Machine learning approach for phishing website detection : A literature survey

The past year saw our world afflicted by COVID-19 undergo a digital transformation which led to a majority of people and organizations gravitate towards the internet. A remote working environment complicated the pre-existent crisis of phishing where the vulnerable population incurred huge losses at...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of discrete mathematical sciences & cryptography Ročník 25; číslo 3; s. 817 - 827
Hlavní autori: Patil, Rutuja R., Kaur, Gagandeep, Jain, Himank, Tiwari, Ayush, Joshi, Soham, Rao, Keshav, Sharma, Amit
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Taylor & Francis 03.04.2022
Predmet:
ISSN:0972-0529, 2169-0065
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The past year saw our world afflicted by COVID-19 undergo a digital transformation which led to a majority of people and organizations gravitate towards the internet. A remote working environment complicated the pre-existent crisis of phishing where the vulnerable population incurred huge losses at the hands of internet miscreants. A phishing attack comprises an attacker that creates fake websites to fool users and steal client-sensitive data which may be in form of login, password, or credit card details. Timely detection of phishing attacks has become more crucial than ever. Hence in this paper, we provide a thorough literature survey of the various machine learning methods used for phishing detection. This thesis will discuss in detail, different approaches used by various authors over the past few years. This survey aims to identify and narrow down the best machine learning algorithms that can be adopted to develop a hybrid model which can be implemented to detect whether a website is legitimate or phishing in nature.
AbstractList The past year saw our world afflicted by COVID-19 undergo a digital transformation which led to a majority of people and organizations gravitate towards the internet. A remote working environment complicated the pre-existent crisis of phishing where the vulnerable population incurred huge losses at the hands of internet miscreants. A phishing attack comprises an attacker that creates fake websites to fool users and steal client-sensitive data which may be in form of login, password, or credit card details. Timely detection of phishing attacks has become more crucial than ever. Hence in this paper, we provide a thorough literature survey of the various machine learning methods used for phishing detection. This thesis will discuss in detail, different approaches used by various authors over the past few years. This survey aims to identify and narrow down the best machine learning algorithms that can be adopted to develop a hybrid model which can be implemented to detect whether a website is legitimate or phishing in nature.
Author Patil, Rutuja R.
Kaur, Gagandeep
Tiwari, Ayush
Rao, Keshav
Sharma, Amit
Jain, Himank
Joshi, Soham
Author_xml – sequence: 1
  givenname: Rutuja R.
  surname: Patil
  fullname: Patil, Rutuja R.
  organization: Symbiosis Institute of Technology
– sequence: 2
  givenname: Gagandeep
  surname: Kaur
  fullname: Kaur, Gagandeep
  organization: Symbiosis Institute of Technology
– sequence: 3
  givenname: Himank
  surname: Jain
  fullname: Jain, Himank
  organization: Symbiosis Institute of Technology
– sequence: 4
  givenname: Ayush
  surname: Tiwari
  fullname: Tiwari, Ayush
  organization: Symbiosis Institute of Technology
– sequence: 5
  givenname: Soham
  surname: Joshi
  fullname: Joshi, Soham
  organization: Symbiosis Institute of Technology
– sequence: 6
  givenname: Keshav
  surname: Rao
  fullname: Rao, Keshav
  organization: Symbiosis Institute of Technology
– sequence: 7
  givenname: Amit
  surname: Sharma
  fullname: Sharma, Amit
  email: amit.25076@lpu.co.in
  organization: Lovely Professional University
BookMark eNqFkMtOwzAQRS1UJNrCJyD5B1LGTp3EsKGqeEkFNrC2ps6YGqVJZadU_XsStWxYwGZGurpnpDkjNqibmhi7FDARUMAV6FyCknoiQYpuiEzK6QkbSpHpBCBTAzbsO0lfOmOjGD8BlJZCD9nLM9qVr4lXhKH29QfHzSY0XchdE_hm5eOqT3e0jL4lXlJLtvVNza_5jFddFLDdBuJxG75of85OHVaRLo57zN7v797mj8ni9eFpPlskNhXQJqUFjcq6IiugXFpHZUZ5rqzVGaUKc8KpKiAFLFPQRYEloi5l5pAcKYdFOmbqcNeGJsZAzmyCX2PYGwGml2J-pJheijlK6bibX5z1Lfb_tAF99S99e6B93clZ464JVWla3FdNcAFr66NJ_z7xDRqJfqk
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3298824
crossref_primary_10_3390_fi17080331
crossref_primary_10_1007_s41870_025_02703_w
crossref_primary_10_7759_s44389_024_02350_5
Cites_doi 10.1016/j.procs.2020.03.294
10.1109/ICWR.2019.8765265
10.5120/ijca2018918026
10.1109/ACCESS.2020.2991403
10.1109/ICSTCEE49637.2020.9277256
10.1108/EL-05-2019-0118
10.1016/j.eswa.2018.09.029
10.1109/INMIC50486.2020.9318210
10.1109/ICCAIS48893.2020.9096869
10.35940/ijrte.B1018.0982S1119
10.1080/09720529.2020.1721877
10.1109/Confluence51648.2021.9377113
10.1080/09720529.2018.1526408
10.1109/ICAIS50930.2021.9395810
ContentType Journal Article
Copyright 2022 Taru Publications 2022
Copyright_xml – notice: 2022 Taru Publications 2022
DBID AAYXX
CITATION
DOI 10.1080/09720529.2021.2016224
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2169-0065
EndPage 827
ExternalDocumentID 10_1080_09720529_2021_2016224
2016224
Genre Research Article
GroupedDBID 30N
4.4
ABCCY
ABFIM
ABPEM
ABTAI
ABXYU
ACGFS
ACTIO
ADCVX
AEYOC
AGDLA
AIJEM
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
DGEBU
DKSSO
EBS
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
J9A
KYCEM
LJTGL
M4Z
O9-
P2P
S-T
SNACF
TDBHL
TFW
TTHFI
UT5
AAYXX
CITATION
ID FETCH-LOGICAL-c310t-dc09a5cf8680dbcfed6e775cc96e35a7ea458030ad30988adaa9d26faefe5fa83
IEDL.DBID TFW
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000811051100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0972-0529
IngestDate Sat Nov 29 02:16:51 EST 2025
Tue Nov 18 21:27:17 EST 2025
Mon Oct 20 23:47:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c310t-dc09a5cf8680dbcfed6e775cc96e35a7ea458030ad30988adaa9d26faefe5fa83
PageCount 11
ParticipantIDs crossref_primary_10_1080_09720529_2021_2016224
crossref_citationtrail_10_1080_09720529_2021_2016224
informaworld_taylorfrancis_310_1080_09720529_2021_2016224
PublicationCentury 2000
PublicationDate 2022-04-03
PublicationDateYYYYMMDD 2022-04-03
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-03
  day: 03
PublicationDecade 2020
PublicationTitle Journal of discrete mathematical sciences & cryptography
PublicationYear 2022
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0020
CIT0001
CIT0011
CIT0022
Odeh Ammar (CIT0021) 2021; 07
Shikalgar Ms. Sophiya (CIT0003) 2019; 08
Patil. Sapana (CIT0014) 2020; 5
Kulkarni Arun (CIT0019) 2019; 10
Mahajan Rishikesh (CIT0010) 2018; 181
Adebowale M.A. (CIT0012) 2020
Zamir A. (CIT0004) 2019; 38
CIT0013
CIT0005
CIT0016
CIT0015
Kumari Poonam (CIT0002); 8
CIT0007
CIT0018
CIT0017
Rao C. (CIT0006) 2018; 1
CIT0009
CIT0008
References_xml – volume: 8
  issue: 14
  ident: CIT0002
  publication-title: International Journal of Engineering Research & Technology
– ident: CIT0018
– ident: CIT0005
  doi: 10.1016/j.procs.2020.03.294
– ident: CIT0016
  doi: 10.1109/ICWR.2019.8765265
– year: 2020
  ident: CIT0012
  publication-title: Journal of Enterprise Information Management
– volume: 5
  issue: 4
  year: 2020
  ident: CIT0014
  publication-title: Open Access International Journal of Science and Engineering
– volume: 10
  issue: 7
  year: 2019
  ident: CIT0019
  publication-title: International Journal of Advanced Computer Science and Applications(IJACSA)
– volume: 08
  issue: 11
  year: 2019
  ident: CIT0003
  publication-title: International Journal of Engineering Research & Technology (IJERT)
– volume: 181
  start-page: 45
  year: 2018
  ident: CIT0010
  publication-title: International Journal of Computer Applications
  doi: 10.5120/ijca2018918026
– ident: CIT0013
  doi: 10.1109/ACCESS.2020.2991403
– ident: CIT0017
  doi: 10.1109/ICSTCEE49637.2020.9277256
– volume: 38
  start-page: 65
  issue: 1
  year: 2019
  ident: CIT0004
  publication-title: The Electronic Library
  doi: 10.1108/EL-05-2019-0118
– ident: CIT0015
  doi: 10.1016/j.eswa.2018.09.029
– ident: CIT0007
  doi: 10.1109/INMIC50486.2020.9318210
– volume: 07
  start-page: 65
  year: 2021
  ident: CIT0021
  publication-title: Jordanian Journal of Computers and Information Technology (JJCIT)
– volume: 1
  start-page: 15
  issue: 1
  year: 2018
  ident: CIT0006
  publication-title: GPH - International Journal Of Computer Science and Engineering
– ident: CIT0011
  doi: 10.1109/ICCAIS48893.2020.9096869
– ident: CIT0020
  doi: 10.35940/ijrte.B1018.0982S1119
– ident: CIT0001
  doi: 10.1080/09720529.2020.1721877
– ident: CIT0008
  doi: 10.1109/Confluence51648.2021.9377113
– ident: CIT0022
  doi: 10.1080/09720529.2018.1526408
– ident: CIT0009
  doi: 10.1109/ICAIS50930.2021.9395810
SSID ssj0059219
Score 2.2228594
Snippet The past year saw our world afflicted by COVID-19 undergo a digital transformation which led to a majority of people and organizations gravitate towards the...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 817
SubjectTerms 68P27(Privacy of data)
68T05 (Learning and adaptive systems in artificial intelligence)
Covid-19
Cyber attack
Machine learning
Phishing detection
Web security
Title Machine learning approach for phishing website detection : A literature survey
URI https://www.tandfonline.com/doi/abs/10.1080/09720529.2021.2016224
Volume 25
WOSCitedRecordID wos000811051100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 2169-0065
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059219
  issn: 0972-0529
  databaseCode: TFW
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcBCeYrykgdWQxInfrBViIoBKoYC3SI_AakKVZNW4t9jJ07VDsAAey6xLvZ3d_bn7wC4cDmxcVVFhmSqGXL1hkKSRQIlTFLLsUPAWo7h-Z4Oh2w85o-BTVgGWqWvoW0jFFFjtV_cQpYtI-7KK874AypX3SW-xIuJi0MOhV1m7-f4aPDSYnHGk7hR26MJ8ibtHZ7v3rIWnda0S1eizqD7D-PdAdsh5YT9Zo7sgg1T7IFu284BhtW9D4YPNbHSwNBJ4hW2guPQDRBO35rtKuiA1x85Q22qmsdVwGvYh5OlPjMs57OF-TwAT4Pb0c0dCu0WkHI5XoW0irjIlGWERVoqazQxlGZKcWJwJqgRacYcJgiNI86Y0EJwnRArjDWZFQwfgk7xUZgjAA2JBZNYUpcvpJS5pyWPMHNf8DRtkvZA2ro5V0GL3LfEmORxK1kafJZ7n-XBZz1wuTSbNmIcvxnw1X-YV_UuiG1aluT4R9vjP9iegK3EX5PwDB98CjrVbG7OwKZaVO_l7Lyeol8z1-DD
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLagIMFCOUU5PbAakjiObbYKURXRZirQLXJ8AFIVqjatxL_HzlG1AzDAnpdYL_a7_L3vAXBlY2JtswqC0lAxZPMNiVLmCRSwlBqOrQUs6BieezSO2XDIl3thHKzS5dCmJIoobLU73K4YXUPibhzljLuhsuld4HI8P7KOaB1sEOtrHaxv0HmprTHhgV_y7dEAOZm6i-e716z4pxX20iW_02n-x4p3wU4VdcJ2uU32wJrO9kGznugAqwN-AOJ-ga3UsBom8QprznFoVwjHb2XFClrb626dodJ5AeXK4C1sw9GCohlOZ5O5_jwET537wV0XVRMXkLRhXo6U9Lgg0rCIeSqVRqtIU0qk5JHGRFAtQsKsWRAKe5wxoYTgKoiM0EYTIxg-Ao3sI9PHAOrIFyzFKbUhQ0iZfTrlHmb2Cw6pHYUtENZ6TmRFR-6mYowSv2YtrXSWOJ0llc5a4HohNi75OH4T4Ms_McmLQogpp5Yk-EfZkz_IXoKt7qDfS3oP8eMp2A5c14QD_OAz0MgnM30ONuU8f59OLor9-gVtH-Tk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLagIMRCOUU5PbAa0jiJbbYKiECUqEM5tsjxAUhVqNq0Ev8eO3GqdgAG2P0c6-X5Hfbn7wFwZnJiZaqKEGWBpMjUGwJl1OPIpxnRDBsPWNIxPHVJktCXF9ZzaMKxg1XaGlpXRBGlr7abeyh1jYi7sIwz9oLKVHe-LfHakYlDy2ClJMcyJt2Pn2tnHDK_XdHtER9ZmfoRz3fTLISnBfLSubATN_9hwZtgw-WcsFMZyRZYUvk2aNb9HKDb3jsgeSiRlQq6VhKvsGYch2aBcPhWnVdB43ntnTOUqiiBXDm8hB04mBE0w_FkNFWfu-Axvulf3SLXbwEJk-QVSAqP8VBoGlFPZkIrGSlCQiFYpHDIieJBSI1T4BJ7jFIuOWfSjzRXWoWaU7wHGvlHrvYBVFGb0wxnxCQMAaFmdMY8TM0XLE47ClogqNWcCkdGbntiDNJ2zVnqdJZanaVOZy1wPhMbVmwcvwmw-X-YFuUxiK56lqT4R9mDP8iegrXedZx275L7Q7Du2ycTFu2Dj0CjGE3UMVgV0-J9PDoprfULoRfjiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+approach+for+phishing+website+detection+%3A+A+literature+survey&rft.jtitle=Journal+of+discrete+mathematical+sciences+%26+cryptography&rft.au=Patil%2C+Rutuja+R.&rft.au=Kaur%2C+Gagandeep&rft.au=Jain%2C+Himank&rft.au=Tiwari%2C+Ayush&rft.date=2022-04-03&rft.pub=Taylor+%26+Francis&rft.issn=0972-0529&rft.eissn=2169-0065&rft.volume=25&rft.issue=3&rft.spage=817&rft.epage=827&rft_id=info:doi/10.1080%2F09720529.2021.2016224&rft.externalDocID=2016224
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0972-0529&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0972-0529&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0972-0529&client=summon