TOWARDS A SYSTEMATIC LINEAR STABILITY ANALYSIS OF NUMERICAL METHODS FOR SYSTEMS OF STOCHASTIC DIFFERENTIAL EQUATIONS

We develop two classes of test equations for the linear stability analysis of numerical methods applied to systems of stochastic ordinary differential equations of Ito type (SODEs). Motivated by the theory of stochastic stabilization and destabilization, these test equations capture certain fundamen...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on numerical analysis Ročník 48; číslo 1; s. 298 - 321
Hlavní autoři: BUCKWAR, EVELYN, KELLY, CÓNALL
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Society for Industrial and Applied Mathematics 01.01.2010
Témata:
ISSN:0036-1429, 1095-7170
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We develop two classes of test equations for the linear stability analysis of numerical methods applied to systems of stochastic ordinary differential equations of Ito type (SODEs). Motivated by the theory of stochastic stabilization and destabilization, these test equations capture certain fundamental effects of stochastic perturbation in systems of SODEs, while remaining amenable to analysis before and after discretization. We then carry out a linear stability analysis of the 0-Maruyama method applied to these test equations, investigating mean-square and almost sure asymptotic stability of the test equilibria. We discuss the implications of our work for the notion of A-stability of the θ-Maruyama method and use numerical simulation to suggest extensions of our results to test systems with nonnormal drift coefficients.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0036-1429
1095-7170
DOI:10.1137/090771843