An improved Gaussian distribution based quantum-behaved particle swarm optimization algorithm for engineering shape design problems
In this article, an improved Gaussian distribution based quantum-behaved particle swarm optimization (IG-QPSO) algorithm is proposed to solve engineering shape design problems with multiple constraints. In this algorithm, the Gaussian distribution is employed to generate the sequence of random numbe...
Saved in:
| Published in: | Engineering optimization Vol. 54; no. 5; pp. 743 - 769 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Taylor & Francis
04.05.2022
|
| Subjects: | |
| ISSN: | 0305-215X, 1029-0273 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this article, an improved Gaussian distribution based quantum-behaved particle swarm optimization (IG-QPSO) algorithm is proposed to solve engineering shape design problems with multiple constraints. In this algorithm, the Gaussian distribution is employed to generate the sequence of random numbers in the QPSO algorithm. By decreasing the variance of the Gaussian distribution linearly, the algorithm is able not only to maintain its global search ability during the early search stages, but can also obtain gradually enhanced local search ability in the later search stages. Additionally, a weighted mean best position in the IG-QPSO is employed to achieve a good balance between local search and global search. The proposed algorithm and some other well-known PSO variants are tested on ten standard benchmark functions and six well-studied engineering shape design problems. Experimental results show that the IG-QPSO algorithm can optimize these problems effectively in terms of precision and robustness compared to its competitors. |
|---|---|
| AbstractList | In this article, an improved Gaussian distribution based quantum-behaved particle swarm optimization (IG-QPSO) algorithm is proposed to solve engineering shape design problems with multiple constraints. In this algorithm, the Gaussian distribution is employed to generate the sequence of random numbers in the QPSO algorithm. By decreasing the variance of the Gaussian distribution linearly, the algorithm is able not only to maintain its global search ability during the early search stages, but can also obtain gradually enhanced local search ability in the later search stages. Additionally, a weighted mean best position in the IG-QPSO is employed to achieve a good balance between local search and global search. The proposed algorithm and some other well-known PSO variants are tested on ten standard benchmark functions and six well-studied engineering shape design problems. Experimental results show that the IG-QPSO algorithm can optimize these problems effectively in terms of precision and robustness compared to its competitors. |
| Author | Sun, Jun Shi, Xiaoqian Palade, Vasile Chen, Qidong Wu, Xiaojun |
| Author_xml | – sequence: 1 givenname: Qidong orcidid: 0000-0001-9434-4979 surname: Chen fullname: Chen, Qidong organization: Jiangnan University – sequence: 2 givenname: Jun orcidid: 0000-0002-9824-4294 surname: Sun fullname: Sun, Jun email: junsun@jiangnan.edu.cn organization: Jiangnan University – sequence: 3 givenname: Vasile orcidid: 0000-0002-6768-8394 surname: Palade fullname: Palade, Vasile organization: Coventry University – sequence: 4 givenname: Xiaojun orcidid: 0000-0002-0310-5778 surname: Wu fullname: Wu, Xiaojun organization: Jiangnan University – sequence: 5 givenname: Xiaoqian orcidid: 0000-0002-9974-4856 surname: Shi fullname: Shi, Xiaoqian organization: Taihu School |
| BookMark | eNqFkE1P3DAQhq2KSizQn4DkP5DtOI6TjXopQi2thMQFJG7RxB-7UyV2sL0guPaPN-HjwqGc5jDv847mOWIHPnjL2KmAtYANfAUJqhTqdl1CKdaiBRCq-sRWAsq2gLKRB2y1ZIoldMiOUvozRyTAZsX-nnlO4xTDvTX8AvcpEXpuKOVI_T5T8LzHNO_u9ujzfix6u8MlO2HMpAfL0wPGkYcp00hP-EzgsA2R8m7kLkRu_Za8tZH8lqcdTpYbm2jr-Xy1H-yYTthnh0OyX17nMbv5-eP6_FdxeXXx-_zsstBSQC5aV1Z141yLDZa96AUKp1XTgnVG6dopU7VGmho2qGsrGt1L2Sio0BqolK3lMVMvvTqGlKJ13RRpxPjYCegWk92byW4x2b2anLlv7zhN-fnTHJGGD-nvLzT52caIDyEOpsv4OIToInpNqZP_r_gHIBqTWw |
| CitedBy_id | crossref_primary_10_1007_s10489_022_03900_x crossref_primary_10_1088_1402_4896_ad91ef crossref_primary_10_3390_app12031518 crossref_primary_10_3233_IDA_226753 crossref_primary_10_1016_j_probengmech_2023_103494 crossref_primary_10_1080_0305215X_2023_2260992 crossref_primary_10_1016_j_future_2024_04_008 crossref_primary_10_3390_pr10112312 crossref_primary_10_1080_09500340_2024_2359072 |
| Cites_doi | 10.1016/j.asoc.2015.10.048 10.1109/TEVC.2003.814902 10.1002/9780470640425 10.1115/1.2912596 10.1016/S0166-3615(99)00046-9 10.1109/ICCAE.2010.5451501 10.1007/s10994-015-5522-z 10.1109/TCYB.2015.2475174 10.1109/CEC.2002.1004459 10.1162/EVCO_a_00049 10.1145/1143997.1144266 10.1109/TEVC.2004.826074 10.1016/j.ins.2019.08.054 10.1080/03052150108940941 10.1016/0094-114X(73)90018-9 10.1016/j.amc.2006.07.134 10.1115/1.3438995 10.1109/TCYB.2014.2322602 10.1016/j.eswa.2009.06.044 10.1109/ICNN.1995.488968 10.1016/j.ins.2014.09.053 10.1016/j.engappai.2006.03.003 10.1016/j.amc.2015.06.062 |
| ContentType | Journal Article |
| Copyright | 2021 Informa UK Limited, trading as Taylor & Francis Group 2021 |
| Copyright_xml | – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group 2021 |
| DBID | AAYXX CITATION |
| DOI | 10.1080/0305215X.2021.1900154 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1029-0273 |
| EndPage | 769 |
| ExternalDocumentID | 10_1080_0305215X_2021_1900154 1900154 |
| Genre | Research Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61672263,61672265,61673194 |
| GroupedDBID | -~X .7F .QJ 0BK 0R~ 29G 2DF 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NX~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION |
| ID | FETCH-LOGICAL-c310t-9f2467ff9a7a2b1b1a1fc5790efd5c6f5d49d3d608ac6e17cb337504aed045e63 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000632328400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0305-215X |
| IngestDate | Tue Nov 18 21:40:05 EST 2025 Sat Nov 29 06:22:50 EST 2025 Mon Oct 20 23:47:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c310t-9f2467ff9a7a2b1b1a1fc5790efd5c6f5d49d3d608ac6e17cb337504aed045e63 |
| ORCID | 0000-0002-9824-4294 0000-0001-9434-4979 0000-0002-0310-5778 0000-0002-9974-4856 0000-0002-6768-8394 |
| PageCount | 27 |
| ParticipantIDs | crossref_primary_10_1080_0305215X_2021_1900154 crossref_citationtrail_10_1080_0305215X_2021_1900154 informaworld_taylorfrancis_310_1080_0305215X_2021_1900154 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-04 |
| PublicationDateYYYYMMDD | 2022-05-04 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering optimization |
| PublicationYear | 2022 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | CIT0010 CIT0012 CIT0011 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0001 CIT0023 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0004 CIT0007 CIT0006 CIT0009 Wang Yong (CIT0022) 2018 CIT0008 |
| References_xml | – ident: CIT0008 doi: 10.1016/j.asoc.2015.10.048 – ident: CIT0016 doi: 10.1109/TEVC.2003.814902 – ident: CIT0023 doi: 10.1002/9780470640425 – ident: CIT0018 doi: 10.1115/1.2912596 – ident: CIT0001 doi: 10.1016/S0166-3615(99)00046-9 – ident: CIT0012 doi: 10.1109/ICCAE.2010.5451501 – ident: CIT0020 doi: 10.1007/s10994-015-5522-z – ident: CIT0007 doi: 10.1109/TCYB.2015.2475174 – ident: CIT0013 doi: 10.1109/CEC.2002.1004459 – ident: CIT0019 doi: 10.1162/EVCO_a_00049 – ident: CIT0003 doi: 10.1145/1143997.1144266 – ident: CIT0014 doi: 10.1109/TEVC.2004.826074 – ident: CIT0025 doi: 10.1016/j.ins.2019.08.054 – ident: CIT0017 doi: 10.1080/03052150108940941 – year: 2018 ident: CIT0022 publication-title: IEEE Transactions on Cybernetics – ident: CIT0006 doi: 10.1016/0094-114X(73)90018-9 – ident: CIT0010 doi: 10.1016/j.amc.2006.07.134 – ident: CIT0015 doi: 10.1115/1.3438995 – ident: CIT0002 doi: 10.1109/TCYB.2014.2322602 – ident: CIT0004 doi: 10.1016/j.eswa.2009.06.044 – ident: CIT0024 – ident: CIT0011 doi: 10.1109/ICNN.1995.488968 – ident: CIT0021 doi: 10.1016/j.ins.2014.09.053 – ident: CIT0009 doi: 10.1016/j.engappai.2006.03.003 – ident: CIT0005 doi: 10.1016/j.amc.2015.06.062 |
| SSID | ssj0013008 |
| Score | 2.3597975 |
| Snippet | In this article, an improved Gaussian distribution based quantum-behaved particle swarm optimization (IG-QPSO) algorithm is proposed to solve engineering shape... |
| SourceID | crossref informaworld |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 743 |
| SubjectTerms | Engineering shape design problems Gaussian distribution multiple constraints quantum-behaved optimization algorithm weighted mean best position |
| Title | An improved Gaussian distribution based quantum-behaved particle swarm optimization algorithm for engineering shape design problems |
| URI | https://www.tandfonline.com/doi/abs/10.1080/0305215X.2021.1900154 |
| Volume | 54 |
| WOSCitedRecordID | wos000632328400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1029-0273 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013008 issn: 0305-215X databaseCode: TFW dateStart: 19740101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQADb0R5yQNrSh7Ow2OFKEwVQxHdIj9ppaYtecAP4I_jSxxaBmCAMcM5ie98d7bvvg-hK0K171Jmdifc7HQI18JJeKQd5sdwj0U55w3ZRDwcJuMxfbDVhIUtq4Q9tG6AImpfDYub8aKtiLsGGzWRamx2d77XMxEN8gDjhU3oh6U5Gjyt7hHcmpMOJBwQaXt4vhvlS3T6gl26FnUGu__wvXtox6acuN_YyD7aUPMDtL0GRHiI3vtzPK2PF5TEd6wqoLUSSwDVtXxYGMKdxC-V0USVOXV3v3leWsvDxRvLM7wwDiiznZ2YzZ4X-bScZNj8H1ar9-FiwpYKy7p4BFtKm-IIPQ5uRzf3jqVncITJCUvHaNl4Wa0pi5nPPe4xT4swpq7SMhSRDiWhMpCRmzARKS8WPAgATJ4pafJIFQXHqDNfzNUJwlSJhKoQCHM0ISxMfKK5GdVlVNDEFV1EWrWkwmKXA4XGLPVaiFM7xynMcWrnuIt6n2LLBrzjNwG6rvO0rE9NdENxkgY_yp7-QfYMbfnQVgGFlOQcdcq8UhdoU7yW0yK_rE36A80-9QY |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LU8IwEM4oOqMefDviMwevxb7bHBlHxBE54citk6cwQwFp0R_gHzfbBoGDetBjD5u02W12N9n9PoSufKJcm1CdnTCd6fhMcStmobKoG8E9FmGMlWQTUbsdd7tksRcGyiohh1YlUESxV8PPDYfRs5K4azBS7aq6Or1znZp2aRAIrKK1QPtawM_vNJ7nNwl2wUoHIhbIzLp4vhtmyT8toZcu-J3Gzn-88S7aNlEnrpdmsodW5HAfbS1gER6gj_oQ94sTBinwHZ1m0F2JBeDqGkosDB5P4NepVsY0tYoGf_08NsaHs3c6SfFI70Gpae7EdPAymvTzXor1B2I5nw9nPTqWWBT1I9iw2mSH6Klx27lpWoahweI6LMwtrWi90SpFaERd5jCHOooHEbGlEgEPVSB8IjwR2jHloXQizjwP8OSpFDqUlKF3hCrD0VAeI0wkj4kMgDNH-T4NYtdXTI9qU8JJbPMq8md6SbiBLwcWjUHizFBOzRonsMaJWeMqqn2JjUv8jt8EyKLSk7w4OFEly0ni_Sh78gfZS7TR7Dy2ktZ9--EUbbrQZQF1lf4ZquSTqTxH6_wt72eTi8K-PwFQZfkw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagIAQDb0R5emBNyTvxWAEFBKo6FNEt8pNWatPSpPAD-OP4Epe2AzDAmOHsxHfx3dl334fQhU-UaxOqsxOmMx2fKW7FLFQWdSO4xyKMsZJsImo2406HtEw1YWbKKiGHViVQRLFXw889EmpaEXcJNqo9VUdnd65T0x4N4oBltKJD5xCMvN14nl0k2AUpHYhYIDNt4vlumAX3tABeOud2Glv_8MLbaNPEnLheGskOWpLpLtqYQyLcQx_1FPeK8wUp8C2dZNBbiQWg6hpCLAz-TuDXiVbFZGAV7f36eWRMD2fvdDzAQ70DDUxrJ6b9l-G4l3cHWH8flrP5cNalI4lFUT2CDadNto-eGjftqzvL8DNYXAeFuaXVrLdZpQiNqMsc5lBH8SAitlQi4KEKhE-EJ0I7pjyUTsSZ5wGaPJVCB5Iy9A5QJR2m8hBhInlMZACMOcr3aRC7vmJ6VJsSTmKbV5E_VUvCDXg5cGj0E2eKcWrWOIE1TswaV1HtS2xUonf8JkDmdZ7kxbGJKjlOEu9H2aM_yJ6jtdZ1I3m8bz4co3UXWiygqNI_QZV8PJGnaJW_5b1sfFZY9ydnK_fi |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+Gaussian+distribution+based+quantum-behaved+particle+swarm+optimization+algorithm+for+engineering+shape+design+problems&rft.jtitle=Engineering+optimization&rft.au=Chen%2C+Qidong&rft.au=Sun%2C+Jun&rft.au=Palade%2C+Vasile&rft.au=Wu%2C+Xiaojun&rft.date=2022-05-04&rft.issn=0305-215X&rft.eissn=1029-0273&rft.volume=54&rft.issue=5&rft.spage=743&rft.epage=769&rft_id=info:doi/10.1080%2F0305215X.2021.1900154&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_0305215X_2021_1900154 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-215X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-215X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-215X&client=summon |