Quantum Theory as a Critical Regime of Language Dynamics

Some mathematical theories in physics justify their explanatory superiority over earlier formalisms by the clarity of their postulates. In particular, axiomatic reconstructions drive home the importance of the composition rule and the continuity assumption as two pillars of quantum theory. Our appro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Foundations of physics Ročník 45; číslo 10; s. 1341 - 1350
Hlavní autor: Grinbaum, Alexei
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.10.2015
Témata:
ISSN:0015-9018, 1572-9516
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Some mathematical theories in physics justify their explanatory superiority over earlier formalisms by the clarity of their postulates. In particular, axiomatic reconstructions drive home the importance of the composition rule and the continuity assumption as two pillars of quantum theory. Our approach sits on these pillars and combines new mathematics with a testable prediction. If the observer is defined by a limit on string complexity, information dynamics leads to an emergent continuous model in the critical regime. Restricting it to a family of binary codes describing ‘bipartite systems,’ we find strong evidence of an upper bound on bipartite correlations equal to 2.82537. This is measurably different from the Tsirelson bound. The Hilbert space formalism emerges from this mathematical investigation as an effective description of a fundamental discrete theory in the critical regime.
ISSN:0015-9018
1572-9516
DOI:10.1007/s10701-015-9937-y