident: e_1_3_1_18_1
  doi: 10.1016/j.jpdc.2019.04.012
– ident: e_1_3_1_37_1
  doi: 10.1109/MWC.2016.1400377RP
– ident: e_1_3_1_27_1
  doi: 10.1016/j.apenergy.2019.04.132
– ident: e_1_3_1_23_1
  doi: 10.1016/j.comnet.2019.02.002
– ident: e_1_3_1_3_1
  doi: 10.1016/j.jksuci.2020.01.002
– ident: e_1_3_1_7_1
– ident: e_1_3_1_13_1
  doi: 10.1016/j.ifacol.2019.06.022
– ident: e_1_3_1_28_1
  doi: 10.1016/j.aej.2019.11.001
– ident: e_1_3_1_39_1
  doi: 10.1016/j.egypro.2019.02.028
– ident: e_1_3_1_24_1
  doi: 10.1016/j.future.2019.07.030
SSID ssj0045509
Score 2.409162
Snippet Efficient energy distribution and utilization play a significant role in the energy grid, especially with renewable sources. The existing grid system has...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 3441
SubjectTerms Battery pool
consumer cluster
demand forecast
distributed file system
IoT network
private Ethereum blockchain
prosumers
smart contract
time-series analysis
Title Self-restrained energy grid with data analysis and blockchain techniques
URI https://www.tandfonline.com/doi/abs/10.1080/15567036.2020.1852341
Volume 47
WOSCitedRecordID wos000601017000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1556-7230
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045509
  issn: 1556-7036
  databaseCode: TFW
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxQAD34jyJQ-shiaOE3tEiKoDqpAo0C2yfTZUVAU1gd-P7TioHYABtijKi5Kzz89n3b1D6MwCUMcSQKSmlmTACiKVc3fIoICeYpKFXocPN8VwyMdjcRuzCauYVuljaNsIRYS12ju3VFWbEXfhKDD3ulEuukvdLe5iqVC67qjfu-ao_9iuxb5kVwTFVJYTD2lreL57yxI7LWmXLrBOf_MfvncLbcQtJ75s5sg2WjGzHbS-IES4iwZ3ZmqJb9PhO0YYwCaUBOKn-QSwP6rFPpMUy6hg4i4AK0eDL_rZPY-_hGCrPXTfvx5dDUjssUC029jVBDSTXMlEFpCmRapBWOjpNC8sNZDQJJNKU5ELY3PLFDVKcKml27elhmuuDN1HndnrzBwgnGtIQNLMwZkbdMG5VYkolMqZdkGN7KKstW2powC5_6tpmUSd0tZQpTdUGQ3VRedfsLdGgeM3gFgcuLIORx-26VNS0h-xh3_AHqG11DcHDiqQx6hTz9_NCVrVH_Wkmp-GefkJjU7ejQ
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQIAEDb0R5emANNHGc2CNCVEWULhToFtk-GyqqgtrA78eXR9UOwABbFOWLkvPj853uviPkzAEwzxIQKMNcEANPA6X9cocYUmhqrnjR6_Cxk3a7ot-Xs7UwmFaJPrQrhSKKvRoXNwaj65S4C8-BCQpHefcu8reEd6awdn2Je65F_fxe66nejbFoVxaaqTwJEFNX8Xz3mjl-mlMvneGd1sZ_fPEmWa9OnfSynCZbZMGOtsnajBbhDmnf26ELsFMHNo2wQG1RFUifxwOgGK2lmExKVSVi4i-Aas-Er-bFP0-nWrCTXfLQuu5dtYOqzUJg_NkuD8BwJbQKVQpRlEYGpIOmiZLUMQshC2OlDZOJtC5xXDOrpVBG-aNbZIUR2rI9sjh6G9l9QhMDISgWezj34y6FcDqUqdYJN96vUQ0S18bNTKVBjn81zMJKqrQ2VIaGyipDNcj5FPZeinD8BpCzI5flRfTDla1KMvYj9uAP2FOy0u7ddbLOTff2kKxG2Cu4EIU8Iov5-MMek2XzmQ8m45Nikn4BujLitw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQQQgG3ojy9MBqaOLEiUcEVEVUVSUKdItsnw0VVanawO_HTpyqHYABtijKFyXnx91Zd9-H0LkBoNZLABGKGhJBnBAh7XKHCBJoyFjEhdbhUzvpdNJ-n3d9NeHUl1W6HNqURBHFXu0W9xhMVRF3aV0gc7xRNrsL7a3U5lKudX3Zhs7MTfJe87najF3PLi8oU2NGHKZq4vnuNQvuaYG8dM7tNDf_4YO30IaPOfFVOUm20ZIe7aD1OSbCXdR60ENDnE6Hk4zQgHXRE4hfJgPA7qwWu1JSLDyFib0ALK0ffFOv9nk8Y4Kd7qHH5m3vukW8yAJRNrLLCahYpFIEIoEwTEIF3EBDhSwxVENAg0hIRTnj2jATS6olT4USNnALdapSqek-qo3eR_oAYaYgAEEjC4_tqPM0NTLgiZQsVjarEXUUVbbNlGcgd381zAJPVFoZKnOGyryh6uhiBhuXFBy_Afj8wGV5cfZhSqGSjP6IPfwD9gytdm-aWfuuc3-E1kInFFwwQh6jWj750CdoRX3mg-nktJiiXx5p4Wk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-restrained+energy+grid+with+data+analysis+and+blockchain+techniques&rft.jtitle=Energy+sources.+Part+A%2C+Recovery%2C+utilization%2C+and+environmental+effects&rft.au=R%2C+Raja+Guru&rft.au=S%2C+Praveen+Kumar&rft.date=2025-12-31&rft.issn=1556-7036&rft.eissn=1556-7230&rft.volume=47&rft.issue=1&rft.spage=3441&rft.epage=3459&rft_id=info:doi/10.1080%2F15567036.2020.1852341&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_15567036_2020_1852341
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-7036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-7036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-7036&client=summon