Stochastic Window Mean-Payoff Games

Stochastic two-player games model systems with an environment that is both adversarial and stochastic. The adversarial part of the environment is modeled by a player (Player 2) who tries to prevent the system (Player 1) from achieving its objective. We consider finitary versions of the traditional m...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Logical methods in computer science Ročník 21, Issue 2
Hlavní autori: Doyen, Laurent, Gaba, Pranshu, Guha, Shibashis
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Logical Methods in Computer Science e.V 01.01.2025
Predmet:
ISSN:1860-5974, 1860-5974
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Stochastic two-player games model systems with an environment that is both adversarial and stochastic. The adversarial part of the environment is modeled by a player (Player 2) who tries to prevent the system (Player 1) from achieving its objective. We consider finitary versions of the traditional mean-payoff objective, replacing the long-run average of the payoffs by payoff average computed over a finite sliding window. Two variants have been considered: in one variant, the maximum window length is fixed and given, while in the other, it is not fixed but is required to be bounded. For both variants, we present complexity bounds and algorithmic solutions for computing strategies for Player 1 to ensure that the objective is satisfied with positive probability, with probability 1, or with probability at least $p$, regardless of the strategy of Player 2. The solution crucially relies on a reduction to the special case of non-stochastic two-player games. We give a general characterization of prefix-independent objectives for which this reduction holds. The memory requirement for both players in stochastic games is also the same as in non-stochastic games by our reduction. Moreover, for non-stochastic games, we improve upon the upper bound for the memory requirement of Player 1 and upon the lower bound for the memory requirement of Player 2.
ISSN:1860-5974
1860-5974
DOI:10.46298/lmcs-21(2:19)2025