Research on remaining service life prediction of platform screen doors system based on genetic algorithm to optimise BP neural network

The platform screen door system related to the safety of passengers, vehicle and station operation in rail transit is the research object. Relay, the key component of the PSD system, is selected as the breakthrough point, and the number of pull-in is used as the evaluation index of the service life...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Enterprise information systems Ročník 16; číslo 8-9
Hlavní autori: Ling, Xiang, Liu, Suping, Liu, Qin, Wei, Qianzhou, Zhang, Yu, Shi, Zihong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Taylor & Francis 03.08.2022
Predmet:
ISSN:1751-7575, 1751-7583
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The platform screen door system related to the safety of passengers, vehicle and station operation in rail transit is the research object. Relay, the key component of the PSD system, is selected as the breakthrough point, and the number of pull-in is used as the evaluation index of the service life of the relay. The precise and complex mapping between the influencing factors of the relay (coil resistance, pull-in voltage, release voltage, pull-in time, release time and contact resistance) and the remaining service life of the PSD system are established based on genetic algorithm to optimise BP neural network, and a new model for predicting the remaining life of the PSD is constructed. The PSD system of Guangzhou Metro Line 8 - KeCun Station is taken as the experimental test object. By comparing the BP algorithm, the PSO-BP algorithm and the GA-BP algorithm, it is demonstrated in detail how the prediction model can effectively predict the remaining service life of the PSD system with high precision, so that the equipment early warning before failure occurs to ensure the normal operation of subway lines. Experimental examples effectively prove the stability and accuracy of the GA-BP algorithm proposed.
AbstractList The platform screen door system related to the safety of passengers, vehicle and station operation in rail transit is the research object. Relay, the key component of the PSD system, is selected as the breakthrough point, and the number of pull-in is used as the evaluation index of the service life of the relay. The precise and complex mapping between the influencing factors of the relay (coil resistance, pull-in voltage, release voltage, pull-in time, release time and contact resistance) and the remaining service life of the PSD system are established based on genetic algorithm to optimise BP neural network, and a new model for predicting the remaining life of the PSD is constructed. The PSD system of Guangzhou Metro Line 8 - KeCun Station is taken as the experimental test object. By comparing the BP algorithm, the PSO-BP algorithm and the GA-BP algorithm, it is demonstrated in detail how the prediction model can effectively predict the remaining service life of the PSD system with high precision, so that the equipment early warning before failure occurs to ensure the normal operation of subway lines. Experimental examples effectively prove the stability and accuracy of the GA-BP algorithm proposed.
Author Liu, Qin
Shi, Zihong
Wei, Qianzhou
Ling, Xiang
Liu, Suping
Zhang, Yu
Author_xml – sequence: 1
  givenname: Xiang
  surname: Ling
  fullname: Ling, Xiang
  organization: Guangdong Institute of Intelligent Manufacturing, Guangdong Key Laboratory of Modern Control Technology
– sequence: 2
  givenname: Suping
  surname: Liu
  fullname: Liu, Suping
  organization: College of Computer Science, Guangdong University of Science and Technology
– sequence: 3
  givenname: Qin
  surname: Liu
  fullname: Liu, Qin
  email: qinliu901@gmail.com
  organization: College of Automation, Zhongkai University of Agriculture and Engineering
– sequence: 4
  givenname: Qianzhou
  surname: Wei
  fullname: Wei, Qianzhou
  organization: Guangdong Institute of Intelligent Manufacturing, Guangdong Key Laboratory of Modern Control Technology
– sequence: 5
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: Guangdong Institute of Intelligent Manufacturing, Guangdong Key Laboratory of Modern Control Technology
– sequence: 6
  givenname: Zihong
  surname: Shi
  fullname: Shi, Zihong
  organization: Guangdong Polytechnic of Water Resources and Electric Engineering
BookMark eNqFkN1KxDAQhYMoqKuPIOQFVpO2Sbp44w_-gaCIXpfZdLJG22SZRGVfwOe2xZ8LLxQGznCYc2C-bbYeYkDG9qTYl6IWB9KoYYzaL0QxWLWuKlOvsa3RnxpVl-s_u1GbbDulJyF0LYzaYu93mBDIPvIYOGEPPviw4Anp1VvknXfIl4Stt9kPF9HxZQfZRep5soQYeBsjJZ5WKWPP55CwHasWGDB7y6FbRPL5sec58rjMvvcJ-cktD_hC0A2S3yI977ANB13C3S-dsIfzs_vTy-n1zcXV6fH11JZS5CnUgOCMruZaalPNK-XkrJiZsihdURvTKqFq1KICrLRQuipmKMpSgJBipqUqJ0x99lqKKRG6Zkm-B1o1UjQjzOYbZjPCbL5gDrnDXznrM4xIMoHv_k0ffaZ9GMnB8HHXNhlWXSRHEKxPTfl3xQfUFJEZ
CitedBy_id crossref_primary_10_20965_jaciii_2024_p1107
crossref_primary_10_3390_app15137188
crossref_primary_10_1080_10454446_2022_2028692
Cites_doi 10.1016/j.ins.2014.03.015
10.1109/TNNLS.2015.2500618
10.1016/j.asoc.2019.105733
10.1109/RAMS.2009.4914720
10.1016/j.neunet.2015.03.008
10.1016/j.ins.2016.07.067
10.1016/j.sjbs.2019.06.016
10.1177/1077546311435349
10.1177/1748006X18768916
10.1007/s11227-020-03171-8
10.1109/TCYB.2015.2490170
10.1016/j.asoc.2016.04.026
10.1080/17517575.2019.1701714
10.1016/j.ymssp.2008.06.009
10.1162/NECO_a_00549
10.1016/j.neunet.2014.10.003
10.1016/j.future.2017.12.005
10.1016/j.neunet.2014.05.014
10.1016/j.buildenv.2004.01.022
10.1007/s00500-014-1371-0
10.1007/s00500-014-1329-2
10.1016/j.ymssp.2005.11.008
10.1007/s12652-019-01624-4
10.1109/TNNLS.2015.2441697
10.1016/j.engappai.2018.05.003
10.1016/j.eswa.2019.05.030
10.1016/j.neucom.2017.11.062
ContentType Journal Article
Copyright 2021 Informa UK Limited, trading as Taylor & Francis Group 2021
Copyright_xml – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group 2021
DBID AAYXX
CITATION
DOI 10.1080/17517575.2020.1864478
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-7583
ExternalDocumentID 10_1080_17517575_2020_1864478
1864478
Genre Research Article
GroupedDBID .7F
0BK
0R~
30N
4.4
8VB
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ADCVX
ADGTB
ADMLS
AEISY
AENEX
AEYOC
AFRVT
AGDLA
AHDZW
AHQJS
AIJEM
AIYEW
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EBU
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
J~4
K1G
KYCEM
LJTGL
M4Z
MK~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TH9
TTHFI
TUROJ
TWF
TWQ
UT5
UU3
ZGOLN
ZL0
AAYXX
CITATION
ID FETCH-LOGICAL-c310t-a8aeaf764b61674b45f19297323f2877d5058e604ae46056429e0330a01096153
IEDL.DBID TFW
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000613768500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-7575
IngestDate Tue Nov 18 21:09:44 EST 2025
Sat Nov 29 06:46:09 EST 2025
Mon Oct 20 23:47:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8-9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c310t-a8aeaf764b61674b45f19297323f2877d5058e604ae46056429e0330a01096153
ParticipantIDs crossref_citationtrail_10_1080_17517575_2020_1864478
informaworld_taylorfrancis_310_1080_17517575_2020_1864478
crossref_primary_10_1080_17517575_2020_1864478
PublicationCentury 2000
PublicationDate 2022-08-03
PublicationDateYYYYMMDD 2022-08-03
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-03
  day: 03
PublicationDecade 2020
PublicationTitle Enterprise information systems
PublicationYear 2022
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References cit0011
Li X. C. (cit0012) 2019
cit0031
cit0010
cit0032
cit0030
Hu Y. T. (cit0007) 2011
Xu Y. S. (cit0028) 2019
cit0019
Xiong L. (cit0026) 2019
cit0017
Zhou L. (cit0041) 2009
Wei Q. Z. (cit0018) 2017
cit0015
cit0037
cit0038
cit0035
Zhang Y. B. (cit0039) 2012
cit0014
cit0036
cit0022
cit0001
cit0023
(cit0033) 2013; 222
cit0021
Yousef (cit0034) 2019
cit0040
Liu G. (cit0013) 2015; 61
Wu Y. (cit0020) 2016
Yana Z. (cit0029) 2019
Cai P. F. (cit0003) 2019
cit0008
cit0009
cit0006
cit0004
cit0005
Su H. (cit0016) 2013
cit0027
cit0002
cit0024
cit0025
References_xml – ident: cit0022
  doi: 10.1016/j.ins.2014.03.015
– ident: cit0024
  doi: 10.1109/TNNLS.2015.2500618
– ident: cit0005
  doi: 10.1016/j.asoc.2019.105733
– ident: cit0017
  doi: 10.1109/RAMS.2009.4914720
– year: 2019
  ident: cit0003
  publication-title: Computer Measurement & Control
– year: 2016
  ident: cit0020
  publication-title: Bei Jing Jiao Tong University
– year: 2011
  ident: cit0007
  publication-title: Journal of Shanghai Jiaotong University
– year: 2019
  ident: cit0028
  publication-title: Huazhong University of Science and Technology
– ident: cit0023
  doi: 10.1016/j.neunet.2015.03.008
– ident: cit0030
  doi: 10.1016/j.ins.2016.07.067
– year: 2009
  ident: cit0041
  publication-title: Building and Environment
– year: 2019
  ident: cit0029
  publication-title: Energy Conversion and Management
– year: 2013
  ident: cit0016
  publication-title: South China University of Technology
– year: 2019
  ident: cit0034
  publication-title: Measurement
– ident: cit0004
  doi: 10.1016/j.sjbs.2019.06.016
– year: 2019
  ident: cit0012
  publication-title: Applied Soft Computing Journal
– ident: cit0031
  doi: 10.1177/1077546311435349
– ident: cit0002
  doi: 10.1177/1748006X18768916
– ident: cit0027
  doi: 10.1007/s11227-020-03171-8
– ident: cit0037
  doi: 10.1109/TCYB.2015.2490170
– ident: cit0010
  doi: 10.1016/j.asoc.2016.04.026
– ident: cit0035
  doi: 10.1080/17517575.2019.1701714
– ident: cit0006
  doi: 10.1016/j.ymssp.2008.06.009
– ident: cit0021
  doi: 10.1162/NECO_a_00549
– year: 2012
  ident: cit0039
  publication-title: Journal of Vibration and Shock
– volume: 61
  start-page: 59
  year: 2015
  ident: cit0013
  publication-title: IEEE Transactions on Cybernetics
– ident: cit0038
  doi: 10.1016/j.neunet.2014.10.003
– ident: cit0011
  doi: 10.1016/j.future.2017.12.005
– ident: cit0040
  doi: 10.1016/j.neunet.2014.05.014
– year: 2017
  ident: cit0018
  publication-title: China Science and Technology Information
– ident: cit0019
  doi: 10.1016/j.buildenv.2004.01.022
– ident: cit0032
  doi: 10.1007/s00500-014-1371-0
– ident: cit0014
  doi: 10.1007/s00500-014-1329-2
– volume: 222
  start-page: 413
  issue: 3
  year: 2013
  ident: cit0033
  publication-title: Information Sciences
– ident: cit0008
  doi: 10.1016/j.ymssp.2005.11.008
– ident: cit0025
  doi: 10.1007/s12652-019-01624-4
– year: 2019
  ident: cit0026
  publication-title: Soft Computing
– ident: cit0036
  doi: 10.1109/TNNLS.2015.2441697
– ident: cit0001
  doi: 10.1016/j.engappai.2018.05.003
– ident: cit0009
  doi: 10.1016/j.eswa.2019.05.030
– ident: cit0015
  doi: 10.1016/j.neucom.2017.11.062
SSID ssj0068075
Score 2.3022614
Snippet The platform screen door system related to the safety of passengers, vehicle and station operation in rail transit is the research object. Relay, the key...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms ga-BP Neural Network
optimisation
Platform Screen Doors System
prediction
remaining Service Life
Title Research on remaining service life prediction of platform screen doors system based on genetic algorithm to optimise BP neural network
URI https://www.tandfonline.com/doi/abs/10.1080/17517575.2020.1864478
Volume 16
WOSCitedRecordID wos000613768500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1751-7583
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0068075
  issn: 1751-7575
  databaseCode: TFW
  dateStart: 20070201
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQADb0R56QbWQBq7cTIComJAVYcC3SI7saFSm1RJ4Cfwu7nLA7UDMICUIYp0lmWf7-6L775j7EIKa32puSNDhKtCSO0obbWjXdvjAb6qqp3P04McDoPJJBw12YRFk1ZJGNrWRBGVrabDrXTRZsRdocfDR_YR3Xn4KUCXLqncF10_Hc3x4Lm1xX5DtUsSDom0NTzfjbLinVa4S5e8zmD7H-a7w7aakBOuax3ZZWsm3WObS0SE--yjTcCDLIXczOu2EVDUhgRmU2tgkdOdDu0jZBYWM1XStAHNDkJhSLIsL6DmhQZyjQkNhdpJRZKgZi9ZPi1f51BmkKGVQu0ycDMCotPEuaV1MvoBexzcjW_vnaZDgxNjWFg6KlBGWekL7VM1gxZ9ixEjEQBxi1BMJhhfBcZ3hTJ0_4pYJzQu566iCzkKNQ9ZJ81Sc8TASzgXfU9zJTCoM0q7AWI3K1XMVexbr8tEuzNR3NCXUxeNWdRrWE7bZY5omaNmmbvs8ktsUfN3_CYQLm97VFY_Tmzd5STiP8oe_0H2hG14VFlB2Sj8lHXK_M2csfX4vZwW-Xml1Z-T7vM4
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gIAEH3ojx9IFroWuypjsCYhpiTBwG7FYlXQKTtnbqCj-B3429tmg7AAeQeqgqOYoS1_aX2J8ZO5PCWl9q7sgGwlUhpHaUttrRrq3xAF_VtJ3PU1t2OkGv15ithaG0SsLQNieKmNpq-rnpMLpMibtAl4ePrCO88_BTgD5dBotsqY6-lvjzu83n0hr7BdkuiTgkU1bxfDfMnH-aYy-d8TvNjf-Y8SZbL6JOuMzVZIstmHibrc1wEe6wjzIHD5IYUjPKO0fAJLclMBxYA-OUrnVoKyGxMB6qjOYNaHkQDUM_SdIJ5NTQQN6xT0OhglKdJKjhS5IOstcRZAkkaKhQwQxcPQAxauLc4jwffZc9Nm-61y2naNLgRBgZZo4KlFFW-kL7VNCgRd1i0EgcQNwiGpN9DLEC47tCGbqCRbjTMC7nrqI7OYo291glTmKzz8Drcy7qnuZKYFxnlHYDhG9WqoiryLdelYlya8KoYDCnRhrDsFYQnZbLHNIyh8UyV9n5l9g4p_D4TaAxu-9hNj07sXmjk5D_KHvwB9lTttLq3rfD9m3n7pCtelRoQckp_IhVsvTNHLPl6D0bTNKTqYp_AgZJ92I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gIAQH3ojx9IFroTRZ0x15TSCmaYcBu1VJm8Ck0U5d4Sfwu7HXFm0H4ABSD1UlR1Hi2P4a-zNjJ1JY60vNHdlEuCqE1I7SVjvatec8wFc1aefz2JadTtDvN7tlNuG4TKskDG0LooiJrabDPYptlRF3hh4PH9lAdOfhpwBdugzm2QKGzj4pea_1VBljv-TaJRGHZKoinu-GmXFPM-SlU26ntfYPE15nq2XMCReFkmywOZNsspUpJsIt9lFl4EGaQGZei74RMC4sCQwH1sAoo0sd2khILYyGKqdpA9odxMIQp2k2hoIYGsg3xjQUqidVSYIaPqfZIH95hTyFFM0UqpeByy4QnybOLSmy0bfZQ-umd3XrlC0anAjjwtxRgTLKSl9on8oZtGhYDBmJAYhbxGIyxgArML4rlKELWAQ7TeNy7iq6kaNYc4fVkjQxuwy8mHPR8DRXAqM6o7QbIHizUkVcRb716kxUOxNGJX85tdEYhuclzWm1zCEtc1guc52dfomNCgKP3wSa09se5pM_J7ZocxLyH2X3_iB7zJa6162wfde532fLHlVZUGYKP2C1PHszh2wxes8H4-xoouCfGz32FA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+remaining+service+life+prediction+of+platform+screen+doors+system+based+on+genetic+algorithm+to+optimise+BP+neural+network&rft.jtitle=Enterprise+information+systems&rft.au=Ling%2C+Xiang&rft.au=Liu%2C+Suping&rft.au=Liu%2C+Qin&rft.au=Wei%2C+Qianzhou&rft.date=2022-08-03&rft.pub=Taylor+%26+Francis&rft.issn=1751-7575&rft.eissn=1751-7583&rft.volume=16&rft.issue=8-9&rft_id=info:doi/10.1080%2F17517575.2020.1864478&rft.externalDocID=1864478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-7575&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-7575&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-7575&client=summon